Analysis of the Frequency of the A1 and A2 Alleles in the Beta-Casein Gene and the A, B and E Alleles in the Kappa-Casein Gene in Local Cattle Breeds: Polish Red and Polish White-Backed
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Material Collection
4.2. Genotyping
4.3. Milk Production Parameters
4.4. Statistical Analysis
4.5. Ethics Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSN2 | Beta-casein |
CSN3 | Kappa-casein |
Fis | Fixation index |
HetO | Observed heterozygosity |
HetE | Expected heterozygosity |
LD | Linkage disequilibrium |
References
- Brito, L.F.; Bédère, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15, 100292. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.L. An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J. Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef]
- Oltenacu, P.; Broom, D. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar] [CrossRef]
- Sawicka-Zugaj, W.; Chabuz, W.; Litwińczuk, Z.; Kasprzak-Filipek, K. Evaluation of reproductive performance and genetic variation in bulls of the Polish White-Backed breed. Reprod. Domest. Anim. 2018, 5, 157–162. [Google Scholar] [CrossRef]
- Walsh, S.W.; Williams, E.J.; Evans, A.C.O. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef]
- Domestic Animal Diversity Information System (DAD-IS). Available online: https://www.fao.org/dad-is/breed-diversity/en/ (accessed on 16 December 2024).
- PFCBDF (Polish Federation of Cattle Breeders and Dairy Farmers)., Cattle Assessment and Breeding, Data for 2023. 2024. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2024/wyniki_oceny/Wyniki_2023_www.pdf (accessed on 16 December 2024). (In Polish).
- Gandini, G.; Maltecca, C.; Pizzi, F.; Bagnato, A.; Rizzi, R. Comparing local and commercial breeds on functional traits and profitability: The case of Reggiana dairy cattle. J. Dairy Sci. 2007, 90, 2004–2011. [Google Scholar] [CrossRef]
- Barłowska, J.; Król, J. Milk of local breeds as a precious raw material for production of labelled regional products. Wiad. Zoot. 2017, LV, 134–144. (In Polish) [Google Scholar]
- Bertolini, F.; Schiavo, G.; Bovo, S.; Sardina, M.T.; Mastrangelo, S.; Dall’Olio, S.; Portolano, B.; Fontanesi, L. Comparative selection signature analyses identify genomic footprints in Reggiana cattle, the traditional breed of the Parmigiano-Reggiano cheese production system. Animal 2020, 14, 921–932. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Schiavo, G.; Bovo, S.; Ribani, A.; Bertolini, F.; Fontanesi, L. Variability in major milk protein genes in two autochthonous cattle breeds mainly reared in the Parmigiano-Reggiano cheese production area: Reggiana and Modenese. Livest. Sci. 2024, 289, 105574. [Google Scholar] [CrossRef]
- Schiavo, G.; Bovo, S.; Ribani, A.; Moscatelli, G.; Bonacini, M.; Prandi, M.; Mancin, E.; Mantovani, R.; Dall’Olio, S.; Fontanesi, L. Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region. J. Dairy Sci. 2022, 105, 2408–2425. [Google Scholar] [CrossRef]
- Korzekwa, A.; Siemieniuch, M.; Kaczmarczyk, J.; Kordan, W. Prospects for traditional livestock breeding of polish red cattle with the agreement of biodiversity protection: Polish Red cattle breeding–animal welfare and the nutritional value of beef. Pol. J. Nat. Sci. 2023, 38, 5–18. [Google Scholar]
- Sawicka-Zugaj, W.; Chabuz, W.; Lisowski, A.; Lewkowska, A. 20 years of Whiteback cattle breeding. In Local Animal Breeds in the Protection of Biodiversity and Preservation of Regional Traditions; Chabuz, W., Sawicka-Zugaj, W., Eds.; Publishing House of the University of Life Sciences: Lublin, Poland, 2023; pp. 90–101. (In Polish) [Google Scholar]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef]
- Joudu, I.; Henno, M.; Kaart, T.; Püssa, T.; Kärt, O. The effect of milk protein contents on the rennet coagulation properties of milk from individual dairy cows. Int. Dairy J. 2008, 18, 964–967. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Gambacorta, E.; Simonetti, A. The influence of casein haplotype on quality, coagulation, and yield traits of milk from Italian Holstein cows. J. Dairy Sci. 2016, 99, 3288–3294. [Google Scholar] [CrossRef]
- Ferretti, L.; Leone, P.; Sgaramella, V. Long range restriction analysis of the bovine casein genes. Nucleic Acids Res. 1990, 18, 6829–6833. [Google Scholar] [CrossRef]
- Ketto, I.A.; Knutsen, T.M.; Øyaas, J.; Heringstad, B.; Ådnøy, T.; Devold, T.G.; Skeie, S.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in Norwegian Red cattle. Int. Dairy J. 2017, 70, 55–64. [Google Scholar] [CrossRef]
- Alexander, L.J.; Stewart, A.F.; Mackinlay, A.G.; Kapelinskaya, T.V.; Tkach, T.M.; Gorodetsky, S.I. Isolation and characterization of the bovine κ-casein gene. Eur. J. Biochem. 1988, 178, 395–401. [Google Scholar] [CrossRef]
- Albarella, S.; Selvaggi, M.; D’Anza, E.; Cosenza, G.; Caira, S.; Scaloni, A.; Fontana, A.; Peretti, V.; Ciotola, F. Influence of the casein composite genotype on milk quality and coagulation properties in the endangered Agerolese cattle breed. Animals 2020, 10, 892. [Google Scholar] [CrossRef]
- Sanchez, M.P.; Fritz, S.; Patry, C.; Delacroix-Buchet, A.; Boichardi, D. Frequencies of milk protein variants and haplotypes estimated from genotypes of more than 1 million bulls and cows of 12 French cattle breeds. J. Dairy Sci. 2020, 103, 9124–9141. [Google Scholar] [CrossRef]
- Kamiński, S. Polymorphism of milk protein genes in cosiny and regulatory regions and their effects on gene expression and milk performance traits. Anim. Sci. Pap. Rep. 2004, 22, 109–113. [Google Scholar]
- Khoroshilova, T.S.; Goncharenko, G.M.; Grishina, N.B.; Zhuchaev, K.V.; Lisunova, L.I.; Korobova, L.N. Polymorphism of the CSN3 Gene in Simmental herds and its variability during holsteinization. Ecol. Environ. Conserv. 2020, 26, 1702–1706. [Google Scholar]
- Pazzola, M.; Vacca, G.M.; Noce, A.; Porcedda, M.; Onnis, M.; Manca, N.; Dettori, M.L. Exploring the genotype at CSN3 gene, milk composition, coagulation and cheese-yield traits of the Sardo-Modicana, an autochthonous cattle breed from the Sardinia Region, Italy. Animals 2020, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- Barłowska, J.; Sawicka-Zugaj, W.; Ślaska, B.; Król, J.; Brodziak, A.; Teter, A.; Chabuz, W. Genetic analysis of CSN2 in local and international cattle breeds raised in Poland. Anim. Sci. Pap. Rep. 2022, 40, 411–422. [Google Scholar]
- Bisutti, V.; Pegolo, S.; Giannuzzi, D.; Mota, L.F.M.; Vanzin, A.; Toscano, A.; Trevisi, E.; Ajmone Marsan, P.; Brasca, M.; Cecchinato, A. The β-casein (CSN2) A2 allelic variant alters milk protein profile and slightly worsens coagulation properties in Holstein cows. J. Dairy Sci. 2022, 105, 3794–3809. [Google Scholar] [CrossRef]
- Nuhriawangsa, A.M.P.; Mulyani, T.; Pambuko, G.; Vanessa, R.; Widyas, N.; Prastowo, S. Molecular screening of bovine β-casein (CSN2) A2 variant in Indonesian Holstein dairy cattle as attempt to produce digestive friendly milk. In Proceedings of the International Conference on Livestock in Tropical Environment, Surakarta, Indonesia (Virtual), 1–2 September 2021. [Google Scholar]
- Sodhi, M.; Mukesh, M.; Kataria, R.S.; Niranjan, S.K.; Mishra, B.P. A1/A2 Milk Research in Indian Cattle. Indian J. Plant Genet. Resour. 2022, 35, 269–278. [Google Scholar] [CrossRef]
- Ribadeau-Dumas, B.; Brignon, G.; Grosclaude, F.; Mercier, J.C. Structure primaire de la caséine β bovine. Sequénce complete. Eur. J. Biochem. 1972, 25, 505–514. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.V.; Chauhan, A.; Ilayakumar, K.; Kumar, S.; Kumar, A.; Sonwane, A.; Kumar, S.; Panigrahi, M.; Bhushan, B. Genetic association analysis reveals significant effect of β-casein A1/A2 loci on production & reproduction traits in Frieswal crossbred cows. Biol. Rhythm Res. 2020, 51, 1259–1272. [Google Scholar]
- Cieślińska, A.; Kostyra, E.; Kostyra, H.; Oleński, K.; Fiedorowicz, E.; Kamiński, S. Milk from cows of different β-casein genotypes as a source of β-casomorphin-7. Int. J. Food. Sci. Nutr. 2012, 63, 426–430. [Google Scholar] [CrossRef]
- Ng-Kwai-Hang, K.F.; Grosclaude, F. Genetic polymorphism of milk proteins. In Advanced Dairy Chemistry, Proteins, 4th ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2003; Volume 1, pp. 739–816. [Google Scholar]
- Miluchová, M.; Gábor, M.; Trakovická, A. Analysis of beta-casein gene (CSN2) polymorphism in different breeds of cattle. Sci. Pap. Anim. Sci. Biotechnol. 2014, 47, 56–59. [Google Scholar]
- ul Haq, M.R.; Kapila, R.; Shandilya, U.K.; Kapila, S. Impact of milk derived β-casomorphins on physiological functions and trends in research: A review. Int. J. Food Prop. 2014, 17, 1726–1741. [Google Scholar] [CrossRef]
- Kamiński, S.; Cieślińska, A.; Kostyra, E. Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Genet. 2007, 48, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv. Nutr. 2017, 8, 739–748. [Google Scholar] [CrossRef]
- Kaskous, S. A1-and A2-milk and their effect on human health. J. Food Eng. Technol. 2020, 9, 15–21. [Google Scholar] [CrossRef]
- Trivedi, M.; Zhang, Y.; Lopez-Toledano, M.; Clarke, A.; Deth, R. Differential neurogenic effects of casein-derived opioid peptides on neuronal stem cells: Implications for redox-based epigenetic changes. J. Nutr. Biochem. 2016, 37, 39–46. [Google Scholar] [CrossRef]
- Summer, A.; Di Frangia, F.; Ajmone Marsan, P.; De Noni, I.; Malacarne, M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3705–3723. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. The relation of livestock breeding to theories of evolution. J. Anim. Sci. 1978, 46, 1192–1200. [Google Scholar] [CrossRef]
- Roin, N.R.; Larsen, L.B.; Comi, I.; Devold, T.G.; Eliassen, T.I.; Inglingstad, R.A.; Vegarud, G.E.; Poulsen, N.A. Identification of rare genetic variants of the αS-caseins in milk from native Norwegian dairy breeds and comparison of protein composition with milk from high-yielding Norwegian Red cows. J. Dairy Sci. 2022, 105, 1014–1027. [Google Scholar] [CrossRef]
- Daniloski, D.; Cunha, N.M.; McCarthy, N.A.; O’Callaghan, T.F.; McParland, S.; Vasiljevic, T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci. Technol. 2021, 111, 233–248. [Google Scholar] [CrossRef]
- Bentivoglio, D.; Finco, A.; Bucci, G.; Staffolani, G. Is there a promising market for the A2 milk? Analysis of Italian consumer preferences. Sustainability 2020, 12, 6763. [Google Scholar] [CrossRef]
- Bodnár, Á.; Hajzsér, A.; Egerszegi, I.; Póti, P.; Kuchtik, J.; Pajor, F. A2 milk and its importance in dairy production and global market. Anim. Welf. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Fernández-Rico, S.; Mondragón, A.D.C.; López-Santamarina, A.; Cardelle-Cobas, A.; Regal, P.; Lamas, A.; Ibarra, I.S.; Cepeda, A.; Miranda, J.M. A2 milk: New perspectives for food technology and human health. Foods 2022, 11, 2387. [Google Scholar] [CrossRef]
- Kulibaba, R.O.; Liashenko, Y.V.; Sakhatskyi, M.I. Polymorphism of CSN2 and TNF-α Genes in the Population of Holstein Cattle Bred in Ukraine. J. Cytol. Genet. 2024, 58, 29–38. [Google Scholar] [CrossRef]
- Kamiński, S.; Zabolewicz, T.; Oleński, K.; Babuchowski, A. Long-term changes in the frequency of beta-casein, kappa-casein and beta-lactoglobulin alleles in Polish Holstein-Friesian dairy cattle. J. Anim. Feed Sci. 2023, 32, 205–210. [Google Scholar] [CrossRef]
- Massella, E.; Piva, S.; Giacometti, F.; Liuzzo, G.; Zambrini, A.V.; Serraino, A. Evaluation of bovine beta casein polymorphism in two dairy farms located in northern Italy. Ital. J. Food. Sci. 2017, 6, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Jawane, V.B.; Ali, S.S.; Kuralkar, S.V.; Bankar, P.S. Genetic polymorphism of β-casein (CSN2) in Indian Zebu and HF crossbreds. Indian J. Dairy Sci. 2018, 71, 530–533. [Google Scholar]
- Paradkar, P.H.; Loke, V.M.; Godse, C.G.; Vaidya, R.A.; Vaidya, A.D.B. Identification of β casein genotypes in Indian Gir and crossbred exotic cows from Mumbai dairy farms. Asian J. Dairy Food Res. 2021, 40, 384–387. [Google Scholar] [CrossRef]
- Ramesha, K.P.; Rao, A.; Basavaraju, M.; Alex, R.; Kataktalware, M.A.; Jeyakumar, S.; Varalakshmi, S. Genetic Variants of β-Casein in Cattle and Buffalo Breeding Bulls in Karnataka State of India. Indian J. Biotechnol. 2016, 15, 178–181. [Google Scholar]
- Antonopoulos, D.; Vougiouklaki, D.; Laliotis, G.P.; Tsironi, T.; Valasi, I.; Chatzilazarou, A.; Halvatsiotis, P.; Houhoula, D. Identification of polymorphisms of the CSN2 gene encoding β-casein in Greek local breeds of cattle. Vet. Sci. 2021, 8, 257. [Google Scholar] [CrossRef]
- de Oliveira, L.S.M.; Alves, J.S.; Bastos, M.S.; da Cruz, V.A.R.; Pinto, L.F.B.; Tonhati, H.; Costa, R.B.; de Camargo, G.M.F. Water buffaloes (Bubalus bubalis) only have A2A2 genotype for beta-casein. Trop. Anim. Health Prod. 2021, 53, 145. [Google Scholar] [CrossRef] [PubMed]
- Cieślińska, A.; Fiedorowicz, E.; Zwierzchowski, G.; Kordulewska, N.; Jarmołowska, B.; Kostyra, E. Genetic polymorphism of β-Casein gene in Polish Red Cattle—Preliminary study of A1 and A2 frequency in genetic conservation herd. Animals 2019, 9, 377. [Google Scholar] [CrossRef] [PubMed]
- Amalfitano, N.; Cipolat-Gotet, C.; Cecchinato, A.; Malacarne, M.; Summer, A.; Bittante, G. Milk protein fractions strongly affect the patterns of coagulation, curd firming, and syneresis. J. Dairy Sci. 2019, 102, 2903–2917. [Google Scholar] [CrossRef]
- Gai, N.; Uniacke-Lowe, T.; O’Regan, J.; Faulkner, H.; Kelly, A.L. Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods 2021, 10, 2409. [Google Scholar] [CrossRef]
- Cendron, F.; Franzoi, M.; Penasa, M.; De Marchi, M.; Cassandro, M. Effects of β-and κ-casein, and β-lactoglobulin single and composite genotypes on milk composition and milk coagulation properties of Italian Holsteins assessed by FT-MIR. Ital. J. Anim. Sci. 2021, 20, 2243–2253. [Google Scholar] [CrossRef]
- Hohmann, L.G.; Weimann, C.; Scheper, C.; Erhardt, G.; König, S. Genetic diversity and population structure in divergent German cattle selection lines on the basis of milk protein polymorphisms. Arch. Anim. Breed. 2021, 64, 91–102. [Google Scholar] [CrossRef]
- Kyselová, J.; Ječmínková, K.; Matějíčková, J.; Hanuš, O.; Kott, T.; Štípková, M.; Krejčová, M. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin. Asian-Australas J. Anim. Sci. 2019, 32, 14. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Glantz, M.; Rosengaard, A.K.; Paulsson, M.; Larsen, L.B. Comparison of milk protein composition and rennet coagulation properties in native Swedish dairy cow breeds and high-yielding Swedish Red cows. J. Dairy Sci. 2017, 100, 8722–8734. [Google Scholar] [CrossRef] [PubMed]
- Adamov, N.; Atanasov, B.; Ilievska, K.; Nikolovski, M.; Dovenska, M.; Petkov, V.; Dovenski, T. Allele and genotype frequencies of the Κappa-Casein (CSN3) locus in Macedonian Holstein-Friesian cattle. Maced. Vet. Rev. 2020, 43, 45–54. [Google Scholar] [CrossRef]
- Chessa, S.; Gattolin, S.; Cremonesi, P.; Soglia, D.; Finocchiaro, R.; Van Kaam, J.T.; Marusi, M.; Civati, G. The effect of selection on casein genetic polymorphisms and haplotypes in Italian Holstein cattle. Ital. J. Anim. Sci. 2020, 19, 833–839. [Google Scholar] [CrossRef]
- Hassan, Y.; Yousif, G.; Ibrahim, M.T.; Erhardt, G. Milk protein polymorphism in Sudanese dairy cattle breeds. Assiut Vet. Med. J. 2010, 56, 136–144. [Google Scholar]
- Lavon, Y.; Weller, J.I.; Zeron, Y.; Ezra, E. Estimating the Effect of the Kappa Casein Genotype on Milk Coagulation Properties in Israeli Holstein Cows. Animals 2023, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Mehandzhiyski, I.; Angelova, T.; Yordanova, D.; Krastanov, J. Relationships between milk yield, quality and coagulation properties with kappa-casein (κ-CN) genotypes of Bulgarian Rhodope cattle breed. Agric. Sci. Technol. 2019, 11, 203–206. [Google Scholar]
- Vallas, M.; Kaart, T.; Varv, S.; Parna, K.; Joudu, I.; Viinalass, H.; Parna, E. Composite β-κ-casein genotypes and their effect on composition and coagulation of milk from Estonian Holstein cows. J. Dairy Sci. 2012, 95, 6760–6769. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Barłowska, J.; Chabuz, W.; Brodziak, A. Nutritional value and technological suitability of milk from cows of three Polish breeds included in the genetic resources conservation programme. Ann. Anim. Sci. 2012, 12, 423–432. [Google Scholar] [CrossRef]
- Teter, A.; Barłowska, J.; Florek, M.; Kędzierska-Matysek, M.; Król, J.; Brodziak, A.; Litwińczuk, Z. Coagulation capacity of milk of local Polish and Holstein-Friesian cattle breeds. Anim. Sci. Pap. Rep. 2019, 37, 259–268. [Google Scholar]
- Teter, A.; Kędzierska-Matysek, M.; Barłowska, J.; Król, J.; Brodziak, A. Nutritional value and coagulation properties of milk from local cow breeds, including the selected macro-and micronutrients and trace elements. Mljekarstvo 2020, 70, 210–220. [Google Scholar] [CrossRef]
- Wolanciuk, A.; Barłowska, J.; Litwińczuk, Z.; Sawicka-Zugaj, W. The relationship between genetic variants of β-lactoglobulin and κ-casein and selected parameters of the suitability of milk for cheese production. Acta Sci. Pol. Zootech. 2017, 15, 53–66. [Google Scholar] [CrossRef]
- Comin, A.; Cassandro, M.; Chessa, S.; Ojala, M.; Dal Zotto, R.; De Marchi, M.; Carnier, P.; Gallo, L.; Pagnacco, G.; Bittante, G. Effects of composite β-and κ-casein genotypes on milk coagulation, quality, and yield traits in Italian Holstein cows. J. Dairy Sci. 2008, 91, 4022–4027. [Google Scholar] [CrossRef]
- Mir, S.N.; Ullah, O.; Sheikh, R. Genetic polymorphism of milk protein variants and their association studies with milk yield in Sahiwal cattle. Afr. J. Biotechnol. 2014, 13, 555–565. [Google Scholar]
- Neamt, R.; Saplacan, G.; Acatincai, S.; Cziszter, L.; Gavojdian, D.; Ilie, D. The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochim. Pol. 2017, 64, 493–497. [Google Scholar] [CrossRef]
- Welter, K.C.; Martins, C.M.D.M.R.; de Palma, A.S.V.; Martins, M.M.; Dos Reis, B.R.; Schmidt, B.L.U.; Saran Netto, A. Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS ONE 2016, 11, e0151876. [Google Scholar] [CrossRef] [PubMed]
- Cielava, L.; Jonkus, D.; Paura, L. Lifetime milk productivity and quality in farms with different housing and feeding systems. Agron. Res. 2017, 15, 369–375. [Google Scholar]
- Gurmessa, J.; Melaku, A. Effect of lactation stage, pregnancy, parity and age on yield and major components of raw milk in bred cross Holstein Friesian cows. World J. Dairy Food Sci. 2012, 7, 146–149. [Google Scholar]
- Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Pajor, E.A. Impact of automatic milking systems on dairy cattle producers’ reports of milking labour management, milk production and milk quality. Animal 2018, 12, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Sitkowska, B.; Neja, W.; Wiśniewska, E. Relations between kappa-casein polymorphism (CSN3) and milk performance traits in heifer cows. J. Cent. Europ. Agric. 2008, 9, 641–644. [Google Scholar]
- Vidović, V.; Nemeš, Ž.; Popović-Vranješ, A.; Lukač, D.; Cvetanović, D.; Štrbac, L.; Stupar, M. Heritability and correlations of milk traits in the view of kappa-casein genotypes in Vojvodina Holstein-Friesian dairy cattle. Mljekarstvo 2013, 63, 91–97. [Google Scholar]
- Bugeac, T.; Bâlteanu, V. Creangă; Ș Kappa-casein genetic variants and their relationships with milk production and quality in Montbéliarde dairy cows. Bull. UASVM Anim. Sci. Biotech. 2013, 70, 193–194. [Google Scholar]
- Hristov, P.I.; Teofanova, D.R.; Mehandzhiyski, I.D.; Zagorchev, L.I.; Radoslavov, G.A. Significance of milk protein genes polymorphism for Bulgarian Rhodopean cattle: Comparative studies. Biotech. Biotechnol. Equip. 2013, 27, 3659–3664. [Google Scholar] [CrossRef]
- Kumar, S.; Subash, S.; Baindha, A.; Jangir, R. Perceived constraints of farmers in indigenous cattle dairy farming in Rajasthan. Indian J. Anim. Health Prod. 2017, 4, 172–175. [Google Scholar] [CrossRef]
- Ikonen, T.; Ojala, M.; Ruottinen, O. Associations between milk protein polymorphism and first lactation milk production traits in Finnish Ayrshire cows. J. Dairy Sci. 1999, 82, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Ojala, M.; Famula, T.R.; Medrano, J.F. Effects of milk protein genotypes on the variation for milk production traits of Holstein and Jersey cows in California. J. Dairy Sci. 1997, 80, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- National Research Institute of Animal Production. Cattle—Biodiversity Databases—Statistics. Available online: https://biobydlo.izoo.krakow.pl/liczebnosc (accessed on 15 February 2025). (In Polish).
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; IOWA State University Press: Ames, IA, USA, 1994. [Google Scholar]
- Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38, 226–231. [Google Scholar] [CrossRef] [PubMed]
- González, J.R.; Armengol, L.; Solé, X.; Guinó, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPassoc: An R Package to Perform Whole Genome Association Studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef]
Breed | CSN2 | χ2 d.f. = 1 | p-Value | CSN3 | χ2 d.f. = 1 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A | B | E | |||||
PR | 0.570 | 0.430 | 0.00 | 0.98 | 0.635 | 0.350 | 0.015 | 1.98 | 0.58 |
PWB | 0.388 | 0.612 | 1.90 | 0.17 | 0.669 | 0.313 | 0.018 | 5.84 | 0.12 |
Parameter | CSN2 | CSN3 | ||
---|---|---|---|---|
PR | PWB | PR | PWB | |
Na | 2 | 2 | 3 | 3 |
Ne | 1.962 | 1.904 | 1.900 | 1.831 |
HE | 0.490 | 0.452 | 0.479 | 0.425 |
HO | 0.490 | 0.475 | 0.474 | 0.454 |
Fis | 0.000 | 0.049 | −0.011 | 0.064 |
Fit | 0.000 | 0.049 | −0.011 | 0.064 |
Fst | 0.000 | 0.000 | 0.000 | 0.000 |
Haplotype | CSN2_7 | CSN3_AY380228_13068 | CSN3_AY380228_13124 | Frequency | |
---|---|---|---|---|---|
PR | PWB | ||||
1 | A1 | A | A | 0.201 | 0.196 |
2 | A1 | A | E | 0.000 | 0.000 |
3 | A1 | B | A | 0.354 | 0.177 |
4 | A1 | B | E | 0.015 | 0.017 |
5 | A2 | A | A | 0.149 | 0.115 |
6 | A2 | B | A | 0.281 | 0.495 |
7 | A2 | B | E | 0.000 | 0.000 |
PR | ||||
---|---|---|---|---|
CSN2_7 | CSN3_AY380228_13068 | CSN3_AY380228_13124 | ||
CSN2_7 | <0.01 | 0.01 | ||
PWB | CSN3_AY380228_13068 | 0.11 | 0.01 | |
CSN3_AY380228_13124 | 0.02 | 0.01 |
CSN2 | CSN3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Breed | A1A1 | A1A2 | A2A2 | AA | AB | BB | AE | BE | EE |
PR | 0.325 | 0.490 | 0.185 | 0.399 | 0.450 | 0.122 | 0.022 | 0.007 | - |
PWB | 0.162 | 0.452 | 0.386 | 0.462 | 0.391 | 0.112 | 0.023 | 0.010 | 0.002 |
Gene | Genotype | N | Milk (kg) | Fat (kg) | Fat (%) | Protein (kg) | Protein (%) | Casein (kg) | Casein (%) | Lactose (kg) | Lactose (%) | Dry Matter (kg) | Dry Matter (%) | Length of Lactation (day) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 1000 | 3535.16 +/− 886.61 | 154.13 +/− 41.26 | 4.37 +/− 0.50 | 117.34 +/− 29.14 | 3.33 +/− 0.22 | 91.99 +/− 22.99 | 2.61 +/− 0.19 | 168.31 +/− 42.96 | 4.76 +/− 0.17 | 463.58 +/− 116.27 | 13.13 +/− 0.64 | 294.93 +/− 19.04 | |
CSN2 | A1A1 | 325 | 3498.57 +/− 839.53 | 153.26 +/− 39.29 | 4.39 +/− 0.51 | 115.85 +/− 27.29 | 3.32 +/− 0.22 | 90.86 +/− 21.46 | 2.60 +/− 0.19 | 166.53 +/− 40.94 | 4.76 +/− 0.17 | 458.77 +/− 110.37 | 13.12 +/− 0.65 | 293.83 +/− 20.40 |
A1A2 | 490 | 3578.19 +/− 911.14 | 155.64 +/− 41.53 | 4.36 +/− 0.49 | 118.63 +/− 29.93 | 3.32 +/− 0.21 | 92.99 +/− 23.62 | 2.61 +/− 0.19 | 170.33 +/− 43.98 | 4.76 +/− 0.17 | 468.85 +/− 118.36 | 13.12 +/− 0.64 | 295.18 +/− 18.97 | |
A2A2 | 185 | 3485.30 +/− 900.06 | 151.64 +/− 43.87 | 4.35 +/− 0.48 | 116.51 +/− 30.17 | 3.35 +/− 0.22 | 91.35 +/− 23.89 | 2.63 +/− 0.20 | 166.08 +/− 43.64 | 4.76 +/− 0.18 | 458.07 +/− 120.67 | 13.14 +/− 0.63 | 296.22 +/− 16.60 | |
CSN3 | AA | 399 | 3599.97 +/− 815.88 | 157.72 +/− 37.36 | 4.40 +/− 0.50 | 119.50 +/− 26.90 | 3.33 +/− 0.21 | 93.77 +/− 21.21 | 2.61 +/− 0.19 | 171.35 +/− 39.15 | 4.76 +/− 0.16 | 472.57 +/− 105.37 | 13.15 +/− 0.65 | 296.62 +/− 17.00 |
AB | 450 | 3475.62 +/− 900.40 | 150.76 +/− 42.73 | 4.34 +/− 0.50 | 115.47 +/− 29.57 | 3.33 +/− 0.20 | 90.52 +/− 23.35 | 2.61 +/− 0.18 | 165.26 +/− 43.87 | 4.75 +/− 0.18 | 455.20 +/− 119.37 | 13.10 +/− 0.62 | 293.79 +/− 20.68 | |
BB | 122 | 3450.35 +/− 983.01 | 150.39 +/− 44.00 | 4.37 +/− 0.46 | 114.67 +/− 32.29 | 3.33 +/− 0.27 | 89.65 +/− 25.40 | 2.61 +/− 0.24 | 165.03 +/− 48.55 | 4.77 +/− 0.17 | 453.16 +/− 128.80 | 13.15 +/− 0.70 | 294.07 +/− 18.32 | |
AE | 22 | 3961.91 +/− 1033.55 | 174.50 +/− 44.86 | 4.41 +/− 0.44 | 130.68 +/− 33.08 | 3.31 +/− 0.19 | 102.46 +/− 26.29 | 2.59 +/− 0.18 | 189.68 +/− 46.55 | 4.80 +/− 0.18 | 520.50 +/− 129.09 | 13.17 +/− 0.60 | 295.45 +/− 13.86 | |
BE | 7 | 3842.67 +/− 1242.05 | 168.83 +/− 70.32 | 4.29 +/− 0.53 | 119.17 +/− 44.83 | 3.06 +/− 0.22 | 93.75 +/− 34.95 | 2.41 +/− 0.18 | 183.17 +/− 58.77 | 4.77 +/− 0.18 | 497.83 +/− 181.95 | 12.81 +/− 0.73 | 284.67 +/− 38.69 |
Gene | Genotype | N | Milk (kg) | Fat (kg) | Fat (%) | Protein (kg) | Protein (%) | Casein (kg) | Casein (%) | Lactose (kg) | Lactose (%) | Dry Matter (kg) | Dry Matter (%) | Length of Lactation (day) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 777 | 3938.61 +/− 1080.23 | 160.42 +/− 48.64 | 4.07 +/− 0.50 | 130.35 +/− 37.57 | 3.31 +/− 0.26 | 101.76 +/− 29.65 | 2.58 +/− 0.22 | 185.59 +/− 52.64 | 4.71 +/− 0.22 | 504.68 +/− 143.37 | 12.80 +/− 0.72 | 289.97 +/− 25.44 | |
CSN2 | A1A1 | 126 | 3481.66 A +/− 1002.80 | 139.99 A +/− 44.98 | 4.01 +/− 0.47 | 115.55 A +/− 36.13 | 3.31 +/− 0.28 | 90.50 A +/− 28.99 | 2.59 +/− 0.23 | 164.42 A +/− 49.64 | 4.71 +/− 0.21 | 444.47 A +/− 135.33 | 12.73 +/− 0.73 | 290.95 +/− 25.08 |
A1A2 | 351 | 3975.45 B +/− 1094.78 | 162.44 B +/− 48.89 | 4.09 +/− 0.51 | 131.53 B +/− 37.54 | 3.31 +/− 0.27 | 102.55 B +/− 29.51 | 2.58 +/− 0.22 | 187.18 B +/− 53.43 | 4.70 +/− 0.23 | 509.70 B +/− 145.01 | 12.82 +/− 0.71 | 290.82 +/− 25.07 | |
A2A2 | 300 | 4093.43 B +/− 1044.70 | 166.91 B +/− 47.67 | 4.07 +/− 0.51 | 135.37 B +/− 36.70 | 3.30 +/− 0.25 | 105.72 B +/− 28.98 | 2.58 +/− 0.21 | 192.90 B +/− 50.74 | 4.71 +/− 0.22 | 524.88 B +/− 138.19 | 12.81 +/− 0.72 | 288.55 +/− 26.02 | |
CSN3 | AA | 359 | 4212.09 A +/− 1039.19 | 171.77 A +/− 48.54 | 4.07 +/− 0.52 | 138.86 A +/− 36.01 | 3.30 +/− 0.26 | 108.30 A +/− 28.34 | 2.57 +/− 0.21 | 198.28 A +/− 50.42 | 4.70 +/− 0.21 | 539.04 A +/− 138.64 | 12.78 +/− 0.74 | 290.80 +/− 24.37 |
AB | 304 | 3799.35 B +/− 1059.76 | 154.42 B +/− 45.92 | 4.07 +/− 0.47 | 126.02 B +/− 36.34 | 3.32 +/− 0.26 | 98.37 B +/− 28.79 | 2.59 +/− 0.21 | 179.07 B +/− 52.46 | 4.70 +/− 0.23 | 487.41 B +/− 139.62 | 12.82 +/− 0.65 | 290.63 +/− 24.89 | |
BB | 87 | 3399.33 B +/− 996.78 | 139.00 B +/− 48.24 | 4.07 +/− 0.57 | 113.96 B +/− 40.55 | 3.32 +/− 0.31 | 89.62 B +/− 32.54 | 2.61 +/− 0.26 | 160.82 B +/− 48.38 | 4.73 +/− 0.23 | 437.10 B +/− 140.73 | 12.80 +/− 0.85 | 283.51 +/− 32.12 | |
AE | 18 | 3798.17 +/− 1017.81 | 154.83 +/− 48.09 | 4.05 +/− 0.042 | 124.72 +/− 34.20 | 3.29 +/− 0.20 | 96.91 +/− 26.59 | 2.56 +/− 0.17 | 178.83 +/− 48.72 | 4.71 +/− 0.18 | 484.50 +/− 135.25 | 12.75 +/− 0.68 | 290.17 +/− 19.48 | |
BE | 7 | 3317.71 +/− 1501.18 | 134.00 +/− 45.28 | 4.18 +/− 0.62 | 111.71 +/− 42.89 | 3.44 +/− 0.23 | 86.83 +/− 32.93 | 2.67 +/− 0.19 | 157.29 +/− 72.28 | 4.73 +/− 0.17 | 424.86 +/− 170.37 | 13.00 +/− 0.90 | 302.00 +/− 5.13 | |
EE | 2 | 3953.50 +/− 358.50 | 154.00 +/− 15.00 | 3.88 +/− 0.14 | 121.50 +/− 12.50 | 3.07 +/− 0.11 | 94.50 +/− 10.50 | 2.39 +/− 0.11 | 190.50 +/− 17.50 | 4.81 +/− 0.14 | 439.50 +/− 45.50 | 12.46 +/− 0.36 | 259.50 +/− 13.50 |
Gene 1 | Chromosome | Position 2 | Milk Protein Variants |
---|---|---|---|
CSN2_7 | 6 | 85451298 | A1; A2 |
CSN3_AY380228_13124 | 6 | 85656792 | A; E |
CSN3_AY380228_13068 | 6 | 85656736 | A; B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka-Zugaj, W.; Chabuz, W.; Barłowska, J.; Mucha, S.; Kasprzak-Filipek, K.; Nowosielska, A. Analysis of the Frequency of the A1 and A2 Alleles in the Beta-Casein Gene and the A, B and E Alleles in the Kappa-Casein Gene in Local Cattle Breeds: Polish Red and Polish White-Backed. Int. J. Mol. Sci. 2025, 26, 2212. https://doi.org/10.3390/ijms26052212
Sawicka-Zugaj W, Chabuz W, Barłowska J, Mucha S, Kasprzak-Filipek K, Nowosielska A. Analysis of the Frequency of the A1 and A2 Alleles in the Beta-Casein Gene and the A, B and E Alleles in the Kappa-Casein Gene in Local Cattle Breeds: Polish Red and Polish White-Backed. International Journal of Molecular Sciences. 2025; 26(5):2212. https://doi.org/10.3390/ijms26052212
Chicago/Turabian StyleSawicka-Zugaj, Wioletta, Witold Chabuz, Joanna Barłowska, Sebastian Mucha, Karolina Kasprzak-Filipek, and Agnieszka Nowosielska. 2025. "Analysis of the Frequency of the A1 and A2 Alleles in the Beta-Casein Gene and the A, B and E Alleles in the Kappa-Casein Gene in Local Cattle Breeds: Polish Red and Polish White-Backed" International Journal of Molecular Sciences 26, no. 5: 2212. https://doi.org/10.3390/ijms26052212
APA StyleSawicka-Zugaj, W., Chabuz, W., Barłowska, J., Mucha, S., Kasprzak-Filipek, K., & Nowosielska, A. (2025). Analysis of the Frequency of the A1 and A2 Alleles in the Beta-Casein Gene and the A, B and E Alleles in the Kappa-Casein Gene in Local Cattle Breeds: Polish Red and Polish White-Backed. International Journal of Molecular Sciences, 26(5), 2212. https://doi.org/10.3390/ijms26052212