Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meta-Analysis
2.1.1. Search Strategy for Meta-Analysis and Clinical Outcomes
2.1.2. Inclusion and Exclusion Criteria
2.1.3. Study Selection and Data Extraction
2.1.4. Strategy for Meta-Analysis
2.1.5. Quality Assessment
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Meta-Analysis Results
3.3.1. B7H3 Expression and Overall Survival
3.3.2. B7H3 Expression and Its Relationship with DFS, PFS, RFS, and DSS
3.4. Publication Bias and Sensitivity Analysis
3.5. GOSH Analysis
4. Discussion
5. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy—Current perspectives and future directions. Cell 2023, 186, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Gribben, J. Immune Checkpoint Inhibitors: Fundamental Mechanisms, Current Status and Future Directions. Immuno 2024, 4, 186–210. [Google Scholar] [CrossRef]
- Borgeaud, M.; Sandoval, J.; Obeid, M.; Banna, G.; Michielin, O.; Addeo, A.; Friedlaender, A. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat. Rev. 2023, 120, 102614. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-T.; Jin, W.-L. B7-H3/CD276: An Emerging Cancer Immunotherapy. Front. Immunol. 2021, 12, 701006. [Google Scholar] [CrossRef]
- Getu, A.A.; Tigabu, A.; Zhou, M.; Lu, J.; Fodstad, Ø.; Tan, M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol. Cancer 2023, 22, 43. [Google Scholar] [CrossRef]
- Zhao, B.; Li, H.; Xia, Y.; Wang, Y.; Wang, Y.; Shi, Y.; Xing, H.; Qu, T.; Wang, Y.; Ma, W. Immune checkpoint of B7-H3 in cancer: From immunology to clinical immunotherapy. J. Hematol. Oncol. 2022, 15, 153. [Google Scholar] [CrossRef] [PubMed]
- Feustel, K.; Martin, J.; Falchook, G.S. B7-H3 Inhibitors in Oncology Clinical Trials: A Review. J. Immunother. Precis. Oncol. 2024, 7, 53–66. [Google Scholar] [CrossRef]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Spiegelhalter, D.J. A Re-Evaluation of Random-Effects Meta-Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 137–159. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide; CRC Press: Boca Raton, FL, USA; Chapman & Hall: London, UK, 2021; ISBN 978-0-367-61007-4. [Google Scholar]
- Luchini, C.; Stubbs, B.; Solmi, M.; Veronese, N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J. Meta-Anal. 2017, 5, 80. [Google Scholar] [CrossRef]
- Omori, S.; Muramatsu, K.; Kawata, T.; Miyawaki, E.; Miyawaki, T.; Mamesaya, N.; Kawamura, T.; Kobayashi, H.; Nakashima, K.; Wakuda, K.; et al. Immunohistochemical analysis of B7-H3 expression in patients with lung cancer following various anti-cancer treatments. Investig. New Drugs 2023, 41, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, V.A.; Boye, K.; Nesland, J.M.; Nesbakken, A.; Flatmark, K.; Fodstad, Ø. B7-H3 expression in colorectal cancer: Associations with clinicopathological parameters and patient outcome. BMC Cancer 2014, 14, 602. [Google Scholar] [CrossRef]
- Guo, C.; Figueiredo, I.; Gurel, B.; Neeb, A.; Seed, G.; Crespo, M.; Carreira, S.; Rekowski, J.; Buroni, L.; Welti, J.; et al. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur. Urol. 2023, 83, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Murakami, R.; Hamanishi, J.; Tanigaki, K.; Hosoe, Y.; Mise, N.; Takamatsu, S.; Mise, Y.; Ukita, M.; Taki, M.; et al. B7-H3 Suppresses Antitumor Immunity via the CCL2–CCR2–M2 Macrophage Axis and Contributes to Ovarian Cancer Progression. Cancer Immunol. Res. 2022, 10, 56–69. [Google Scholar] [CrossRef]
- Wu, J.; Wang, F.; Liu, X.; Zhang, T.; Liu, F.; Ge, X.; Mao, Y.; Hua, D. Correlation of IDH1 and B7 H3 expression with prognosis of CRC patients. Eur. J. Surg. Oncol. 2018, 44, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Beecher, K.; Lim, M.; Stacey, A.; Feng, Y.; Jat, P.S.; Duijf, P.H.G.; Simpson, P.T.; Lakhani, S.R.; McCart Reed, A.E. B7-H3 Expression in Breast Cancer and Brain Metastasis. Int. J. Mol. Sci. 2024, 25, 3976. [Google Scholar] [CrossRef]
- Yonesaka, K.; Haratani, K.; Takamura, S.; Sakai, H.; Kato, R.; Takegawa, N.; Takahama, T.; Tanaka, K.; Hayashi, H.; Takeda, M.; et al. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity. Clin. Cancer Res. 2018, 24, 2653–2664. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, S.; Ding, S.; Zhang, Q.; Xuan, H.; Zhang, X.; Cao, L. B7-H3 and CD47 co-expression in gastric cancer is a predictor of poor prognosis and potential targets for future dual-targeting immunotherapy. J. Cancer Res. Clin. Oncol. 2023, 149, 16609–16621. [Google Scholar] [CrossRef]
- Amori, G.; Sugawara, E.; Shigematsu, Y.; Akiya, M.; Kunieda, J.; Yuasa, T.; Yamamoto, S.; Yonese, J.; Takeuchi, K.; Inamura, K. Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 767–774. [Google Scholar] [CrossRef]
- Inamura, K.; Yokouchi, Y.; Kobayashi, M.; Sakakibara, R.; Ninomiya, H.; Subat, S.; Nagano, H.; Nomura, K.; Okumura, S.; Shibutani, T.; et al. Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis. Lung Cancer 2017, 103, 44–51. [Google Scholar] [CrossRef]
- Zong, L.; Yu, S.; Mo, S.; Sun, Z.; Lu, Z.; Chen, J.; Xiang, Y. B7-H4 Further Stratifies Patients with Endometrial Cancer Exhibiting a Nonspecific Molecular Profile. Arch. Pathol. Lab. Med. 2023, 147, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, Y.-C.; Shen, C.-K.; Ma, B.; Xu, W.-B.; Wang, Q.-F.; Zhang, Y.; Liao, T.; Wei, W.-J.; Wang, Y. Immune Checkpoint Protein Expression Defines the Prognosis of Advanced Thyroid Carcinoma. Front. Endocrinol. 2022, 13, 859013. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Zhang, G.B.; Wang, J.M.; Hu, H.C. B7-H3 and CD133 expression in non-small cell lung cancer and correlation with clinicopathologic factors and prognosis. Saudi Med. J. 2010, 31, 980–986. [Google Scholar] [PubMed]
- Yang, Y.; Huang, J.-F.; Hu, B.-Q.; Zhou, J.; Wang, X.; Feng, Z.-Z.; Chen, Y.-T.; Pan, F.-M.; Cheng, H.-D.; Chen, L.-W. B7-H3 is eligible for predicting clinical outcomes in lung adenocarcinoma patients treated with EGFR tyrosine kinase inhibitors. World J. Surg. Oncol. 2022, 20, 159. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.J.; Ryu, H.W.; Shin, S.W.; Kim, E.J.; Shin, S.H.; Park, J.Y.; Kim, S.Y.; Hwang, C.S.; Na, J.-Y.; et al. B7-H3 expression is associated with high PD-L1 expression in clear cell renal cell carcinoma and predicts poor prognosis. Diagn. Pathol. 2023, 18, 36. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Mo, S.; Ma, H.; Lu, Z.; Yu, S.; Chen, J. Prognostic Value of Programmed Death Ligand-1 in Discriminating Patients With Lymph Node–Negative, p53–Wild-Type, or Low-BRCA1/2-Expression Pancreatic Ductal Adenocarcinoma. Arch. Pathol. Lab. Med. 2023, 147, 465–473. [Google Scholar] [CrossRef]
- Koyama, Y.; Morikawa, T.; Miyama, Y.; Miyakawa, J.; Kawai, T.; Kume, H.; Sawabe, M.; Ushiku, T. B7-H3 expression in upper tract urothelial carcinoma associates with adverse clinicopathological features and poor survival. Pathol. Res. Pract. 2020, 216, 153219. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Z.; Pei, T.; Xiao, Y.; Zhou, L.; Tang, Y.; Zhou, C.; Wu, K.; Zhang, F.; Zhang, F.; et al. Clinicopathological and Prognostic Characteristics of CD276 (B7-H3) Expression in Adrenocortical Carcinoma. Dis. Markers 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Cheng, R.; Chen, Y.; Zhou, H.; Wang, B.; Du, Q.; Chen, Y. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS 2018, 126, 396–402. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, X.; Chen, Y.; Tan, X.; Liu, W.; Hua, W.; Chen, L.; Zhang, W. Inhibition of the B7-H3 immune checkpoint limits hepatocellular carcinoma progression by enhancing T lymphocyte-mediated immune cytotoxicity in vitro and in vivo. Clin. Transl. Oncol. 2023, 25, 1067–1079. [Google Scholar] [CrossRef]
- Bearrick, E.N.; Packiam, V.; Bhindi, B.; Lohse, C.M.; Cheville, J.C.; Mason, R.J.; Tollefson, M.; Harrington, S.; Dong, H.; Parker, A.S.; et al. Creation of a primary tumor tissue expression biomarker-augmented prognostic model for patients with metastatic renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 135.e1–135.e8. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-W.; Gao, Q.; Qiu, S.-J.; Zhou, J.; Wang, X.-Y.; Yi, Y.; Shi, J.-Y.; Xu, Y.-F.; Shi, Y.-H.; Song, K.; et al. B7-H3 is expressed in human hepatocellular carcinoma and is associated with tumor aggressiveness and postoperative recurrence. Cancer Immunol. Immunother. CII 2012, 61, 2171–2182. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Sheinin, Y.; Crispen, P.L.; Farmer, S.A.; Lohse, C.M.; Kuntz, S.M.; Leibovich, B.C.; Kwon, E.D.; Frank, I. T-Cell Coregulatory Molecule Expression in Urothelial Cell Carcinoma: Clinicopathologic Correlations and Association with Survival. Clin. Cancer Res. 2008, 14, 4800–4808. [Google Scholar] [CrossRef]
- Xylinas, E.; Robinson, B.D.; Kluth, L.A.; Volkmer, B.G.; Hautmann, R.; Küfer, R.; Zerbib, M.; Kwon, E.; Thompson, R.H.; Boorjian, S.A.; et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur. J. Surg. Oncol. 2014, 40, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Katayama, A.; Takahara, M.; Kishibe, K.; Nagato, T.; Kunibe, I.; Katada, A.; Hayashi, T.; Harabuchi, Y. Expression of B7-H3 in hypopharyngeal squamous cell carcinoma as a predictive indicator for tumor metastasis and prognosis. Int. J. Oncol. 2011, 38, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Saeednejad Zanjani, L.; Madjd, Z.; Axcrona, U.; Abolhasani, M.; Rasti, A.; Asgari, M.; Fodstad, Ø.; Andersson, Y. Cytoplasmic expression of B7-H3 and membranous EpCAM expression are associated with higher grade and survival outcomes in patients with clear cell renal cell carcinoma. Ann. Diagn. Pathol. 2020, 46, 151483. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, H.; Li, S.-H.; Xu, S.-Y.; Chen, K.; Qin, L.-J.; Miao, L.; Wang, F.; Deng, L.; Wang, F.-H.; et al. Cross-cohort analysis identified an immune checkpoint-based signature to predict the clinical outcomes of neuroblastoma. J. Immunother. Cancer 2023, 11, e005980. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, Z.; Zhu, X.; Cai, H.; Huang, Y.; Zhang, X.; Zhang, Z.; Lu, H.; An, C.; Niu, L.; et al. Clinical Significance of the Expression of Co-Stimulatory Molecule B7-H3 in Papillary Thyroid Carcinoma. Front. Cell Dev. Biol. 2022, 10, 819236. [Google Scholar] [CrossRef]
- Inamura, K.; Amori, G.; Yuasa, T.; Yamamoto, S.; Yonese, J.; Ishikawa, Y. Relationship of B7-H3 expression in tumor cells and tumor vasculature with FOXP3+ regulatory T cells in renal cell carcinoma. Cancer Manag. Res. 2019, 11, 7021–7030. [Google Scholar] [CrossRef]
- Asakawa, A.; Yoshimoto, R.; Kobayashi, M.; Izumi, N.; Maejima, T.; Deguchi, T.; Kubota, K.; Takahashi, H.; Yamada, M.; Ishibashi, S.; et al. The Comprehensive Characterization of B7-H3 Expression in the Tumor Microenvironment of Lung Squamous Cell Carcinoma: A Retrospective Study. Cancers 2024, 16, 2140. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, K.; Lai, Y.; Yao, K.; Wang, Q.; Zhan, X.; Peng, S.; Cai, W.; Yao, W.; Zang, X.; et al. B7 score and T cell infiltration stratify immune status in prostate cancer. J. Immunother. Cancer 2021, 9, e002455. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Xavier, C.E.; Kildal, W.; Kleppe, A.; Danielsen, H.E.; Wæhre, H.; Llarena, R.; Mælandsmo, G.M.; Fodstad, Ø.; Pulido, R.; López, J.I. Immune checkpoint B7-H3 protein expression is associated with poor outcome and androgen receptor status in prostate cancer. Prostate 2021, 81, 838–848. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Frank, I.; Orme, J.J.; Lavoie, R.R.; Thapa, P.; Costello, B.A.; Cheville, J.C.; Gupta, S.; Dong, H.; Lucien, F. Evaluation of PD-L1 and B7-H3 expression as a predictor of response to adjuvant chemotherapy in bladder cancer. BMC Urol. 2022, 22, 90. [Google Scholar] [CrossRef]
- Ingebrigtsen, V.A.; Boye, K.; Tekle, C.; Nesland, J.M.; Flatmark, K.; Fodstad, Ø. B7-H3 expression in colorectal cancer: Nuclear localization strongly predicts poor outcome in colon cancer. Int. J. Cancer 2012, 131, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Han, S.; Wu, B.; Liang, Z.; Li, Y.; Zhang, Y.; Lang, Q.; Zhong, C.; Fu, L.; Yu, Y.; et al. Novel immune scoring dynamic nomograms based on B7-H3, B7-H4, and HHLA2: Potential prediction in survival and immunotherapeutic efficacy for gallbladder cancer. Front. Immunol. 2022, 13, 984172. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Han, S.; Qian, Q.; Chen, Q.; Liu, L.; Zhang, Y. B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis. Oncol. Rep. 2017, 38, 1043–1050. [Google Scholar] [CrossRef]
- Yim, J.; Koh, J.; Kim, S.; Song, S.G.; Ahn, H.K.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. Effects of B7-H3 expression on tumour-infiltrating immune cells and clinicopathological characteristics in non–small-cell lung cancer. Eur. J. Cancer 2020, 133, 74–85. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, F.; Wu, J.-Y.; Qiu, Z.-C.; Wang, Y.; Liu, F.; Ge, X.-S.; Qi, X.-W.; Mao, Y.; Hua, D. Clinical correlation of B7-H3 and B3GALT4 with the prognosis of colorectal cancer. World J. Gastroenterol. 2018, 24, 3538–3546. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Lucas, E.; Chen, L.; Zhang, H.; Chen, H.; Zhou, F. Expression of B7-H3 and TIM -3 in gastric-type endocervical adenocarcinoma: Prevalence, association with PD-L1 expression, and prognostic significance. J. Pathol. CR 2024, 10, e345. [Google Scholar] [CrossRef]
- Xia, C.; Huang, W.; Chen, Y.-L.; Fu, H.-B.; Tang, M.; Zhang, T.-L.; Li, J.; Lv, G.-H.; Yan, Y.-G.; Ouyang, Z.-H.; et al. Coexpression of HHLA2 and PD-L1 on Tumor Cells Independently Predicts the Survival of Spinal Chordoma Patients. Front. Immunol. 2022, 12, 797407. [Google Scholar] [CrossRef]
- Mao, Y.; Li, W.; Chen, K.; Xie, Y.; Liu, Q.; Yao, M.; Duan, W.; Zhou, X.; Liang, R.; Tao, M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget 2015, 6, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Yoshimura, K.; Yamamoto, S.; Kuramasu, A.; Inoue, M.; Suzuki, N.; Watanabe, Y.; Maeda, Y.; Kamei, R.; Tsunedomi, R.; et al. Expression of B7-H3, a Potential Factor of Tumor Immune Evasion in Combination with the Number of Regulatory T Cells, Affects Against Recurrence-Free Survival in Breast Cancer Patients. Ann. Surg. Oncol. 2014, 21, 546–554. [Google Scholar] [CrossRef]
- Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA 2007, 104, 19458–19463. [Google Scholar] [CrossRef]
- Xie, L.; Chen, C.; Liang, X.; Xu, J.; Sun, X.; Sun, K.; Yang, R.; Tang, X.; Guo, W. Expression and Clinical Significance of Various Checkpoint Molecules in Advanced Osteosarcoma: Possibilities for Novel Immunotherapy. Orthop. Surg. 2023, 15, 829–838. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Z.-X.; Cheng, P.; Huang, F.; Guan, X.; Zhang, M.-G.; Chen, H.-P.; Liu, Z.; Jiang, Z.; Zheng, Z.-X.; et al. B7-H3 immune checkpoint expression is a poor prognostic factor in colorectal carcinoma. Mod. Pathol. 2020, 33, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, J.; Wang, L.; Zhou, T.; Yang, J.; Tian, Z.; Yang, J.; Chen, H.; Tang, X.; Zhao, S.; et al. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and VISTA in craniopharyngioma. J. Immunother. Cancer 2020, 8, e000406. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K.; Takazawa, Y.; Inoue, Y.; Yokouchi, Y.; Kobayashi, M.; Saiura, A.; Shibutani, T.; Ishikawa, Y. Tumor B7-H3 (CD276) Expression and Survival in Pancreatic Cancer. J. Clin. Med. 2018, 7, 172. [Google Scholar] [CrossRef]
- Geerdes, E.E.; Sideras, K.; Aziz, M.H.; van Eijck, C.H.; Bruno, M.J.; Sprengers, D.; Boor, P.P.C.; Kwekkeboom, J. Cancer Cell B7-H3 Expression Is More Prevalent in the Pancreato-Biliary Subtype of Ampullary Cancer Than in Pancreatic Cancer. Front. Oncol. 2021, 11, 615691. [Google Scholar] [CrossRef]
- Iida, K.; Miyake, M.; Onishi, K.; Hori, S.; Morizawa, Y.; Gotoh, D.; Itami, Y.; Onishi, S.; Nakai, Y.; Anai, S.; et al. Prognostic impact of tumor-infiltrating CD276/Foxp3-positive lymphocytes and associated circulating cytokines in patients undergoing radical nephrectomy for localized renal cell carcinoma. Oncol. Lett. 2019, 17, 4004–4010. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.; Zhang, W.; Liu, Y.; Chen, B.; Xiang, Y.; Zhang, R.; Zhang, M.; Feng, J.; Liu, S.; et al. Correlation of PD-L1 and SOCS3 Co-expression with the Prognosis of Hepatocellular Carcinoma Patients. J. Cancer 2020, 11, 5440–5448. [Google Scholar] [CrossRef]
- Peng, S.; Bao, Y. A narrative review of immune checkpoint mechanisms and current immune checkpoint therapy. Ann. Blood 2022, 7, 33. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Q.; Xie, Y.; Wu, X.; Ma, H.; Zhang, Y.; Xia, Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022, 15, 24. [Google Scholar] [CrossRef]
- Koumprentziotis, I.-A.; Theocharopoulos, C.; Foteinou, D.; Angeli, E.; Anastasopoulou, A.; Gogas, H.; Ziogas, D.C. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines 2024, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Ciprut, S.; Berberich, A.; Knoll, M.; Pusch, S.; Hoffmann, D.; Furkel, J.; Ward Gahlawat, A.; Kahlert-Konzelamnn, L.; Sahm, F.; Warnken, U.; et al. AAMP is a binding partner of costimulatory human B7-H3. Neuro-Oncol. Adv. 2022, 4, vdac098. [Google Scholar] [CrossRef]
- Nguyen, P.; Okeke, E.; Clay, M.; Haydar, D.; Justice, J.; O’Reilly, C.; Pruett-Miller, S.; Papizan, J.; Moore, J.; Zhou, S.; et al. Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Mol. Ther. Oncolytics 2020, 18, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Shenderov, E.; de Marzo, A.M.; Lotan, T.L.; Wang, H.; Schaeffer, E.M.; Hussain, M.H.A.; Sartor, O.; Shah, P.H.; Yang, X.J.; Murugan, P.J.; et al. A phase 2 randomized trial of neoadjuvant enoblituzumab versus standard of care in men with high-risk localized prostate cancer: The help elucidate and attack longitudinally (HEAT) prostate cancer randomized study. J. Clin. Oncol. 2024, 42, TPS5125. [Google Scholar] [CrossRef]
- Shenderov, E.; de Marzo, A.M.; Lotan, T.L.; Wang, H.; Chan, S.; Lim, S.J.; Ji, H.; Allaf, M.E.; Chapman, C.; Moore, P.A.; et al. Neoadjuvant enoblituzumab in localized prostate cancer: A single-arm, phase 2 trial. Nat. Med. 2023, 29, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; Albert, C.M.; Taylor, M.R.; Ullom, H.B.; Wilson, A.L.; Huang, W.; Wendler, J.; Pattabhi, S.; Seidel, K.; Brown, C.; et al. STRIvE-02: A First-in-Human Phase I Study of Systemically Administered B7-H3 Chimeric Antigen Receptor T Cells for Patients With Relapsed/Refractory Solid Tumors. J. Clin. Oncol. 2024, 42, 4163–4172. [Google Scholar] [CrossRef]
- Meeus, F.; Funeh, C.N.; Awad, R.M.; Zeven, K.; Autaers, D.; de Becker, A.; van Riet, I.; Goyvaerts, C.; Tuyaerts, S.; Neyns, B.; et al. Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J. Immunother. Cancer 2024, 12, e009110. [Google Scholar] [CrossRef]
- Lin, K.X.; Istl, A.C.; Quan, D.; Skaro, A.; Tang, E.; Zheng, X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: Challenges and strategies. Cancer Immunol. Immunother. CII 2023, 72, 3875–3893. [Google Scholar] [CrossRef]
- Terrin, N.; Schmid, C.H.; Lau, J.; Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 2003, 22, 2113–2126. [Google Scholar] [CrossRef] [PubMed]
- Alba, A.C.; Alexander, P.E.; Chang, J.; MacIsaac, J.; DeFry, S.; Guyatt, G.H. High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes. J. Clin. Epidemiol. 2016, 70, 129–135. [Google Scholar] [CrossRef]
- Vranic, S.; Gatalica, Z. PD-L1 testing by immunohistochemistry in Immuno-Oncology. Biomol. Biomed. 2022, 23, 15–25. [Google Scholar] [CrossRef]
- Ye, Z.; Zheng, Z.; Li, X.; Zhu, Y.; Zhong, Z.; Peng, L.; Wu, Y. B7-H3 Overexpression Predicts Poor Survival of Cancer Patients: A Meta-Analysis. Cell. Physiol. Biochem. 2016, 39, 1568–1580. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Hao, J.-J.; Xu, Y.-B.; Zhang, F.-H. Clinicopathological features and prognostic value of CD276 expression in female reproductive system malignancies: A meta-analysis. Taiwan. J. Obstet. Gynecol. 2024, 63, 154–160. [Google Scholar] [CrossRef]
- Su, H.; Li, N.; Chen, Z.; Hao, J.; Zhang, F. Clinicopathological features and prognostic value of CD276 expression in head and neck cancer: A meta-analysis. Am. J. Otolaryngol. 2023, 44, 103968. [Google Scholar] [CrossRef]
- Sun, H.; Gao, F.; Liu, Y.; Shao, J. Survival and clinicopathological significance of B7-H3 in bladder cancer: A systematic review and meta-analysis. BMC Urol. 2024, 24, 57. [Google Scholar] [CrossRef]
Author | Year | Patient Source | Sample Size | Method | Cancer Type | B7H3 + Expression | Outcome | HR | Multivariate/Univariate | Cohort/Subgroup | Cell Types | Cutoff | NOS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guo C [14] | 2023 | United Kingdom | 98 | IHC | PCa | 91 | OS | Reported | U | CRPC | tumor cells | H score ≥ 5. | 6 |
Guo C [14] | 2023 | United Kingdom | 72 | IHC | PCa | 70 | OS | Reported | U | HSPC | tumor cells | H score ≥ 5. | 6 |
Miyamoto T [15] | 2021 | Japan | 62 | IHC | OC | 31 | OS/PFS | Reported | U/M | tumor cells | IHC score ≥ 2. B7H3 expression was graded from 0 (no staining) to 3 (strong staining intensity). | 8 | |
Wu J [16] | 2018 | China | 225 | IHC | CRC | 197 | OS | Reported | M | tumor cells | >5% | 7 | |
Joshi V [17] | 2024 | Australia | 347 | IHC | BC | 174 | DSS | Reported | M | tumor cells | >1% | 8 | |
Yonesaka K [18] | 2018 | Japan | 82 | IHC | NSCLC | 60 | PFS | Reported | M | tumor cells | >10% | 7 | |
Chen S [19] | 2023 | China | 268 | IHC | GC | 180 | OS | Reported | U | tumor and immune cells | Histoscore ≥ 2 (>10% positive cells). | 6 | |
Omori S [12] | 2023 | Japan | 71 | IHC | LUAD | 31 | OS | Pooled from Kaplan–Meier curve | U | Stage IV of disease | tumor cells | IHC score ≥ 2. | 6 |
Amori G [20] | 2021 | Japan | 135 | IHC | PCa | 41 | OS/DFS/DSS | Reported | U/M | tumor cells | ≥50% cells with moderate or strong staining. | 8 | |
Ingebrigtsen VA [13] | 2014 | Norway | 562 | IHC | CRC | 162 | OS/RFS | Pooled from Kaplan–Meier curve | U | tumor cells | Presence of B7H3 staining. | 7 | |
Inamura K [21] | 2017 | Japan | 270 | IHC | LUAD | 86 | OS/DSS | Reported | U/M | tumor cells | >50% postive cells with staining intensity 1 or >10% positive cells with staining intensity ≥ 2. Intensity of staining was classified as 0 (lack), 1 (weak or moderate) and 2 (strong). | 8 | |
Zong L [22] | 2023 | China | 664 | IHC | EC | 598 | RFS/DSS | Reported | U | tumor cells | tumor cells | Presence of any B7H3 staining | 7 |
Zong L [22] | 2023 | China | 664 | IHC | EC | 277 | RFS/DSS | Reported | U | immune cells | immune cells | >1% | 7 |
Luo Y [23] | 2022 | China | 22 | IHC | TC | 19 | OS | Reported | U | ATC | tumor cells and TILs | CPS ≥ 30. Tumor-infiltrating immune cells (TIICs) and cancer cells were stratified according to the combined positive score (CPS), classified as the percentage of positive cancer cells (total or partial membrane staining) and tumor TIICs (membrane or cytoplasm staining) divided by the total amount of tumor cells. The median CPS of cores of each specimen was evaluated as the final CPS. According to ICP, B7H3 expression was graded as negative (CPS < 1), weak (1 ≤ CPS < 10), moderate (10 ≤ CPS < 30), or strong (CPS ≥ 30). | 6 |
Luo Y [23] | 2022 | China | 44 | IHC | TC | 24 | OS | Reported | U/M | PDTC | tumor cells and TILs | CPS ≥ 30. Detailed description of IHC evaluation above. | 7 |
Xu YH [24] | 2010 | China | 102 | IHC | NSCLC | 71 | OS | Reported | M | tumor and noncancerous cells | >10% | 6 | |
Yang Y [25] | 2022 | China | 56 | IHC | LUAD | 25 | OS/PFS | Reported | U | tumor cells | Histochemical score > 6 for the B7H3 high group. Histochemical score ranged from 0 to 12 and was calculated as staining intensity (0—absent, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positive cells stratified into 0 (<5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), and 4 (>75%). | 6 | |
Lee JH [26] | 2023 | South Korea | 244 | IHC | LUAD | 73 | PFS | Reported | U/M | tumor cells | ≥50% | 8 | |
Chen X [27] | 2023 | China | 240 | IHC | PDAC | 195 | PFS/DSS | Reported | M | tumor cells | ≥5% | 8 | |
Koyama Y [28] | 2020 | Japan | 271 | IHC | UTUC | 235 | PFS/DSS | Reported | U/M | tumor cells | ≥50% | 8 | |
Liang J [29] | 2020 | China | 48 | IHC | ACC | 44 | OS/DFS | Reported | U/M | tumor cells | Presence of moderate or strong staining. The H-score of the cytoplasmic staining in cancer cells was graded as negative (0), weak (1), moderate (2) and strong (3). | 8 | |
Cheng R [30] | 2018 | China | 45 | IHC | ICC | 26 | OS/DSS | Reported | U/M | tumor cells | Final score ≥ 2 for B7H3 positive expression. Score ranged from 0 to 9 and was calculated as staining intensity (0—absent, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positive cells stratified into 1 (≤10%), 2 (10–50%), 3 (26–50%), and 4 (≥50%) | 8 | |
Zhou Z [31] | 2023 | China | 61 | IHC | HCC | 33 | RFS | Reported | U/M | tumor cells | The cutoff for the final score was determined by the ROC curve. The final score was calculated as staining density graded as 0 (≤5% positive cells), 1 (5–33%), 2 (33–66%), and 3 (>66%) assessed two times corresponding to five visual fields. Next, the two obtained scores were multiplied and averaged. | 7 | |
Bearrick EN [32] | 2021 | United States | 436 | IHC | ccRCC | 234 | DSS | Reported | U/M | tumor cells | >10% | 8 | |
Sun TW [33] | 2012 | China | 240 | IHC | HCC | 168 | DFS/RFS | Reported | M | study cohort | tumor cells | Staining intensity score ≥ 2. Staining was stratified into negative (0), weak (1), moderate (2), and strong (3). The percentage of positive cells was not evaluated. | 8 |
Sun TW [33] | 2012 | China | 205 | IHC | HCC | 205 | OS/DFS/RFS | Reported | M | validation cohort | tumor cells | Staining intensity score ≥ 2. Staining was stratified into negative (0), weak (1), moderate (2), and strong (3). The percentage of positive cells was not evaluated. | 8 |
Boorjian SA [34] | 2008 | United States | 314 | IHC | UCC | 222 | OS/PFS/DSS | Reported | U | tumor and adjacent noncancerous cells | >10% | 7 | |
Xylinas E [35] | 2014 | NA | 302 | IHC | UCC | 177 | OS/RFS/DSS | Reported | U | tumor and adjacent noncancerous cells | >10% | 7 | |
Katayama A [36] | 2011 | Japan | 37 | IHC | HNSCC | 8 | DSS | Reported | M | tumor cells | Staining intensity score ≥ 2. Scores were graded as 0—<5% positive cells, 1—weak, 2—moderate, and 3—strong. The percentage of positive cells was not analyzed. | 8 | |
Saeednejad Zanjani L [37] | 2020 | Iran | 222 | IHC | ccRCC | 218 | DSS | Reported | U/M | tumor cells | H score > 200 for high B7H3 expression. H score ranged from 0 to 300 and was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positive cells classified as 1 (<25%), 2 (25–50%), 3 (51–75%), and 4 (≥50%). | 8 | |
Zeng L [38] | 2023 | China | 212 | IHC | NB | 62 | OS | Reported | U | Discovery cohort | NA | NA | 8 |
Zeng L [38] | 2023 | China | 272 | IHC | NB | 82 | OS | Reported | U | validation cohort | NA | NA | 8 |
Zhao B [39] | 2022 | China | 343 | IHC | PTC | 211 | RFS | Reported | U/M | tumor cells | Final score ≥ 2. It was evaluated as follows: 0—negative membranous staining or <1% cells with weak membranous staining, 1—≥1% cells with weak membranous staining or <1% cells with strong membranous staining, 3—≥1% cells with strong membranous staining. | 8 | |
Inamura K [40] | 2019 | Japan | 252 | IHC | ccRCC | 99 | OS/DSS | Reported | U/M | tumor cells | ≥50% cells with moderate or strong staining intensity. Staining in cancer cell membranes was stratified into two groups: absent/weak and moderate/strong. | 8 | |
Asakawa A [41] | 2024 | Japan | 103 | IHC | LSCC | 46 | OS | Reported | M | tumor cells | >30% | 7 | |
Zhou Q [42] | 2021 | China | 126 | IHC | PCa | 64 | OS/DSS | Reported | U/M | training cohort | tumor cells | H score > 120 for high B7H3 expression determined by X-tile software 3.6.1. H score ranged from 0 to 300 and was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positively stained cells. | 8 |
Zhou Q [42] | 2021 | China | 113 | IHC | PCa | 42 | OS/DSS | Reported | U/M | validation cohort | tumor cells | H score > 120 for high B7H3 expression determined by X-tile software. H score ranged from 0 to 300 and was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positively stained cells. | 8 |
Nunes-Xavier CE [43] | 2021 | Norway, Spain. Survival analysis is available for the Norwegian cohort only. | 206 | IHC | PCa | 78 | RFS | Reported | U/M | Norwegian cohort | tumor cells | Presence of moderate to strong staining intensity. | 8 |
Mahmoud AM [44] | 2022 | United States | 81 | IHC | BLCA | 17 | OS/RFS/DSS | Reported | U | tumor cells | Standardized H score > 120 for high B7H3 expression. H score ranged from 0 to 300 and was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positively stained cells. The standardized H score was determined by using the average of H-scores obtained from two pathologists. | 7 | |
Ingebrigtsen VA [45] | 2012 | Norway | 238 | IHC | CRC | 73 | OS | Reported | U | colorectal cancer cohort | tumor cells | >10% | 6 |
Ingebrigtsen VA [45] | 2012 | Norway | 162 | IHC | CRC | 110 | OS/DSS | Reported | U/M | colon cancer cohort | tumor cells | >10% | 8 |
Lv C [46] | 2022 | China | 95 | IHC | GBC | 67 | OS/DSS | Reported | U/M | training cohort | tumor cells | H score > 60 for high B7H3 expression determined by X-tile software. H score was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positively stained cells. | 8 |
Lv C [46] | 2022 | China | 103 | IHC | GBC | 70 | OS/DSS | Reported | U/M | testing cohort | tumor cells | H score > 60 for high B7H3 expression determined by X-tile software. H score was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positively stained cells. | 8 |
Li Y [47] | 2017 | China | 90 | IHC | CC | 33 | OS | Reported | M | validation cohort | tumor cells | Final score ≥ 4 for positive B7H3 expression. The final score ranged from 0 to 7 and was calculated as the sum of positively stained cell percentages stratified into 0 (no positive cells), 1 (1–25% positive cells), 2 (26–50% positive cells), 3 (51–75% positive cells), and 4 (76–100% positive cells), and staining intensity (0—negative, 1—weak, 2—moderate, 3—strong). | 7 |
Yim J [48] | 2016 | South Korea | 484 | IHC | NSCLC | 190 | OS | Reported | U/M | tumor cells | >25% | 7 | |
Zhang T [49] | 2018 | China | 223 | IHC | CRC | 157 | OS | Reported | U/M | tumor cells | Total score ≥ 4 for high B7H3 expression. Total score ranged from 0 to 12 and was calculated as staining intensity (0—negative, 1—weakly positive, 2—moderately positive, 3—strongly positive) multiplied by the percentage of positive cells divided into 0 (≤ 5%), 1 (6–25%), 2 (26–50%), 3 (51–75%), and 4 (> 76%). | 7 | |
Sun Y [50] | 2024 | China | 57 | IHC | GEA | 28 | OS/RFS | Reported | U | tumor cells | >1% | 7 | |
Xia C [51] | 2022 | China | 92 | IHC | SC | 58 | OS | Reported | U/M | stromal cells | Quantitative Immunofluorescence score (QIF) calculated as pixel intensities divided by the area of the corresponding mask. The cutoff value was determined using the Cutoff Finder Web Application. | 7 | |
Mao Y [52] | 2015 | China | 128 | IHC | NSCLC | 89 | OS | Reported | U/M | tumor cells | Total score ≥ 2 for positive B7H3 expression. Total score ranged from 0 to 9 and was calculated as staining intensity (0—negative, 1—weak, 2—moderate, 3—strong) multiplied by the percentage of positive cells graded as 0 (no positive cells), 1 (1–10%), 2 (11–50%), and 3 (>50%). | 7 | |
Maeda N [53] | 2014 | Japan | 90 | IHC | PCa | 64 | RFS | Reported | M | tumor cells | Final score ≥ 2 for high B7H3 expression. Final score ranged from 1 to 6 and was calculated as staining intensity (absent/weak staining—1, moderately intense staining—2, strong staining—3) multiplied by the percentage of positive scored as <33% of cancer cells—1, ≥33 to 66% of cancer cells—2, and >66% of cancer cells—3. | 8 | |
Zang X [54] | 2007 | United States | 803 | IHC | PCa | 212 | RFS/DSS | Reported | U | tumor cells | Strong staining intensity (complete membranous expression). IHC intensity was divided into none, weak, moderate, or strong according to the strength of membranous staining. | 7 | |
Xie L [55] | 2023 | China | 35 | IHC | OS | 10 | OS/PFS | Reported | U | tumor cells | >1% | 7 | |
Lu Z [56] | 2022 | China | 805 | IHC | CRC | 410 | OS/DFS | Reported | M | tumor cells | >1% | 8 | |
Wang Y [57] | 2020 | China | 132 | IHC | CP | 45 | OS/PFS | Reported | U/M | tumor cells | NA | 7 | |
Inamura K [58] | 2018 | Japan | 150 | IHC | PDAC | 99 | OS/DFS | Reported | U/M | tumor cells | >10% | 8 | |
Geerdes EE [59] | 2021 | Netherlands | 83 | IHC | AAC | 55 | RFS/DSS | Reported | U/M | tumor cells | NA | 8 | |
Iida K [60] | 2019 | Japan | 87 | IHC | RCC | 51 | DFS | Reported | U/M | tumor cells | >10% | 8 | |
Chen L [61] | 2020 | China | 74 | IHC | HCC | 38 | OS | Reported | U | tumor cells | IHC score ≥ 4. Score ranged from 0 to 9 and was determined by multiplication of staining intensity categorized into 0—negative, 1–weak, 2—moderate, and 3—strong and the percentage of positive cells graded as 0 (no positive cells), 1 (<40%), 2 (40–70%), and 3 (>70%). | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielcarska, S.; Kula, A.; Dawidowicz, M.; Waniczek, D.; Świętochowska, E. Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 3044. https://doi.org/10.3390/ijms26073044
Mielcarska S, Kula A, Dawidowicz M, Waniczek D, Świętochowska E. Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2025; 26(7):3044. https://doi.org/10.3390/ijms26073044
Chicago/Turabian StyleMielcarska, Sylwia, Agnieszka Kula, Miriam Dawidowicz, Dariusz Waniczek, and Elżbieta Świętochowska. 2025. "Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 26, no. 7: 3044. https://doi.org/10.3390/ijms26073044
APA StyleMielcarska, S., Kula, A., Dawidowicz, M., Waniczek, D., & Świętochowska, E. (2025). Prognostic Significance of B7H3 Expression in Solid Tumors: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 26(7), 3044. https://doi.org/10.3390/ijms26073044