Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food
Abstract
:1. Introduction
2. Hydrogen Peroxide in Environmental and Laboratory Water
3. Sources of Hydrogen Peroxide in Beverages and Food
4. Hydrogen Peroxide in Beverages and Food
4.1. Milk
4.2. Honey
4.3. Tea and Coffee
4.4. Cooked Vegetables
4.5. Herbal Extracts and Spices
4.6. Other Beverages
4.7. Unhealthy Providers of Pleasure: Alcoholic Beverages and Tobacco Smoke
5. Scavenging of Hydrogen Peroxide by Beverages
6. Fate of Hydrogen Peroxide in the Digestive System
7. Adverse Effects of Beverage and Food-Derived Hydrogen Peroxide
8. Possible Beneficial Effects of Dietary Hydrogen Peroxide
9. In Vitro Cellular Effects of Beverages Mediated by Hydrogen Peroxide
10. Evolutionary Aspects of the Generation of Hydrogen Peroxide in Beverages and Food
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMEM | Dulbecco’s Modified Eagle’s Medium |
DUOX | Dual oxidase |
EGCG | Epigallocatechin gallate |
ESR | Electron spin resonance |
FOX | Ferrous Oxidation-Xylenol Orange |
Hb | Hemoglobin |
HRP | Horseradish peroxidase |
Ma | Million years ago |
NOX | NADPH oxidase |
OPDV | N,N-diethyl-p-phenylenediamine |
XO | Xanthine oxidase |
References
- Ortega, K.L.; Rech, B.D.O.; El Haje, G.L.C.; Gallo, C.D.B.; Pérez-Sayáns, M.; Braz-Silva, P.H. Do hydrogen peroxide mouthwashes have a virucidal effect? A systematic review. J. Hosp. Infect. 2020, 106, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Babalska, Z.Ł.; Korbecka-Paczkowska, M.; Karpiński, T.M. Wound antiseptics and European guidelines for antiseptic application in wound treatment. Pharmaceuticals 2021, 14, 1253. [Google Scholar] [CrossRef] [PubMed]
- Chemin, K.; Rezende, M.; Costa, M.C.; Salgado, A.D.Y.; de Geus, J.L.; Loguercio, A.D.; Reis, A.; Kossatz, S. Evaluation of at-home bleaching times on effectiveness and sensitivity with 10% hydrogen peroxide: A randomized controlled double-blind clinical trial. Oper. Dent. 2021, 46, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Terra, R.M.O.; da Silva, K.L.; Vochikovski, L.; Sutil, E.; Rezende, M.; Loguercio, A.D.; Reis, A. Effect of daily usage time of 4% hydrogen peroxide on the efficacy and bleaching-induced tooth sensitivity: A single-blind randomized clinical trial. Oper. Dent. 2021, 46, 395–405. [Google Scholar] [CrossRef]
- Heo, S.; Kim, S.; Kang, D. The role of hydrogen peroxide and peroxiredoxins throughout the cell cycle. Antioxidants 2020, 9, 280. [Google Scholar] [CrossRef]
- Sies, H. Dynamics of intracellular and intercellular redox communication. Free Radic. Biol. Med. 2024, 225, 933–939. [Google Scholar] [CrossRef]
- Averill-Bates, D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024, 25, 701–719. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Villar, S.F.; Ferrer-Sueta, G.; Denicola, A. The multifaceted nature of peroxiredoxins in chemical biology. Curr. Opin. Chem. Biol. 2023, 76, 102355. [Google Scholar] [CrossRef]
- Willey, J.D.; Kieber, R.J.; Lancaster, R.D. Coastal rainwater hydrogen peroxide: Concentration and deposition. J. Atmos. Chem. 1996, 25, 149–165. [Google Scholar] [CrossRef]
- Tanner, P.A.; Wong, A.Y.S. Spectrophotometric determination of hydrogen peroxide in rainwater. Anal. Chim. Acta 1998, 370, 279–287. [Google Scholar] [CrossRef]
- Deng, Y.; Zuo, Y. Factors affecting the levels of hydrogen peroxide in rainwater. Atmos. Environ. 1999, 33, 1469–1478. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z. Fluorescence determination of hydrogen peroxide using hemoglobin as mimetic enzyme of peroxidase. Anal. Sci. 2001, 17, 1449–1451. [Google Scholar] [CrossRef]
- Scaramboni, C.; Crispim, C.P.; Toledo, J.C., Jr.; Campos, M.L.A.D.M. Investigating hydrogen peroxide in rainwater of a typical midsized city in tropical Brazil using a novel application of a fluorometric method. Atmos. Environ. 2018, 176, 201–208. [Google Scholar] [CrossRef]
- Kieber, R.J.; Helz, G.R. Two-method verification of hydrogen peroxide determinations in natural waters. Anal. Chem. 1986, 58, 2312–2315. [Google Scholar] [CrossRef]
- Petasne, R.G.; Zika, R.G. Fate of superoxide in coastal sea water. Nature 1987, 325, 516–518. [Google Scholar] [CrossRef]
- Wu, M.; Wong, G.T.; Wu, Y.C. The scopoletin-HRP fluorimetric determination of H2O2 in seawaters—A plea for the two-stage protocol. Methods Protoc. 2018, 1, 4. [Google Scholar] [CrossRef]
- Duca, G.; Travin, S. Reactions’ mechanisms and applications of hydrogen peroxide. Am. J. Phys. Chem. 2020, 9, 36–44. [Google Scholar] [CrossRef]
- Bruskov, V.I.; Malakhova, L.V.; Masalimov, Z.K.; Chernikov, A.V. Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res. 2002, 30, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Lyakhov, G.A.; Pustovoy, V.I.; Shcherbakov, I.A. Influence of mechanical effects on the hydrogen peroxide concentration in aqueous solutions. Phys. Wave Phenom. 2019, 27, 141–144. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Penkov, N.V.; Baimler, I.V.; Lyakhov, G.A.; Pustovoy, V.I.; Simakin, A.V.; Sarimov, R.M.; Scherbakov, I.A. Effect of mechanical shaking on the physicochemical properties of aqueous solutions. Int. J. Mol. Sci. 2020, 21, 8033. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Walker, K.L.; Han, H.S.; Kang, J.; Prinz, F.B.; Waymouth, R.M.; Lee, J.K.; Walker, K.L.; Han, H.S.; Kang, J.; et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl. Acad. Sci. USA 2019, 116, 19294–19298. [Google Scholar] [CrossRef] [PubMed]
- Al-Shehri, S.S.; Duley, J.A.; Bansal, N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol. 2020, 34, 101524. [Google Scholar] [CrossRef]
- Brudzynski, K. Unexpected value of honey color for prediction of a non-enzymatic H2O2 production and honey antibacterial activity: A perspective. Metabolites 2023, 13, 526. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2015; pp. 39–40. [Google Scholar]
- Bayati, M.; Poojary, M.M. Polyphenol autoxidation and prooxidative activity induce protein oxidation and protein-polyphenol adduct formation in model systems. Food Chem. 2025, 466, 142208. [Google Scholar] [CrossRef]
- Arakawa, H.; Maeda, M.; Okubo, S.; Shimamura, T. Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 2004, 27, 277–281. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, X.; Yu, Y.; Li, W.; Mou, Y.; Chen, F.; Hu, X.; Ji, J.; Ma, L. From polyphenol to o-quinone: Occurrence, significance, and intervention strategies in foods and health implications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3254–3291. [Google Scholar] [CrossRef]
- Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2019, 278, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Boatright, W.L. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Food Chem. 2016, 196, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Griffiths, P.T.; Campbell, S.J.; Utinger, B.; Kalberer, M.; Paulson, S.E. Ascorbate oxidation by iron, copper and reactive oxygen species: Review, model development, and derivation of key rate constants. Sci. Rep. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Murekhina, A.E.; Yarullin, D.N.; Sovina, M.A.; Kitaev, P.A.; Gamov, G.A. Copper (II)-catalyzed oxidation of ascorbic acid: Ionic strength effect and analytical use in aqueous solution. Inorganics 2022, 10, 102. [Google Scholar] [CrossRef]
- Coleman, R.E.; Boulton, R.B.; Stuchebrukhov, A.A. Kinetics of autoxidation of tartaric acid in presence of iron. J. Chem. Phys. 2020, 153, 064503. [Google Scholar] [CrossRef]
- Coleman, R.E.; Stuchebrukhov, A.A.; Boulton, R.B. The kinetics of autoxidation in wine. In Recent Advances in Chemical Kinetics; Farrukh, M.A., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Hegele, J.; Münch, G.; Pischetsrieder, M. Identification of hydrogen peroxide as a major cytotoxic component in Maillard reaction mixtures and coffee. Mol. Nutr. Food Res. 2009, 53, 760–769. [Google Scholar] [CrossRef]
- Al-Kerwi, E.A.A.; Al-Hashimi, A.H.; Salman, A.M. Mother’s milk and hydrogen peroxide. Asia Pac. J. Clin. Nutr. 2005, 14, 428–431. [Google Scholar] [PubMed]
- Al-Shehri, S.S.; Knox, C.L.; Liley, H.G.; Cowley, D.M.; Wright, J.R.; Henman, M.G.; Hewavitharana, A.K.; Charles, B.G.; Shaw, P.N.; Sweeney, E.L.; et al. Breastmilk-saliva interactions boost innate immunity by regulating the oral microbiome in early infancy. PLoS ONE 2015, 10, e0135047. [Google Scholar] [CrossRef]
- Kostić, D.A.; Dimitrijević, D.S.; Stojanović, G.S.; Palić, I.R.; Đorđević, A.S.; Ickovski, J.D. Xanthine oxidase: Isolation, assays of activity, and inhibition. J. Chem. 2015, 2015, 294858. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Matias, A.; Mendes, J.; Araujo, J.; Dias, B.; Jorge, P.A.; Saraiva, C.; de Almeida, J.M.M.M.; Coelho, L.C. Compact biosensor system for the quantification of hydrogen peroxide in milk. Talanta 2023, 253, 124062. [Google Scholar] [CrossRef]
- Arefin, S.; Sarker, M.A.H.; Islam, M.A.; Harun-ur-Rashid, M.; Islam, M.N. Use of hydrogen peroxide (H2O2) in raw cow’s milk preservation. J. Adv. Vet. Anim. Res. 2017, 4, 371–377. [Google Scholar] [CrossRef]
- Bopitiya, D.; Christensen, D.; Martin, M.; Zhang, J.; Bennett, L.E. Production of hydrogen peroxide in formulated beverages is associated with the presence of ascorbic acid combined with selected redox-active functional ingredients. Food Chem. 2021, 338, 127947. [Google Scholar] [CrossRef]
- Su, S.C.; Chou, S.S.; Chang, P.C.; Hwang, D.F. Identification of hydrogen peroxide as a causative agent in noodles implicated in food poisoning. J. Food Drug Anal. 2001, 9, 220–223. [Google Scholar] [CrossRef]
- Ivanova, A.S.; Merkuleva, A.D.; Andreev, S.V.; Sakharov, K.A. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019, 283, 431–436. [Google Scholar] [CrossRef]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef] [PubMed]
- Bucekova, M.; Valachova, I.; Kohutova, L.; Prochazka, E.; Klaudiny, J.; Majtan, J. Honeybee glucose oxidase—Its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Die Naturwissenschaften 2014, 101, 661–670. [Google Scholar] [CrossRef]
- Guttentag, A.; Krishnakumar, K.; Cokcetin, N.; Harry, E.; Carter, D. Factors affecting the production and measurement of hydrogen peroxide in honey samples. Access Microbiol. 2021, 3, 000198. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D.; Kim, L.; Sjaarda, C.; Maldonado-Alvarez, L.; Fukś, H. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Sci. Rep. 2017, 7, 7637. [Google Scholar] [CrossRef]
- Strelec, I.; Crevar, B.; Kovač, T.; Bilić Rajs, B.; Primorac, L.; Flanjak, I. Glucose oxidase activity and hydrogen peroxide accumulation in Croatian honeys. Croat. J. Food Sci. Technol. 2018, 10, 33–41. [Google Scholar] [CrossRef]
- Majtan, J.; Bohova, J.; Prochazka, E.; Klaudiny, J. Methylglyoxal may affect hydrogen peroxide accumulation in manuka honey through the inhibition of glucose oxidase. J. Med. Food. 2014, 17, 290–293. [Google Scholar] [CrossRef]
- Starowicz, M.; Ostaszyk, A.; Zieliński, H. The relationship between the browning index, total phenolics, color, and antioxidant activity of polish-originated honey samples. Foods 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, J.; de Bruijn, W.J.; Velikov, K.P.; Vincken, J.P. Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chem. 2022, 370, 131292. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Nedić, N.; Nešović, M.; Radišić, P.; Gašić, U.; Baošić, R.; Joksimović, K.; Pezo, L.; Tešić, Ž.; Vovk, I. Polyphenolic and chemical profiles of honey from the Tara mountain in Serbia. Front. Nutr. 2022, 9, 941463. [Google Scholar] [CrossRef]
- Vazquez, L.; Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Evaluating the presence and contents of phytochemicals in honey samples: Phenolic compounds as indicators to identify their botanical origin. Foods 2021, 10, 2616. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Horvacki, N.; Šikoparija, B.; Nedić, N.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Polyphenol profile of buckwheat honey, nectar and pollen. R. Soc. Open Sci. 2020, 7, 201576. [Google Scholar] [CrossRef]
- Baranowska, M.; Koziara, Z.; Suliborska, K.; Chrzanowski, W.; Wormstone, M.; Namieśnik, J.; Bartoszek, A. Interactions between polyphenolic antioxidants quercetin and naringenin dictate the distinctive redox-related chemical and biological behaviour of their mixtures. Sci. Rep. 2021, 11, 12282. [Google Scholar] [CrossRef]
- Bektashi, N.L.; Abazi, D.; Popovska, O.; Latifi, A.; Reka, A.A. Characterization Of Honey: Determination of metal, sugar, acid and moisture content characterization of honey content. J. Multidiscip. Eng. Sci. Technol. 2021, 8, 14657–14663. [Google Scholar]
- Kędzierska-Matysek, M.; Teter, A.; Stryjecka, M.; Skałecki, P.; Domaradzki, P.; Rudaś, M.; Florek, M. Relationships linking the colour and elemental concentrations of blossom honeys with their antioxidant activity: A chemometric approach. Agriculture 2021, 11, 702. [Google Scholar] [CrossRef]
- Kwakman, P.H.; Velde, A.A.T.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.; Zaat, S.A. How honey kills bacteria. FASEB J. 2010, 24, 2576–2582. [Google Scholar] [CrossRef]
- Sindi, A.; Chawn, M.V.B.; Hernandez, M.E.; Green, K.; Islam, M.K.; Locher, C.; Hammer, K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Sci. Rep. 2019, 9, 17666. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef]
- Chen, C.; Campbell, L.T.; Blair, S.E.; Carter, D.A. The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Front. Microbiol. 2012, 3, 265. [Google Scholar] [CrossRef]
- Wong, M.; Sirisena, S.; Ng, K. Phytochemical profile of differently processed tea: A review. J. Food Sci. 2022, 87, 1925–1942. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.R.; White, H.M.; McCormack, J.D.; Niemeyer, E.D. Catechin composition, phenolic content, and antioxidant properties of commercially-available bagged, gunpowder, and matcha green teas. Plant Foods Hum. Nutr. 2023, 78, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef]
- Tang, V.C.Y.; Sun, J.; Cornuz, M.; Yu, B.; Lassabliere, B. Effect of solid-state fungal fermentation on the non-volatiles content and volatiles composition of Coffea canephora (Robusta) coffee beans. Food Chem. 2021, 337, 128023. [Google Scholar] [CrossRef]
- Naveed, M.; BiBi, J.; Kamboh, A.A.; Suheryani, I.; Kakar, I.; Fazlani, S.A.; FangFang, X.; Kalhoro, S.A.; Yunjuan, L.; Kakar, M.U.; et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomed. Pharmacother. 2018, 100, 521–531. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Ma, G.; Zhang, T.; Wang, L.; Pei, H.; Li, H.; Gao, L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front. Nutr. 2022, 9, 973677. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Chen, L.; Xu, A.; Wang, Y.; Xu, P.; Liu, Z. Identifying the structures and taste characteristics of two novel Maillard reaction products in tea. Food Chem. 2024, 431, 137125. [Google Scholar] [CrossRef]
- Truong, V.L.; Jeong, W.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci. 2021, 22, 9109. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Zhang, H.; Gobe, V.; Asante-Donyinah, D.; Duan, Y. Anti-and pro-oxidant properties of polyphenols and their role in modulating glutathione synthesis, activity and cellular redox potential: Potential synergies for disease management. Adv. Redox Res. 2024, 11, 100099. [Google Scholar] [CrossRef]
- Roginsky, V.; Alegria, A.E. Oxidation of tea extracts and tea catechins by molecular oxygen. J. Agric. Food Chem. 2005, 53, 4529–4535. [Google Scholar] [CrossRef]
- Wang, J.Q.; Gao, Y.; Long, D.; Yin, J.F.; Zeng, L.; Xu, Y.Q.; Xu, Y.Q. Effects of hydrogen peroxide produced by catechins on the aroma of tea beverages. Foods 2022, 11, 1273. [Google Scholar] [CrossRef]
- Nakayama, T.; Ichiba, M.; Kuwabara, M.; Kajiya, K.; Kumazawa, S. Mechanisms and structural specificity of hydrogen peroxide formation during oxidation of catechins. Food Sci. Technol. Res. 2002, 8, 261–267. [Google Scholar] [CrossRef]
- Hiramoto, K.; Mochizuki, R.; Kikugawa, K. Generation of hydrogen peroxide from hydroxyhydroquinone and its inhibition by superoxide dismutase. J. Oleo Sci. 2001, 50, 21–28. [Google Scholar] [CrossRef]
- Long, L.H.; Lan, A.N.B.; Hsuan, F.T.Y.; Halliwell, B. Generation of hydrogen peroxide by “antioxidant” beverages and the effect of milk addition. Is cocoa the best beverage? Free Radic. Res. 1999, 31, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Kut, K.; Tama, A.; Furdak, P.; Bartosz, G.; Sadowska-Bartosz, I. Generation of hydrogen peroxide and phenolic content in plant-material-based beverages and spices. Processes 2024, 12, 166. [Google Scholar] [CrossRef]
- Akagawa, M.; Shigemitsu, T.; Suyama, K. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci. Biotechnol. Biochem. 2003, 67, 2632–2640. [Google Scholar] [CrossRef]
- Chai, P.C.; Long, L.H.; Halliwell, B. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem. Biophys. Res. Commun. 2003, 304, 650–654. [Google Scholar] [CrossRef]
- Aoshima, H.; Ayabe, S. Prevention of the deterioration of polyphenol-rich beverages. Food Chem. 2007, 100, 350–355. [Google Scholar] [CrossRef]
- Aoshima, H.; Hirata, S.; Ayabe, S. Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem. 2007, 103, 617–622. [Google Scholar] [CrossRef]
- Ayabe, S.; Aoshima, H. Aqueous extract of citrus peel reduces production of hydrogen peroxide in catechin-enriched green tea. Food Chem. 2007, 104, 1594–1598. [Google Scholar] [CrossRef]
- Lambert, J.D.; Kwon, S.J.; Hong, J.; Yang, C.S. Salivary hydrogen peroxide produced by holding or chewing green tea in the oral cavity. Free Radic. Res. 2007, 41, 850–853. [Google Scholar] [CrossRef]
- Long, L.H.; Halliwell, B. Coffee drinking increases levels of urinary hydrogen peroxide detected in healthy human volunteers. Free Radic. Res. 2000, 32, 463–467. [Google Scholar] [CrossRef]
- Varma, S.D.; Devamanoharan, P.S. Excretion of hydrogen peroxide in human urine. Free Radic. Res. Commun. 1990, 8, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Long, L.H.; Evans, P.J.; Halliwell, B. Hydrogen peroxide in human urine: Implications for antioxidant defense and redox regulation. Biochem. Biophys. Res. Commun. 1999, 262, 605–609. [Google Scholar] [CrossRef]
- Hiramoto, K.; Kida, T.; Kikugawa, K. Increased urinary hydrogen peroxide levels caused by coffee drinking. Biol. Pharm. Bull. 2002, 25, 1467–1471. [Google Scholar] [CrossRef]
- Bartosz, G.; Rajzer, K.; Grzesik-Pietrasiewicz, M.; Sadowska-Bartosz, I. Hydrogen peroxide is formed upon cooking of vegetables. Acta Biochim. Pol. 2022, 69, 471–474. [Google Scholar] [CrossRef]
- Bartosz, G.; Baran, S.; Grzesik-Pietrasiewicz, M.; Sadowska-Bartosz, I. Antioxidant capacity and hydrogen peroxide formation by black and orange carrots: Black and orange carrots. Agric. Food Sci. 2022, 31, 71–77. [Google Scholar] [CrossRef]
- Bayliak, M.M.; Burdyliuk, N.I.; Lushchak, V.I. Effects of pH on antioxidant and prooxidant properties of common medicinal herbs. Open Life Sci. 2016, 11, 298–307. [Google Scholar] [CrossRef]
- Tama, A.; Pieńkowska, N.; Stefaniuk, I.; Bartosz, G.; Kapusta, I.; Sadowska-Bartosz, I. is hydrogen peroxide generated in infusions of medicinal herbs? Processes 2023, 11, 2855. [Google Scholar] [CrossRef]
- Boatright, W.L. Hydrogen peroxide generation from hydrated protein drink mixes. J. Food Sci. 2013, 78, C1651–C1658. [Google Scholar] [CrossRef] [PubMed]
- Bopitiya, D.; Guo, S.; Hearn, M.T.; Zhang, J.; Bennett, L.E. Formulations of selected Energy beverages promote pro-oxidant effects of ascorbic acid and long-term stability of hydrogen peroxide. Food Chem. 2022, 388, 133037. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Mechanism of autoxidation of polyphenols and participation of sulfite in wine: Key role of iron. Am. J. Enol. Vitic. 2011, 62, 319–328. [Google Scholar] [CrossRef]
- Héritier, J.; Bach, B.; Schönenberger, P.; Gaillard, V.; Ducruet, J.; Segura, J.M. Quantification of the production of hydrogen peroxide H2O2 during accelerated wine oxidation. Food Chem. 2016, 211, 957–962. [Google Scholar] [CrossRef]
- Tama, A.; Bartosz, G.; Sadowska-Bartosz, I. Is hydrogen peroxide generated in wine? Food Biosci. 2022, 45, 101487. [Google Scholar] [CrossRef]
- Muller, R. The formation of hydrogen peroxide during oxidation of thiol-containing proteins. J. Inst. Brew. 1997, 103, 307–310. [Google Scholar] [CrossRef]
- Rak, M.; Mendys, D.; Płatek, A.; Sitarz, O.; Stefaniuk, I.; Bartosz, G.; Sadowska-Bartosz, I. Generation of hydrogen peroxide in beer and selected strong alcoholic beverages. Processes 2025, 13, 277. [Google Scholar] [CrossRef]
- Rossetto, M.; Vianello, F.; Rigo, A.; Vrhovsek, U.; Mattivi, F.; Scarpa, M. Stable free radicals as ubiquitous components of red wines. Free Radic. Res. 2001, 35, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.; Kelly, J.; Langford, S.J.; Troup, G. Whisky–An ESR and Antioxidant Study. In Condensed Matter and Materials Meeting, Proceedings of the 27 Annual Condensed Matter and Materials Meeting, Wagga, NSW, Australia, 4–7 February 2003; Australian Institute of Physics: Melbourne, Australia, 2003; pp. 1–3. [Google Scholar]
- Nakayama, T.; Church, D.F.; Pryor, W.A. Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts. Free Radic. Biol. Med. 1989, 7, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Williams, S.; Griffin, G.D.; Jagannathan, R.; Plunkett, S.E.; Shafer, K.H.; Vo-Dinh, T. Near-real-time determination of hydrogen peroxide generated from cigarette smoke. J. Environ. Monit. 2005, 7, 681–687. [Google Scholar] [CrossRef]
- Nakayama, T.; Kodama, M.; Nagata, C. Generation of hydrogen peroxide and superoxide anion radical from cigarette smoke. GANN Jpn. J. Cancer Res. 1984, 75, 95–98. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Yang, C. The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method. Anal. Chim. Acta 2007, 601, 95–100. [Google Scholar] [CrossRef]
- Abbas, M.E.; Luo, W.; Zhu, L.; Zou, J.; Tang, H. Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system. Food Chem. 2010, 120, 327–331. [Google Scholar] [CrossRef]
- Liang, K.Z.; Mu, W.J. ZrO2/DNA-derivated polyion hybrid complex membrane for the determination of hydrogen peroxide in milk. Ionics 2008, 14, 533–539. [Google Scholar] [CrossRef]
- Lima, M.J.; Sasaki, M.K.; Marinho, O.R.; Freitas, T.A.; Faria, R.C.; Reis, B.F.; Rocha, F.R. Spot test for fast determination of hydrogen peroxide as a milk adulterant by smartphone-based digital image colorimetry. Microchem. J. 2020, 157, 105042. [Google Scholar] [CrossRef]
- Brudzynski, K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can. J. Microbiol. 2006, 52, 1228–1237. [Google Scholar] [CrossRef]
- Green, K.J.; Lawag, I.L.; Locher, C.; Hammer, K.A. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS ONE 2022, 17, e0272376. [Google Scholar] [CrossRef]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar] [CrossRef]
- Sowa, P.; Grabek-Lejko, D.; Wesołowska, M.; Swacha, S.; Dżugan, M. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Lett. Appl. Microbiol. 2017, 65, 82–89. [Google Scholar] [CrossRef]
- Dżugan, M.; Grabek-Lejko, D.; Swacha, S.; Tomczyk, M.; Bednarska, S.; Kapusta, I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Biosci. 2020, 34, 100538. [Google Scholar] [CrossRef]
- Alygizou, A.; Grigorakis, S.; Gotsiou, P.; Loupassaki, S.; Calokerinos, A.C. Quantification of hydrogen peroxide in Cretan honey and correlation with physicochemical parameters. J. Anal. Meth. Chem. 2021, 2021, 5554305. [Google Scholar] [CrossRef]
- Mohammed, M.E.A.; Alaergani, W.; Suleiman, M.H.; Al-Gramah, H.A. Hydrogen peroxide and dicarbonyl compounds concentration in honey samples from different botanical origins and altitudes in the South of Saudi Arabia. Cur. Res. Nutr. Food Sci. J. 2019, 7, 150–160. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Cheng, N.; Xue, X.; Wu, L.; Cao, W. A modified FOX-1 method for Micro-determination of hydrogen peroxide in honey samples. Food Chem. 2017, 237, 225–231. [Google Scholar] [CrossRef]
- Osés, S.M.; Rodríguez, C.; Valencia, O.; Fernández-Muiño, M.A.; Sancho, M.T. Relationships among hydrogen peroxide concentration, catalase, glucose oxidase, and antimicrobial activities of honeys. Foods 2024, 13, 1344. [Google Scholar] [CrossRef]
- Rinkus, S.J.; Taylor, R.T. Analysis of hydrogen peroxide in freshly prepared coffees. Food Chem. Toxicol. 1990, 28, 323–331. [Google Scholar] [CrossRef]
- Fujita, Y.; Wakabayashi, K.; Nagao, M.; Sugimura, T. Implication of hydrogen peroxide in the mutagenicity of coffee. Mutat. Res. Lett. 1985, 144, 227–230. [Google Scholar] [CrossRef]
- Nagao, M.; Fujita, Y.; Wakabayashi, K.; Nukaya, H.; Kosuge, T.; Sugimura, T. Mutagens in coffee and other beverages. Environ. Health Perspect. 1986, 67, 89–91. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, X.; Zhao, J.F.; Wang, Z.Y.; Bickers, D.; Lebwohl, M. Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radic. Biol. Med. 1999, 26, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Ihalin, R.; Loimaranta, V.; Tenovuo, J. Origin, structure, and biological activities of peroxidases in human saliva. Arch. Biochem. Biophys. 2006, 445, 261–268. [Google Scholar] [CrossRef]
- Chong, P.H.; He, Q.; Zhang, S.; Zhou, J.; Rao, P.; Zhang, M.; Ke, L. Relation of tea ingestion to salivary redox and flow rate in healthy subjects. Food Sci. Hum. Wellness 2023, 12, 2336–2343. [Google Scholar] [CrossRef]
- Pérez, S.; Taléns-Visconti, R.; Rius-Pérez, S.; Finamor, I.; Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 2017, 104, 75–103. [Google Scholar] [CrossRef]
- Lisanti, M.P.; Martinez-Outschoorn, U.E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R.G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: The seed and soil also needs “fertilizer”. Cell Cycle 2011, 10, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal. 2018, 29, 541–551. [Google Scholar] [CrossRef]
- Thomas, E.L.; Milligan, T.W.; Joyner, R.E.; Jefferson, M.M. Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect. Immun. 1994, 62, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Courtois, P. Oral peroxidases: From antimicrobial agents to ecological actors. Mol. Med. Rep. 2021, 24, 1–12. [Google Scholar] [CrossRef]
- Bang, L.M.; Buntting, C.; Molan, P. The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J. Altern. Complement. Med. 2003, 9, 267–273. [Google Scholar] [CrossRef]
- White, J.W., Jr.; Subers, M.H.; Schepartz, A.I. The identification of inhibine, antibacterial factor in the honey, as hydrogen peroxide, and its origin in a honey glucose oxidase. Biochim. Biophys. Acta 1963, 73, 57–70. [Google Scholar] [CrossRef]
- Poli, J.-P.; Guinoiseau, E.; Luciani, A.; Yang, Y.; Battesti, M.-J.; Paolini, J.; Costa, J.; Quilichini, Y.; Berti, L.; Lorenzi, V. Key role of hydrogen peroxide in antimicrobial activity of spring Honeydew maquis and chestnut grove Corsican honeys on Pseudomonas aeruginosa DNA. Lett. Appl. Microbiol. 2018, 66, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Zhang, J.; Cao, L.; Huang, T.T.; Zhang, J.X.; Mi, Y.N.; Xiao, X.; Yan, P.P.; Wu, M.L.; Yao, T.; et al. Hydrogen peroxide-mediated oxygen enrichment eradicates Helicobacter pylori in vitro and in vivo. Antimicrob. Agents Chemother. 2020, 64, e02192–e02219. [Google Scholar] [CrossRef]
- Grasberger, H.; El-Zaatari, M.; Dang, D.T.; Merchant, J.L. Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. Gastroenterology 2013, 145, 1045–1054. [Google Scholar] [CrossRef]
- Habbash, F.; Alalwan, T.A.; Perna, S.; Ahmed, N.; Sharif, O.; Al Sayyad, A.; Gasparri, C.; Ferraris, C.; Rondanelli, M. Association between dietary habits and Helicobacter pylori Infection among Bahraini adults. Nutrients 2022, 14, 4215. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.M.; Oh, C.T.; Bae, Y.S.; Lee, W.J. A direct role for dual oxidase in Drosophila gut immunity. Science 2005, 310, 847–850. [Google Scholar] [CrossRef]
- Wentworth, C.C.; Alam, A.; Jones, R.M.; Nusrat, A.; Neish, A.S. Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3. J. Biol. Chem. 2011, 286, 38448–38455. [Google Scholar] [CrossRef]
- Alam, A.; Leoni, G.; Wentworth, C.C.; Kwal, J.M.; Wu, H.; Ardita, C.S.; Swanson, P.A.; Lambeth, J.D.; Jones, R.M.; Nusrat, A.; et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 2014, 7, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, Y.; Noda, T.; Iwakiri, R.; Fujimoto, K.; Rhoads, C.A.; Aw, T.Y. Lipid peroxide-induced redox imbalance differentially mediates CaCo-2 cell proliferation and growth arrest. Cell Prolif. 2002, 35, 221–235. [Google Scholar] [CrossRef]
- Łuczak, K.; Balcerczyk, A.; Soszyński, M.; Bartosz, G. Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol. Int. 2004, 28, 483–486. [Google Scholar] [CrossRef]
- Craven, P.A.; Pfanstiel, J.; DeRubertis, F.R. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J. Clin. Investig. 1986, 77, 850–859. [Google Scholar] [CrossRef]
- Fajardo, A.F.; Sobchak, C.; Shifrin, Y.; Pan, J.; Gonska, T.; Belik, J. Hydrogen peroxide promotes gastric motility in the newborn rat. Pediatr. Res. 2018, 84, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Kambe, J.; Usuda, K.; Inoue, R.; Hirayama, K.; Ito, M.; Suenaga, K.; Masukado, S.; Liu, H.; Miyata, S.; Li, C.; et al. Hydrogen peroxide in breast milk is crucial for gut microbiota formation and myelin development in neonatal mice. Gut Microbes 2024, 16(1), 2359729. [Google Scholar] [CrossRef]
- Wolff, S.P.; Dean, R.T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem. J. 1986, 234, 399–403. [Google Scholar] [CrossRef]
- Elbling, L.; Weiss, R.M.; Teufelhofer, O.; Uhl, M.; Knasmueller, S.; Schulte-Hermann, R.; Berger, W.; Micksche, M. Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J. 2005, 19, 807–809. [Google Scholar] [CrossRef] [PubMed]
- Lee-Thorp, J.A.; Sponheimer, M.; Passey, B.H.; De Ruiter, D.; Cerling, T.E. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3389–3396. [Google Scholar] [CrossRef] [PubMed]
- Gowlett, J.A. The discovery of fire by humans: A long and convoluted process. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150164. [Google Scholar] [CrossRef]
- Semaw, S.; Rogers, M.J.; Quade, J.; Renne, P.R.; Butler, R.F.; Dominguez-Rodrigo, M.; Stout, D.; Hart, W.S.; Pickering, T.; Simpson, S.W. 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J. Hum. Evol. 2003, 45, 169–177. [Google Scholar] [CrossRef]
- Wrangham, R. Catching Fire: How Cooking Made Us Human; Basic Books: New York, NY, USA, 2009. [Google Scholar]
Material | Method | H2O2 Concentration | Reference |
---|---|---|---|
Rainwater in Miami, FL, USA | Spectrophotometric with HRP and N,N-diethyl-p-phenylenediamine (OPDV) | 6.9 μM (0.3–38.6 μM) | [15] |
Rainwater collected at roof-top level in central Kowloon, China | Spectrophotometric with HRP and OPDV | 15.9 μM | [14] |
Rainwater collected in Wilmington, NC, USA | Fluorimetric, with HRP and scopoletin | 12 μM (0.13–48.4) μM | [13] |
Rainwater (Xi’an, China) | Fluorimetric, with thiamine and Hb | 1.3–3.2 μM | [16] |
Ribeirão Preto, Brazil | Fluorimetric, with 2′,7′-dichlorofluorescin | 28.6 ± 1.4 μM (5.8–96 μM) | [17] |
Seawater (South China Sea) | Fluorimetric, with scopoletin | 14–24 nM | [20] |
Fresh and saline natural surface waters | Iodometric titration | 0.05–5.00 μM | [18] |
Human milk, 1st week postpartum | Luminol chemiluminescence | 25.0 µM | [39] |
Human milk, 1 to 5 days postpartum | Fluorimetric, with Ampliflu Red and HRP | 27.3 μM | [40] |
Bovine milk from a supermarket (Wuhan) | Fluorimetric with Fe2+ and coumarin | 0.39–0.44 μM | [109] |
Sterilized bovine milk | Electrochemical sensor using Hb–DNA/ZrO2/Au electrode | Not detected | [110] |
Milk from a local market (Brazil) | Fe2+/thiocyanate/smartphone camera | Not detected | [111] |
Honey, 18 kinds (Canada) | Fluorimetric, Ampliflu Red kit with HRP | 29-239 µM | [112] |
Various honeys, Australia | Spectrophotometric, with o-dianisidine and HRP | 0–916 µM | [65] |
Honey, 20 kinds (Slovakia) | Fluorimetric, Ampliflu Red kit with HRP | 0.3–3.7 mM | [48] |
Honeydew honey, mainly from Abies alba (Slovakia), 2 y old | Fluorimetric, Ampliflu Red kit with HRP | 307 and 496 µM | [52] |
Robinia (Robinia pseudoacacia) honey (Slovakia), 1 y old | Fluorimetric, Ampliflu Red kit with HRP | 36.3 µM | [52] |
Manuka honey, mainly from New Zealand, 3 y old | Fluorimetric, Ampliflu Red kit with HRP | 78.9 µM | [52] |
Manuka honeys from Australia and New Zealand | Spectrophotometric, with o-dianisidine and HRP | 0–78 µM | [113] |
Honey from Leptospermum spp. (Australia) | Spectrophotometric, with o-dianisidine and HRP | 143 µM | [113] |
Acacia, linden, rapeseed and sunflower honey | Megazyme GOX assay (absorptiometric) | 12.1, 19.9, 12.3 and 37.2 µg/g, respectively | [114] |
Melilotus albus honey, Poland | Spectrophotometric, with o-dianisidine and HRP | 19–125 µM | [115] |
Buckwheat honey, Poland | Spectrophotometric, with o-dianisidine and HRP | 0.04–0.74 mM | [116] |
Various honeys, Slovakia | Megazyme GOX assay (absorptiometric) | 0.36–1.09 mmol/kg | [114] |
Various honeys, Crete | Spectrophotometric, with o-dianisidine and HRP | 36–45 µM in 30% v/v aqueous honey solution | [117] |
Acacia spp. and Ziziphus spina christi honeys, Saudi Arabia | Ce(IV) sulfate titration | 2.5 and 3.9% (ca. 0.73 and 1.15 M), respectively | [118] |
35 monofloral honeys | Modified FOX assay (absorptiometric) | 5.9–214.2 µmol/kg | [119] |
24 honeys, Spain | Fluorescence Assay Kit using Ampliflu Red | 21–1398 µmol/kg | [120] |
Green tea, 1% (w/v) in distilled water | FOX assay (absorptiometric) | 13 and 19 µM after 1 and 2 h, respectively | [82] |
Green tea, 5 mg/mL phosphate buffer, pH 7.4, 24 h, 37 °C | FOX assay (absorptiometric) | 1102 µM | [81] |
Black tea, 5 mg/mL phosphate buffer, pH 7.4, 24 h, 37 °C | FOX assay (absorptiometric) | 790 µM | [81] |
Green tea and, rose, rosemary, sage, thyme and peppermint herbal teas in phosphate buffer, pH 7.4, 24 h incubation | FOX assay (absorptiometric) | ca. 1.1, 0.4, 0.3, 0.4, 0.25 and 0 mM, respectively | [84] |
Oolong tea, black tea, coffee, frozen dried coffee in PET bottles, freshly opened | FOX assay (absorptiometric) | 0.03–0.07 mM, ca. 0.05 mM, ca. 0.04 mM and ca. 0.1 mM, respectively | [83] |
Oolong tea, black tea, coffee, frozen dried coffee in PET bottles, after 24-h incubation at 25 °C | FOX assay (absorptiometric) | 0.22–0.44 mM, ca 0.54 mM, ca. 0.36 mM and ca. 0.35 mM | [83] |
Green tea packed in a PET bottle (Japan), 24 h after opening | FOX assay (absorptiometric) | 665 ± 22 µM | [85] |
Green tea, 1 bag/200 mL of distilled or tap water, 3-h incubation, 21 °C | FOX assay (absorptiometric) | 25 and 88 µM, respectively | [32] |
Green, white, black and red tea, 15 min after brewing | FOX assay (absorptiometric) | 53, 50, 73 and 47 µM, respectively | [80] |
Rooibos, yerba mate and cocoa, 15 min after brewing | FOX assay (absorptiometric) | 54, 67 and 38 µM, respectively | [80] |
Coffee; thyme and rosemary extracts, 15 min after brewing | FOX assay (absorptiometric) | 44, 53 and 42 µM, respectively | [80] |
Coffee, 5 mg/mL phosphate buffer, pH 7.4, 24 h, 37 °C | FOX assay (absorptiometric) | 240 µM | [81] |
Twelve preparations of coffee, freshly prepared | Spectrophotometric, with Phenol Red and HRP | None in 6 preparations; 3–29 µM in 6 preparations | [121] |
Instant coffee, 15 mg/mL, soon after preparation at 37 °C or 80 °C | Oxygen electrode | 0.1 and 0.15 µM, respectively | [122] |
Instant coffee (100 mg/mL, 24-h incubation) | Oxygen electrode | ca. 1000 ppm = 2.94 mM | [123] |
Infusions of Betula leaves, Polygonum, Lavandula and Tilia inflorescence. 1-h incubation, room temperature | FOX assay (absorptiometric) | 54, 37, 34 and 28 µM, respectively | [94] |
Boiled homogenates of broad bean in deionized water, tap water and phosphate buffer, pH 7.4 (1 g/2 mL) | FOX assay (absorptiometric) | 22.8, 28.1 and 76.0 µM, respectively | [91] |
Boiled homogenates of broccoli, onion and leek (1 g/2 mL of phosphate buffer, pH 7.4) | FOX assay (absorptiometric) | 25, 9 and 12 µM, respectively | [91] |
Boiled black carrot homogenate, 1 g/5 mL in tap water and phosphate buffer, pH 7.4 | FOX assay (absorptiometric) | 8.7 and 55.0 µM, respectively | [92] |
Commercial orange juices, Australia | FOX assay (absorptiometric) | 2.26–8.88 µM (fresh), 4.99–14.51 µM (preserved) | [96] |
Diluted Pinot and Merlot wines, 30-min incubation at 30 °C | Fluorimetric, with Ampliflu Red and HRP | 12–16 µM | [99] |
Xadrez (white) and Varna (red) wines, 3 d after opening | FOX assay (absorptiometric) | ca 18 and 32 µM, respectively | [100] |
Ten beers, 4-fold diluted | FOX assay (absorptiometric) | 0.4–7.9 µM | [102] |
Brandy and whisky | FOX assay (absorptiometric) | 2.2 and 21.6 µM, respectively | [102] |
Dogwood, quince, hazelnut and apricot tinctures | FOX assay (absorptiometric) | 8.7, 22.8, 23.3 and 48.3 µM, respectively | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska-Bartosz, I.; Bartosz, G. Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food. Int. J. Mol. Sci. 2025, 26, 3397. https://doi.org/10.3390/ijms26073397
Sadowska-Bartosz I, Bartosz G. Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food. International Journal of Molecular Sciences. 2025; 26(7):3397. https://doi.org/10.3390/ijms26073397
Chicago/Turabian StyleSadowska-Bartosz, Izabela, and Grzegorz Bartosz. 2025. "Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food" International Journal of Molecular Sciences 26, no. 7: 3397. https://doi.org/10.3390/ijms26073397
APA StyleSadowska-Bartosz, I., & Bartosz, G. (2025). Hydrogen Peroxide: A Ubiquitous Component of Beverages and Food. International Journal of Molecular Sciences, 26(7), 3397. https://doi.org/10.3390/ijms26073397