Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Molecular Causes of Optic Neuropathies
3.1.1. Isolated (Nonsyndromic) Genetic Optic Neuropathies
Leber Hereditary Optic Neuropathy (LHON)
Dominant Optic Atrophy (DOA)
Other HONs
Locus (Phenotype MIM No.) | Gene | Inheritance | Phenotype(s) |
---|---|---|---|
OPA1 (165500) | OPA1 | AD | Optic atrophy Optic atrophy plus |
OPA3 (165300) | OPA3 | AD/AR | Optic atrophy + possible cataract |
OPA5 (610708) | DNM1L | AD | Optic atrophy |
OPA7 (612988) | TMEM126A | AR | Optic atrophy + possible HI, CD, ND |
OPA9 (616289) | ACO2 | AD/AR | Optic atrophy + possible ND |
OPA10 (616732) | RTN4IP1 | AR | Optic atrophy + possible ND |
OPA11 (617302) | YME1L1 | AR | Optic atrophy + ND |
OPA12 (618977) | AFG3L2 | AD | Optic atrophy + possible ND |
OPA13 (165510) | SSBP1 | AD | Optic atrophy and retinal abnormalities + possible HI, PN |
OPA14 (620550) | MIEF1 | AD | Optic atrophy |
OPA15 (620583) | MCAT | AR | Optic atrophy |
OPA16 (620629) | MECR | AR | Optic atrophy + HI |
3.2. Syndromic HONs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu-Wai-Man, P.; Griffiths, P.G.; Hudson, G.; Chinnery, P.F. Inherited mitochondrial optic neuropathies. J. Med. Genet. 2009, 46, 145–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Milea, D.; Amati-Bonneau, P.; Reynier, P.; Bonneau, D. Genetically determined optic neuropathies. Curr. Opin. Neurol. 2010, 23, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, M.A.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Griffiths, P.G.; Hudson, G.; Chinnery, P.F.; Yu-Wai-Man, P. Quality of life in patients with Leber hereditary optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3112–3115. [Google Scholar] [CrossRef] [PubMed]
- Eckmann-Hansen, C.; Bek, T.; Sander, B.; Larsen, M. Vision-related quality of life and visual ability in patients with autosomal dominant optic atrophy. Acta Ophthalmol. 2022, 100, 797–804. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Newman, N.J.; Biousse, V. Hereditary optic neuropathies. Eye 2004, 18, 1144–1160. [Google Scholar] [CrossRef] [PubMed]
- Balducci, N.; Ciardella, A.; Gattegna, R.; Zhou, Q.; Cascavilla, M.L.; La Morgia, C.; Savini, G.; Parisi, V.; Bandello, F.; Carelli, V.; et al. Optical coherence tomography angiography of the peripapillary retina and optic nerve head in dominant optic atrophy. Mitochondrion 2017, 36, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Biousse, V.; Newman, N.J. Neuro-ophthalmology of mitochondrial diseases. Curr. Opin. Neurol. 2003, 16, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Optic nerve degeneration and mitochondrial dysfunction: Genetic and acquired optic neuropathies. Neurochem. Int. 2002, 40, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Jurkute, N.; Majander, A.; Bowman, R.; Votruba, M.; Abbs, S.; Acheson, J.; Lenaers, G.; Amati-Bonneau, P.; Moosajee, M.; Arno, G.; et al. Clinical utility gene card for: Inherited optic neuropathies including next-generation sequencing-based approaches. Eur. J. Hum. Genet. 2019, 27, 494–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fonseca, S.G.; Ishigaki, S.; Oslowski, C.M.; Lu, S.; Lipson, K.L.; Ghosh, R.; Hayashi, E.; Ishihara, H.; Oka, Y.; Permutt, M.A.; et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Investig. 2010, 120, 744–755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delatycki, M.B.; Corben, L.A. Clinical features of Friedreich ataxia. J. Child. Neurol. 2012, 27, 1133–1137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Esposito, F.; Zeppieri, M.; Cordeiro, M.F.; Capobianco, M.; Avitabile, A.; Gagliano, G.; Musa, M.; Barboni, P.; Gagliano, C. Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies. Genes 2024, 15, 1559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carelli, V.; Carbonelli, M.; de Coo, I.F.; Kawasaki, A.; Klopstock, T.; Lagrèze, W.A.; La Morgia, C.; Newman, N.J.; Orssaud, C.; Pott, J.W.R.; et al. International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. J. Neuroophthalmol. 2017, 37, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mascialino, B.; Leinonen, M.; Meier, T. Meta-analysis of the prevalence of Leber hereditary optic neuropathy mtDNA mutations in Europe. Eur. J. Ophthalmol. 2012, 22, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Barboni, P.; Carbonelli, M.; Savini, G.; Ramos Cdo, V.; Carta, A.; Berezovsky, A.; Salomao, S.R.; Carelli, V.; Sadun, A.A. Natural history of Leber’s hereditary optic neuropathy: Longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 2010, 117, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Meyerson, C.; Van Stavern, G.; McClelland, C. Leber hereditary optic neuropathy: Current perspectives. Clin. Ophthalmol. 2015, 9, 1165–1176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balducci, N.; Savini, G.; Cascavilla, M.L.; La Morgia, C.; Triolo, G.; Giglio, R.; Carbonelli, M.; Parisi, V.; Sadun, A.A.; Bandello, F.; et al. Macular nerve fiber and ganglion cell layer changes in acute Leber’s hereditary optic neuropathy. Br. J. Ophthalmol. 2016, 100, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Savini, G.; Barboni, P.; Valentino, M.L.; Montagna, P.; Cortelli, P.; De Negri, A.M.; Sadun, F.; Bianchi, S.; Longanesi, L.; Zanini, M.; et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005, 112, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.M.; Newman, N.J.; Miller, N.R.; Johns, D.R.; Lott, M.T.; Wallace, D.C. Visual recovery in patients with Leber’s hereditary optic neuropathy and the 11778 mutation. J. Clin. Neuroophthalmol. 1992, 12, 10–14. [Google Scholar] [PubMed]
- Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.; Elsas LJ2nd Nikoskelainen, E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988, 242, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Achilli, A.; Iommarini, L.; Olivieri, A.; Pala, M.; Hooshiar Kashani, B.; Reynier, P.; La Morgia, C.; Valentino, M.L.; Liguori, R.; Pizza, F.; et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber’s hereditary optic neuropathy. PLoS ONE 2012, 7, e42242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu-Wai-Man, P.; Carelli, V.; Newman, N.J.; Silva, M.J.; Linden, A.; Van Stavern, G.; Szaflik, J.P.; Banik, R.; Lubiński, W.; Pemp, B.; et al. The therapeutic benefit of idebenone in patients with Leber hereditary optic neuropathy: The LEROS nonrandomized controlled trial. Cell Rep. Med. 2024, 5, 101437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stenton, S.L.; Sheremet, N.L.; Catarino, C.B.; Andreeva, N.A.; Assouline, Z.; Barboni, P.; Barel, O.; Berutti, R.; Bychkov, I.; Caporali, L.; et al. Impaired complex I repair causes recessive Leber’s hereditary optic neuropathy. J. Clin. Investig. 2021, 131, e138267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.; Schubert, M.; Garip, A.; et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011, 134 Pt 9, 2677–2686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carelli, V.; La Morgia, C.; Valentino, M.L.; Rizzo, G.; Carbonelli, M.; De Negri, A.M.; Sadun, F.; Carta, A.; Guerriero, S.; Simonelli, F.; et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain 2011, 134 Pt 9, e188. [Google Scholar] [CrossRef] [PubMed]
- Klopstock, T.; Metz, G.; Yu-Wai-Man, P.; Büchner, B.; Gallenmüller, C.; Bailie, M.; Nwali, N.; Griffiths, P.G.; von Livonius, B.; Reznicek, L.; et al. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain 2013, 136 Pt 2, e230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Newman, N.J.; Yu-Wai-Man, P.; Subramanian, P.S.; Moster, M.L.; Wang, A.G.; Donahue, S.P.; Leroy, B.P.; Carelli, V.; Biousse, V.; Vignal-Clermont, C.; et al. Randomized trial of bilateral gene therapy injection for m.11778G>A MT-ND4 Leber optic neuropathy. Brain 2023, 146, 1328–1341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, D.C.S.; Harvey, J.P.; Jurkute, N.; Thomas, S.M.; Moosajee, M.; Yu-Wai-Man, P.; Gilhooley, M.J. OPA1 Dominant Optic Atrophy: Pathogenesis and Therapeutic Targets. J. Neuroophthalmol. 2023, 43, 464–474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asanad, S.; Tian, J.J.; Frousiakis, S.; Jiang, J.P.; Kogachi, K.; Felix, C.M.; Fatemeh, D.; Irvine, A.G.; Ter-Zakarian, A.; Falavarjani, K.G.; et al. Optical Coherence Tomography of the Retinal Ganglion Cell Complex in Leber’s Hereditary Optic Neuropathy and Dominant Optic Atrophy. Curr. Eye Res. 2019, 44, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Corajevic, N.; Larsen, M.; Rönnbäck, C. Thickness mapping of individual retinal layers and sectors by Spectralis SD-OCT in Autosomal Dominant Optic Atrophy. Acta Ophthalmol. 2018, 96, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Griffiths, P.G.; Chinnery, P.F. Mitochondrial optic neuropathies—Disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 2011, 30, 81–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ham, M.; Han, J.; Osann, K.; Smith, M.; Kimonis, V. Meta-analysis of genotype-phenotype analysis of OPA1 mutations in autosomal dominant optic atrophy. Mitochondrion 2019, 46, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Lenaers, G.; Hamel, C.; Delettre, C.; Amati-Bonneau, P.; Procaccio, V.; Bonneau, D.; Reynier, P.; Milea, D. Dominant optic atrophy. Orphanet J. Rare Dis. 2012, 7, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu-Wai-Man, P.; Griffiths, P.G.; Gorman, G.S.; Lourenco, C.M.; Wright, A.F.; Auer-Grumbach, M.; Toscano, A.; Musumeci, O.; Valentino, M.L.; Caporali, L.; et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010, 133 Pt 3, 771–786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitehead, M.; Harvey, J.P.; Sladen, P.E.; Becchi, G.; Singh, K.; Sun, Y.J.; Burgoyne, T.; Duchen, M.R.; Yu-Wai-Man, P.; Cheetham, M.E. Disruption of mitochondrial homeostasis and permeability transition pore opening in OPA1 iPSC-derived retinal ganglion cells. Acta Neuropathol. Commun. 2025, 13, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jurkute, N.; D’Esposito, F.; Robson, A.G.; Pitceathly, R.D.S.; Cordeiro, F.; Raymond, F.L.; Moore, A.T.; Michaelides, M.; Yu-Wai-Man, P.; Webster, A.R.; et al. SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance. Invest. Ophthalmol. Vis. Sci. 2021, 62, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alexander, C.; Votruba, M.; Pesch, U.E.; Thiselton, D.L.; Mayer, S.; Moore, A.; Rodriguez, M.; Kellner, U.; Leo-Kottler, B.; Auburger, G.; et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000, 26, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Delettre, C.; Lenaers, G.; Griffoin, J.M.; Gigarel, N.; Lorenzo, C.; Belenguer, P.; Pelloquin, L.; Grosgeorge, J.; Turc-Carel, C.; Perret, E.; et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 2000, 26, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Thiselton, D.L.; Alexander, C.; Morris, A.; Brooks, S.; Rosenberg, T.; Eiberg, H.; Kjer, B.; Kjer, P.; Bhattacharya, S.S.; Votruba, M. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: Evidence for a founder effect. Hum. Genet. 2001, 109, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Almind, G.J.; Ek, J.; Rosenberg, T.; Eiberg, H.; Larsen, M.; Lucamp, L.; Brøndum-Nielsen, K.; Grønskov, K. Dominant optic atrophy in Denmark—Report of 15 novel mutations in OPA1, using a strategy with a detection rate of 90%. BMC Med. Genet. 2012, 13, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferré, M.; Bonneau, D.; Milea, D.; Chevrollier, A.; Verny, C.; Dollfus, H.; Ayuso, C.; Defoort, S.; Vignal, C.; Zanlonghi, X.; et al. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations. Hum. Mutat. 2009, 30, E692–E705. [Google Scholar] [CrossRef] [PubMed]
- Weisschuh, N.; Schimpf-Linzenbold, S.; Mazzola, P.; Kieninger, S.; Xiao, T.; Kellner, U.; Neuhann, T.; Kelbsch, C.; Tonagel, F.; Wilhelm, H.; et al. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS ONE 2021, 16, e0253987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenaers, G.; Neutzner, A.; Le Dantec, Y.; Jüschke, C.; Xiao, T.; Decembrini, S.; Swirski, S.; Kieninger, S.; Agca, C.; Kim, U.S.; et al. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog. Retin. Eye Res. 2021, 83, 100935. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, B.; Lenaers, G.; Zanlonghi, X.; Amati-Bonneau, P.; Chabrun, F.; Foulonneau, T.; Caignard, A.; Leruez, S.; Gohier, P.; Procaccio, V.; et al. OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet J. Rare Dis. 2019, 14, 214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veitia, R.A.; Caburet, S.; Birchler, J.A. Mechanisms of Mendelian dominance. Clin. Genet. 2018, 93, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.; Cringle, S.J.; Balaratnasingam, C.; Morgan, W.H.; Yu, P.K.; Su, E.N. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog. Retin. Eye Res. 2013, 36, 217–246. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.A.; Di Polo, A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017, 36, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.J.; Griffiths, P.; Turnbull, D.M.; Bates, D.; Nichols, P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br. J. Ophthalmol. 2004, 88, 286–290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu Wai Man, C.Y.; Chinnery, P.F.; Griffiths, P.G. Optic neuropathies--importance of spatial distribution of mitochondria as well as function. Med. Hypotheses 2005, 65, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Valentin, K.; Georgi, T.; Riedl, R.; Aminfar, H.; Singer, C.; Klopstock, T.; Wedrich, A.; Schneider, M. Idebenone Treatment in Patients with OPA1-Dominant Optic Atrophy: A Prospective Phase 2 Trial. Neuroophthalmology 2023, 47, 237–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarzi, E.; Seveno, M.; Piro-Mégy, C.; Elzière, L.; Quilès, M.; Péquignot, M.; Müller, A.; Hamel, C.P.; Lenaers, G.; Delettre, C. OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Sci. Rep. 2018, 8, 2468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venkatesh, A.; Li, Z.; Christiansen, A.; Lim, K.H.; Kach, J.; Hufnagel, R.; Aznarez, I.; Liau, G. Antisense oligonucleotide mediated increase of OPA1 expression using TANGO technology for the treatment of autosomal dominant optic atrophy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2755. [Google Scholar]
- Sladen, P.E.; Perdigão, P.R.L.; Salsbury, G.; Novoselova, T.; van der Spuy, J.; Chapple, J.P.; Yu-Wai-Man, P.; Cheetham, M.E. CRISPR-Cas9 correction of OPA1 c.1334G>A: P.R445H restores mitochondrial homeostasis in dominant optic atrophy patient-derived iPSCs. Mol. Ther. Nucleic Acids 2021, 26, 432–443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- OMIM. Available online: https://www.omim.org.
- Urano, F. Wolfram Syndrome: Diagnosis, Management, and Treatment. Curr. Diab Rep. 2016, 16, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeda, K.; Inoue, H.; Tanizawa, Y.; Matsuzaki, Y.; Oba, J.; Watanabe, Y.; Shinoda, K.; Oka, Y. WFS1 (Wolfram syndrome 1) gene product: Predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum. Mol. Genet. 2001, 10, 477–484. [Google Scholar] [CrossRef] [PubMed]
- de Muijnck, C.; Brink, J.B.T.; Bergen, A.A.; Boon, C.J.F.; van Genderen, M.M. Delineating Wolfram-like syndrome: A systematic review and discussion of the WFS1-associated disease spectrum. Surv. Ophthalmol. 2023, 68, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Hofmann, S.; Hamasaki, D.I.; Yamamoto, H.; Kreczmanski, P.; Schmitz, C.; Parel, J.M.; Schmidt-Kastner, R. Wolf ram syndrome 1 (WFS1) protein expression in retinal ganglion cells and optic nerve glia of the cynomolgus monkey. Exp. Eye Res. 2006, 83, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, S.; Tanabe, K.; Kaneko, N.; Hishimura, N.; Nakamura, A. Comprehensive overview of disease models for Wolfram syndrome: Toward effective treatments. Mamm. Genome 2024, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- El-Shanti, H.; Lidral, A.C.; Jarrah, N.; Druhan, L.; Ajlouni, K. Homozygosity mapping identifies an additional locus for Wolfram syndrome on chromosome 4q. Am. J. Hum. Genet. 2000, 66, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amr, S.; Heisey, C.; Zhang, M.; Xia, X.J.; Shows, K.H.; Ajlouni, K.; Pandya, A.; Satin, L.S.; El-Shanti, H.; Shiang, R. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am. J. Hum. Genet. 2007, 81, 673–683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mozzillo, E.; Delvecchio, M.; Carella, M.; Grandone, E.; Palumbo, P.; Salina, A.; Aloi, C.; Buono, P.; Izzo, A.; D’Annunzio, G.; et al. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2. BMC Med. Genet. 2014, 15, 88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rondinelli, M.; Novara, F.; Calcaterra, V.; Zuffardi, O.; Genovese, S. Wolfram syndrome 2: A novel CISD2 mutation identified in Italian siblings. Acta Diabetol. 2015, 52, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, F.; Barboni, P.; Liguori, R.; Valentino, M.L.; Savini, G.; Gellera, C.; Mariotti, C.; Rizzo, G.; Tonon, C.; Manners, D.; et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009, 132 Pt 1, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Reetz, K.; Dogan, I.; Hohenfeld, C.; Didszun, C.; Giunti, P.; Mariotti, C.; Durr, A.; Boesch, S.; Klopstock, T.; Rodríguez de Rivera Garrido, F.J.; et al. Nonataxia symptoms in Friedreich Ataxia: Report from the Registry of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS). Neurology 2018, 91, e917–e930. [Google Scholar] [CrossRef] [PubMed]
- Buesch, K.; Zhang, R. A systematic review of disease prevalence, health-related quality of life, and economic outcomes associated with Friedreich’s Ataxia. Curr. Med. Res. Opin. 2022, 38, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Schmucker, S.; Argentini, M.; Carelle-Calmels, N.; Martelli, A.; Puccio, H. The in vivo mitochondrial two-step maturation of human frataxin. Hum. Mol. Genet. 2008, 17, 3521–3531. [Google Scholar] [CrossRef] [PubMed]
- Bidichandani, S.I.; Delatycki, M.B.; Napierala, M.; Duquette, A. Friedreich Ataxia. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1998; pp. 1993–2025. [Google Scholar] [PubMed]
- Rojas, P.; de Hoz, R.; Cadena, M.; Salobrar-García, E.; Fernández-Albarral, J.A.; López-Cuenca, I.; Elvira-Hurtado, L.; Urcelay-Segura, J.L.; Salazar, J.J.; Ramírez, J.M.; et al. Neuro-Ophthalmological Findings in Friedreich’s Ataxia. J. Pers. Med. 2021, 11, 708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bombelli, F.; Stojkovic, T.; Dubourg, O.; Echaniz-Laguna, A.; Tardieu, S.; Larcher, K.; Amati-Bonneau, P.; Latour, P.; Vignal, O.; Cazeneuve, C.; et al. Charcot-Marie-Tooth disease type 2A: From typical to rare phenotypic and genotypic features. JAMA Neurol. 2014, 71, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.; Komen, J.; Ferdinandusse, S. Phytanic acid metabolism in health and disease. Biochim. Biophys. Acta 2011, 1811, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Barboni, P.; Savini, G.; Valentino, M.L.; Montagna, P.; Cortelli, P.; De Negri, A.M.; Sadun, F.; Bianchi, S.; Longanesi, L.; Zanini, M.; et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005, 112, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Sadun, F.; De Negri, A.M.; Carelli, V.; Salomao, S.R.; Berezovsky, A.; Andrade, R.; Moraes, M.; Passos, A.; Belfort, R.; da Rosa, A.B.; et al. Ophthalmologic findings in a large pedigree of 11778/Haplogroup J Leber hereditary optic neuropathy. Am. J. Ophthalmol. 2004, 137, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.; Cortinhal, T.; Carvalho, A.L.; Teixeira-Marques, F.; Silva, R.; Murta, J.; Marques, J.P. Unraveling the genetic spectrum of inherited deaf-blindness in Portugal. Orphanet J. Rare Dis. 2025, 20, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, M.; Vieta-Ferrer, E.R.; Bakdalieh, A.; Tsai, T. The Role of Visual Electrophysiology in Systemic Hereditary Syndromes. Int. J. Mol. Sci. 2025, 26, 957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guy, J.; Feuer, W.J.; Davis, J.L.; Porciatti, V.; Gonzalez, P.J.; Koilkonda, R.D.; Yuan, H.; Hauswirth, W.W.; Lam, B.L. Gene Therapy for Leber Hereditary Optic Neuropathy: Low- and Medium-Dose Visual Results. Ophthalmology 2017, 124, 1621–1634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klopstock, T.; Zeng, L.H.; Priglinger, C. Leber’s hereditary optic neuropathy—Current status of idebenone and gene replacement therapies. Med. Genet. 2025, 37, 57–63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Yuan, J.; Qi, J.; Ruan, K.; Li, B.; Dan, Y.; Zhang, Y. The rAAV2-ND1 Gene Therapy for Leber Hereditary Optic Neuropathy. Arch. Clin. Exp. Ophthalmol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ferro Desideri, L.; Traverso, C.E.; Iester, M. Current treatment options for treating OPA1-mutant dominant optic atrophy. Drugs Today 2022, 58, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, V.W. Precision Medicine for Continuing Phenotype Expansion of Human Genetic Diseases. BioMed Res. Int. 2015, 2015, 745043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rabenstein, A.; Catarino, C.B.; Rampeltshammer, V.; Schindler, D.; Gallenmüller, C.; Priglinger, C.; Pogarell, O.; Rüther, T.; Klopstock, T. Smoking and alcohol, health-related quality of life and psychiatric comorbidities in Leber’s Hereditary Optic Neuropathy mutation carriers: A prospective cohort study. Orphanet J. Rare Dis. 2021, 16, 127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ezan, P.; Hardy, E.; Bemelmans, A.; Taiel, M.; Dossi, E.; Rouach, N. Retinal damage promotes mitochondrial transfer in the visual system of a mouse model of Leber hereditary optic neuropathy. Neurobiol. Dis. 2024, 201, 106681. [Google Scholar] [CrossRef] [PubMed]
- Grier, J.; Hirano, M.; Karaa, A.; Shepard, E.; Thompson, J.L.P. Diagnostic odyssey of patients with mitochondrial disease: Results of a survey. Neurol. Genet. 2018, 4, e230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tung, C.; Varzideh, F.; Farroni, E.; Mone, P.; Kansakar, U.; Jankauskas, S.S.; Santulli, G. Elamipretide: A Review of Its Structure, Mechanism of Action, and Therapeutic Potential. Int. J. Mol. Sci. 2025, 26, 944. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, K.Y.; Osman, R.M.; Esomchukwu, O.; Marchand, M.; Nguyen, B.H.; Tran, S.D. Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Glaucoma and Retinal Diseases. Adv. Exp. Med. Biol. 2025. [Google Scholar] [CrossRef] [PubMed]
Trial (ID) | Intervention | Phase | Design | Population | Key Outcomes | Status |
---|---|---|---|---|---|---|
RHODOS (NCT00747487) | Idebenone 900 mg/day | II | RCT, placebo-controlled (24 wks) | LHON (<5 yrs onset, n = 85) | No significant primary outcome; secondary VA endpoints improved. | Completed (2011) |
LEROS (NCT02774005) | Idebenone 900 mg/day (post-approval) | IV | Observational, uncontrolled | LHON (<5 yrs onset, n = 199) | Clinically relevant visual improvement compared with natural history. | Completed (2020) |
RESCUE/REVERSE (NCT02652780) | Lenadogene nolparvovec (AAV2-ND4, unilateral) | III | Sham-controlled, double-masked RCT | LHON (ND4), n = 76 | Bilateral visual improvement superior to natural history. | Completed (2020–21) |
REFLECT (NCT03293524) | Lenadogene nolparvovec (bilateral injections) | III | Sham-controlled, double-masked RCT | LHON (ND4), n = 98 | Significant bilateral VA improvement (+22 ETDRS letters). | Completed (2022) |
Idebenone in DOA (no NCT ID) | Idebenone 900 mg/day (compassionate use) | II | Prospective open-label (12 months) | DOA (OPA1; n = 10) | Modest visual acuity improvement after 1 year. | Completed (2023) |
NICODA (NCT06007391) | Nicotinamide (vitamin B3, oral) | II/III | Randomized pilot (12 months) | DOA/DOA+ (OPA1; adults > 18, n = 30) | Results pending; ongoing. | Recruiting (2025) |
DAN-WS (NCT02829268) | Dantrolene sodium (oral) | Ib/IIa | Open-label dose escalation (6 months) | Wolfram syndrome (n = 24) | Well tolerated, no significant visual benefit. | Completed (2021) |
TREATWOLFRAM (NCT03717909) | Sodium valproate vs. placebo (oral) | II | Double-blind placebo-controlled RCT | Wolfram syndrome (>5 yrs, n = 70) | Primary outcomes pending; ongoing. | Ongoing |
Molecular Target | Therapeutic Strategy (Type) | Evidence (Stage) |
---|---|---|
Mitochondrial complex I (LHON mtDNA mutations, e.g., MT-ND4, ND1, ND6) | Idebenone (pharmacological antioxidant, bypassing complex I) | Clinical: EMA-approved; RHODOS trial showed visual acuity improvements in secondary endpoints. |
Mitochondrial ND4 gene (m.11778G>A mutation in LHON) | Gene therapy (Allotopic expression)—lenadogene nolparvovec (AAV2-ND4) | Clinical: Significant visual acuity improvement in phase III trials (RESCUE, REVERSE, REFLECT). |
OPA1 (haploinsufficiency) (DOA) | Gene therapy (gene augmentation)—AAV vector carrying wild-type OPA1 | Preclinical: Effective RGC protection in DOA mouse models; no clinical trials yet. |
OPA1 (haploinsufficiency) (DOA) | Antisense oligonucleotide (ASO)—TANGO technology to increase OPA1 expression | Preclinical: Effective in cell models; under investigation. |
Mitochondrial biogenesis/NAD+ metabolism (energetic deficit in DOA, LHON) | Nicotinamide (Vitamin B3) (nutraceutical therapy) | Preclinical/Clinical: Improved mitochondrial function in cell models; ongoing phase II/III trials in DOA patients. |
Retinal ganglion cell (RGC) neuroprotection | Stem cell therapy—intravitreal injection of autologous MSC | Clinical (early): SCOTS trial (phase I/II) reported visual improvements; further studies needed. |
ER Ca2⁺ homeostasis (ER stress in Wolfram syndrome, WFS1) | Dantrolene sodium—ER stress reduction | Clinical: Phase Ib/IIa trial showed good tolerability; no significant vision improvement at 6 months. |
ER stress/UPR response (WFS1, Wolfram syndrome) | Sodium valproate—ER stress modulation | Clinical: Ongoing phase II trial (TREATWOLFRAM) assessing long-term efficacy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeppieri, M.; Gagliano, C.; Di Maita, M.; Avitabile, A.; Gagliano, G.; Dammino, E.; Tognetto, D.; Cordeiro, M.F.; D’Esposito, F. Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity. Int. J. Mol. Sci. 2025, 26, 3892. https://doi.org/10.3390/ijms26083892
Zeppieri M, Gagliano C, Di Maita M, Avitabile A, Gagliano G, Dammino E, Tognetto D, Cordeiro MF, D’Esposito F. Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity. International Journal of Molecular Sciences. 2025; 26(8):3892. https://doi.org/10.3390/ijms26083892
Chicago/Turabian StyleZeppieri, Marco, Caterina Gagliano, Marco Di Maita, Alessandro Avitabile, Giuseppe Gagliano, Edoardo Dammino, Daniele Tognetto, Maria Francesca Cordeiro, and Fabiana D’Esposito. 2025. "Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity" International Journal of Molecular Sciences 26, no. 8: 3892. https://doi.org/10.3390/ijms26083892
APA StyleZeppieri, M., Gagliano, C., Di Maita, M., Avitabile, A., Gagliano, G., Dammino, E., Tognetto, D., Cordeiro, M. F., & D’Esposito, F. (2025). Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity. International Journal of Molecular Sciences, 26(8), 3892. https://doi.org/10.3390/ijms26083892