High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stationary Phase Selection
2.2. Effect of the Nature of the Applied Additives on the Separation Obtained on Zwitterionic CSPs
2.3. Stoichiometric Displacement Model for the Characterization of Ionic Interactions
2.4. Effects of the Eluent Composition and Structural Properties on the Separation Characteristics
2.5. Effect of Temperature on the Separation Performance
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Apparatus and Chromatography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AcOH | Acetic acid |
ACHSA | Aminocyclohexanesulfonic acid |
CAD | Corona-charged aerosol detector |
CSP | Chiral stationary phase |
DEA | Diethyl amine |
EA | Ethyl amine |
EEO | Enantiomeric elution order |
FA | Formic acid |
HPLC | High-performance liquid chromatography |
MeCN | Acetonitrile |
PIM | Polar ionic mode |
QD | Quinidin |
QN | Quinin |
TEA | Triethyl amine |
References
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2018, 17, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A.; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush, T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Bock, J.E.; Gavenonis, J.; Kritzer, J.A. Getting in shape: Controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem. Biol. 2013, 8, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Bozovičar, K.; Bratkovič, T. Small and simple, yet sturdy: Conformationally constrained peptides with remarkable properties. Int. J. Mol. Sci. 2021, 22, 1611. [Google Scholar] [CrossRef]
- Dougherty, D.A. Unnatural amino acids as probes of protein structure and function. Curr. Opin. Chem. Biol. 2000, 4, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Riaz, N.N.; Rehman, M.F.U.; Ahmad, M.M. ß-Amino acids: Role in human biology and medicinal chemistry—A review. Med. Chem. 2017, 7, 302–307. [Google Scholar] [CrossRef]
- Kotha, S.; Solanke, B.U. Construction of unusual amino acid derivatives and bis-fused oxacycles via ring-closing metathesis. ChemistrySelect 2022, 7, e202203906. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Wang, Q.; Meng, D. Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Crit. Rev. Microbiol. 2023, 49, 231–255. [Google Scholar] [CrossRef]
- Hruby, V.J.; Al-Obeidi, F.; Kazmierski, W. Emerging approaches in the molecular design of receptor-selective peptide ligands: Conformational, topographical and dynamic considerations. Biochem. J. 1990, 268, 249–262. [Google Scholar] [CrossRef]
- West, C. Recent trends in chiral supercritical fluid chromatography. TrAC Trends Anal. Chem. 2019, 120, 115648. [Google Scholar] [CrossRef]
- Sui, J.; Wang, N.; Wang, J.; Huang, X.; Wang, T.; Zhou, L.; Hao, H. Strategies for chiral separation: From racemate to enantiomer. Chem. Sci. 2023, 14, 11955–12003. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends Anal. Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Carenzi, G.; Sacchi, S.; Abbondi, M.; Pollegioni, L. Direct chromatographic methods for enantioresolution of amino acids: Recent developments. Amino Acids 2020, 52, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Busardò, F.P.; Tini, A.; Lo Faro, A.F.; Basile, G.; Farkas, T.; Chankvetadze, B. Enantioselective separation techniques in forensic analysis and clinical toxicology. TrAC Trends Anal. Chem. 2024, 175, 117733. [Google Scholar] [CrossRef]
- Ali, I.; Suhail, M.; Aboul-Enein, H.Y. Advances in chiral multidimensional liquid chromatography. TrAC Trends Anal. Chem. 2019, 120, 115634. [Google Scholar] [CrossRef]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral stationary phases for liquid chromatography: Recent developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation sciences. Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors. TrAC Trends Anal. Chem. 2019, 119, 115628. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends Anal. Chem. 2019, 120, 115639. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Chiral Separations; Springer: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Peluso, P.; Chankvetadze, B. Recognition in the domain of molecular chirality: From noncovalent interactions to separation of enantiomers. Chem. Rev. 2022, 122, 13235–13400. [Google Scholar] [CrossRef]
- Mangelings, D.; Eeltink, S.; Vander Heyden, Y. Recent developments in liquid and supercritical fluid chromatographic enantioseparations. In Handbook of Analytical Separations; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Armstrong, D.W.; Wolosker, H.; Zheng, Y. Detection and analysis of chiral molecules as disease biomarkers. Nat. Rev. Chem. 2023, 7, 355–373. [Google Scholar] [CrossRef]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. TrAC Trends Anal. Chem. 2021, 143, 116332. [Google Scholar] [CrossRef]
- Török, G.; Péter, A.; Armstrong, D.W.; Tourwé, D.; Tóth, G.; Sápi, J. Direct chiral separation of unnatural amino acids by high-performance liquid chromatography on a ristocetin A-bonded stationary phase. Chirality 2001, 13, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Péter, A.; Török, G.; Armstrong, D.W.; Tóth, G.; Tourwé, D. High-performance liquid chromatographic separation of enantiomers of synthetic amino acids on a ristocetin A chiral stationary phase. J. Chromatogr. A 2000, 904, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Péter, A.; Török, G.; Armstrong, D.W. High-performance liquid chromatographic separation of enantiomers of unusual amino acids on a teicoplanin chiral stationary phase. J. Chromatogr. A 1998, 793, 283–296. [Google Scholar] [CrossRef]
- Karongo, R.; Horak, J.; Lämmerhofer, M. Comprehensive online reversed-phase × chiral two-dimensional liquid chromatography-mass spectrometry with data-independent sequential window acquisition of all theoretical fragment-ion spectra-acquisition for untargeted enantioselective amino acid analysi. Anal. Chem. 2022, 94, 17063–17072. [Google Scholar] [CrossRef]
- Karongo, R.; Horak, J.; Lämmerhofer, M. Comprehensive reversed-phase×chiral two-dimensional liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with post-first dimension flow splitting for untargeted enantioselective amino acid analysis. J. Sep. Sci. 2023, 46, e2300351. [Google Scholar] [CrossRef]
- Karongo, R.; Ge, M.; Geibel, C.; Horak, J.; Lämmerhofer, M. Enantioselective multiple heart cutting online two-dimensional liquid chromatography-mass spectrometry of all proteinogenic amino acids with second dimension chiral separations in one-minute time scales on a chiral tandem column. Anal. Chim. Acta 2021, 1180, 338858. [Google Scholar] [CrossRef]
- Jaag, S.J.; Valadbeigi, Y.; Causon, T.; Gross, H.; Lämmerhofer, M. Three-minute enantioselective amino acid analysis by ultra-high-performance liquid chromatography drift tube ion mobility-mass spectrometry using a chiral core–shell tandem column approach. Anal. Chem. 2024, 96, 2666–2675. [Google Scholar] [CrossRef]
- Ilisz, I.; Bajtai, A.; Lindner, W.; Péter, A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J. Pharm. Biomed. Anal. 2018, 159, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Varfaj, I.; Abualzulof, G.W.A.; Moretti, S.; Migni, A.; Uda, I.; Goracci, L.; Ianni, F.; Carotti, A.; Sardella, R. Development of an easy-to-set-up multiple heart-cutting achiral–chiral LC–LC method for the analysis of branched-chain amino acids in commercial tablets. Electrophoresis 2024, 45, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Varfaj, I.; Labikova, M.; Sardella, R.; Hettegger, H.; Lindner, W.; Kohout, M.; Carotti, A. A journey in unraveling the enantiorecognition mechanism of 3,5-dinitrobenzoyl-amino acids with two Cinchona alkaloid-based chiral stationary phases: The power of molecular dynamic simulations. Anal. Chim. Acta 2024, 1314, 342791. [Google Scholar] [CrossRef]
- Péter, A.; Török, G.; Tóth, G.; Lindner, W. Direct high-performance liquid chromatographic enantioseparation of β-methyl-substituted unusual amino acids on a quinine-derived chiral anion-exchange stationary phase. J. High Resolut. Chromatogr. 2000, 23, 628–636. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. (Eds.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Kopaciewicz, W.; Rounds, M.A.; Fausnaugh, J.; Regnier, F.E. Retention model for high-performance ion-exchange chromatography. J. Chromatogr. A 1983, 266, 3–21. [Google Scholar] [CrossRef]
- Sellergren, B.; Shea, K.J. Chiral ion-exchange chromatography. Correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J. Chromatogr. A 1993, 654, 17–28. [Google Scholar] [CrossRef]
- Ståhlberg, J. Retention models for ions in chromatography. J. Chromatogr. A 1999, 855, 3–55. [Google Scholar] [CrossRef]
- Lajkó, G.; Grecsó, N.; Megyesi, R.; Forró, E.; Fülöp, F.; Wolrab, D.; Lindner, W.; Péter, A.; Ilisz, I. Enantioseparation of ß-carboline derivatives on polysaccharide- and strong cation exchanger-based chiral stationary phases. A comparative study. J. Chromatogr. A 2016, 1467, 188–198. [Google Scholar] [CrossRef]
- Tanács, D.; Orosz, T.; Ilisz, I.; Péter, A.; Lindner, W. Unexpected effects of mobile phase solvents and additives on retention and resolution of N-acyl-D,L-leucine applying Cinchonane-based chiral ion exchangers. J. Chromatogr. A 2021, 1648, 462212. [Google Scholar] [CrossRef]
- Grecsó, N.; Forró, E.; Fülöp, F.; Péter, A.; Ilisz, I.; Lindner, W. Combinatorial effects of the configuration of the cationic and the anionic chiral subunits of four zwitterionic chiral stationary phases leading to reversal of elution order of cyclic β-amino acid enantiomers as ampholytic model compounds. J. Chromatogr. A 2016, 1467, 178–187. [Google Scholar] [CrossRef]
- Asnin, L.; Herciková, J.; Lindner, W.; Klimova, Y.; Ziganshina, D.; Reshetova, E.; Kohout, M. Chiral separation of dipeptides on Cinchona-based zwitterionic chiral stationary phases under buffer-free reversed-phase conditions. Chirality 2022, 34, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Allenmark, S.; Schurig, V. Chromatography on chiral stationary phases. J. Mater. Chem. 1997, 7, 1955–1963. [Google Scholar] [CrossRef]
- Špánik, I.; Krupčik, J.; Schurig, V. Comparison of two methods for the gas chromatographic determination of thermodynamic parameters of enantioselectivity. J. Chromatogr. A 1999, 843, 123–128. [Google Scholar] [CrossRef]
- Chester, T.L.; Coym, J.W. Effect of phase ratio on van’t Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy. J. Chromatogr. A 2003, 1003, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Asnin, L.D.; Stepanova, M.V. Van’t Hoff analysis in chiral chromatography. J. Sep. Sci. 2018, 41, 1319–1337. [Google Scholar] [CrossRef] [PubMed]
- Asnin, L.D.; Kopchenova, M.V.; Vozisov, S.E.; Klochkova, M.A.; Klimova, Y.A. Enantioselective retention mechanisms of dipeptides on antibiotic-based chiral stationary phases. II. Effect of the methanol content in the mobile phase. J. Chromatogr. A 2020, 1626, 461371. [Google Scholar] [CrossRef]
- Wolrab, D.; Frühauf, P.; Kohout, M.; Lindner, W. Click chemistry immobilization strategies in the development of strong cation exchanger chiral stationary phases for HPLC. J. Sep. Sci. 2013, 36, 2826–2837. [Google Scholar] [CrossRef]
- Grecsó, N.; Kohout, M.; Carotti, A.; Sardella, R.; Natalini, B.; Fülöp, F.; Lindner, W.; Péter, A.; Ilisz, I. Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds. J. Pharm. Biomed. Anal. 2016, 124, 164–173. [Google Scholar] [CrossRef]
- Hoffmann, C.V.; Reischl, R.; Maier, N.M.; Lämmerhofer, M.; Lindner, W. Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes. J. Chromatogr. A 2009, 1216, 1147–1156. [Google Scholar] [CrossRef]
- Tömböly, C.; Kövér, K.E.; Péter, A.; Tourwé, D.; Biyashev, D.; Benyhe, S.; Borsodi, A.; Al-Khrasani, M.; Rónai, A.Z.; Tóth, G. Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues. J. Med. Chem. 2004, 47, 735–743. [Google Scholar] [CrossRef]
- Tourwé, D.; Mannekens, E.; Diem, T.N.T.; Verheyden, P.; Jaspers, H.; Tóth, G.; Péter, A.; Kertész, I.; Török, G.; Chung, N.N.; et al. Side chain methyl substitution in the δ-opioid receptor antagonist TIPP has an important effect on the activity profile. J. Med. Chem. 1998, 41, 5167–5176. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Ioja, E.; Tömböly, C.; Ballet, S.; Tourwé, D.; Péter, A.; Martinek, T.; Schiller, P.W.; Benyhe, S.; Borsodi, A. β-Methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent δ opioid antagonists. J. Med. Chem. 2007, 50, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Schuda, P.F.; Greenlee, W.J.; Chakravarty, P.K.; Eskola, P. A short and efficient synthesis of (3S,4S)-4-[(tert-Butyloxycarbonyl)amino]-5-cyclohexyl-3-hydroxypentanoic acid ethyl ester. J. Org. Chem. 1988, 53, 873–875. [Google Scholar] [CrossRef]
- Shi, L.; Tao, C.; Yang, Q.; Liu, Y.E.; Chen, J.; Chen, J.; Tian, J.; Liu, F.; Li, B.; Du, Y.; et al. Chiral pyridoxal-catalyzed asymmetric biomimetic transamination of α-keto acids. Org. Lett. 2015, 17, 5784–5787. [Google Scholar] [CrossRef] [PubMed]
Analyte | Δ(ΔH0) (kJ mol−1) | Δ(ΔS0) (J mol−1 K−1) | Δ(ΔG0)298K (kJ mol−1) | |||
---|---|---|---|---|---|---|
a | b | a | b | a | b | |
a-1 | −1.59 ± 0.10 | −2.26 ± 0.13 | −2.74 ± 0.34 | −2.57 ± 0.42 | −0.77 ± 0.14 | −1.49 ± 0.18 |
s-1 | - | −1.14 ± 0.05 | - | −1.45 ± 0.15 | - | −0.71 ± 0.07 |
0-1 | −1.00 ± 0.03 | −1.99 ± 0.06 | −1.74 ± 0.11 | −3.51 ± 0.19 | −0.49 ± 0.05 | −0.95 ± 0.08 |
a-2 | −1.50 ± 0.09 | −2.09 ± 0.07 | −2.65 ± 0.28 | −2.60 ± 0.24 | −0.71 ± 0.12 | −1.32 ± 0.10 |
s-2 | −0.86 ± 0.04 | −0.98 ± 0.10 | −2.34 ± 0.13 | −0.99 ± 0.34 | −0.17 ± 0.06 | −0.68 ± 0.14 |
0-2 | −1.20 ± 0.10 | −2.06 ± 0.06 | −2.62 ± 0.34 | −3.81 ± 0.21 | −0.42 ± 0.15 | −0.93 ± 0.09 |
a-3 | −2.72 ± 0.27 | −2.67 ± 0.16 | −2.11 ± 0.86 | −1.23 ± 0.53 | −2.09 ± 0.37 | −2.30 ± 0.22 |
s-3 | - | −1.74 ± 0.10 | - | −4.19 ± 0.33 | - | −0.49 ± 0.14 |
0-3 | −1.26 ± 0.05 | −1.38 ± 0.15 | −1.57 ± 0.18 | −0.29 ± 0.50 | −0.79 ± 0.08 | −1.29 ± 0.21 |
a-4 | −1.56 ± 0.07 | −2.02 ± 0.17 | −3.19 ± 0.22 | −2.47 ± 0.56 | −0.61 ± 0.09 | −1.28 ± 0.24 |
s-4 | −1.31 ± 0.12 | −1.68 ± 0.05 | −2.38 ± 0.41 | −1.65 ± 0.18 | −0.60 ± 0.17 | −1.18 ± 0.08 |
0-4 | −1.37 ± 0.06 | −2.29 ± 0.10 | −2.57 ± 0.20 | −3.97 ± 0.31 | −0.61 ± 0.08 | −1.10 ± 0.13 |
Analyte | Δ(ΔH0) (kJ mol−1) | Δ(ΔS0) (J mol−1 K−1) | Δ(ΔG0)298K (kJ mol−1) | |||
---|---|---|---|---|---|---|
a | b | a | b | a | b | |
a-1 | −1.37 ± 0.08 | −1.65 ± 0.10 | −1.41 ± 0.28 | −0.28 ± 0.32 | −0.95 ± 0.12 | −1.56 ± 0.14 |
s-1 | - | - | - | - | - | - |
0-1 | −0.75 ± 0.13 | −1.03 ± 0.03 | −0.52 ± 0.45 | −0.45 ± 0.10 | −0.60 ± 0.19 | −0.89 ± 0.04 |
a-2 | −1.66 ± 0.18 | −1.53 ± 0.16 | −1.74 ± 0.58 | −0.21 ± 0.53 | −1.14 ± 0.25 | −1.47 ± 0.23 |
s-2 | −0.66 ± 0.05 | - | −0.69 ± 0.17 | - | −0.45 ± 0.07 | - |
0-2 | −1.30 ± 0.21 | −1.39 ± 0.14 | −2.43 ± 0.71 | −1.53 ± 0.48 | −0.58 ± 0.30 | −0.94 ± 0.20 |
a-3 | −1.91 ± 0.12 | −2.27 ± 0.16 | −1.82 ± 0.40 | −0.25 ± 0.55 | −1.36 ± 0.17 | −2.20 ± 0.23 |
s-3 | - | 1.22 ± 0.07 | - | 4.50 ± 0.22 | - | −0.12 ± 0.09 |
0-3 | −0.85 ± 0.09 | - | −0.38 ± 0.30 | - | −0.74 ± 0.13 | - |
a-4 | −1.20 ± 0.13 | −1.47 ± 0.09 | −1.34 ± 0.43 | −0.64 ± 0.30 | −0.80 ± 0.18 | −1.28 ± 0.13 |
s-4 | −1.04 ± 0.09 | −1.18 ± 0.13 | −1.44 ± 0.31 | −0.41 ± 0.44 | −0.61 ± 0.13 | −1.05 ± 0.19 |
0-4 | −0.97 ± 0.17 | −1.84 ± 0.12 | −1.01 ± 0.57 | −2.48 ± 0.41 | −0.67 ± 0.24 | −1.10 ± 0.17 |
Analyte | Q [Δ(ΔH0)/T × Δ(ΔS0)298K] | |||
---|---|---|---|---|
MeOH (100%, v) | MeOH/MeCN (50:50, v/v) | |||
a | b | a | b | |
a-1 | 2.0 | 3.0 | 3.3 | 19.5 |
s-1 | - | 2.6 | - | - |
0-1 | 1.9 | 1.9 | 4.8 | 7.7 |
a-2 | 1.9 | 2.7 | 3.2 | 24.9 |
s-2 | 1.2 | 3.3 | 3.2 | - |
0-2 | 1.5 | 1.8 | 1.8 | 3.1 |
a-3 | 4.3 | 7.3 | 3.5 | 31.0 |
s-3 | - | 1.4 | - | 0.9 |
0-3 | 2.7 | 16.0 | 7.5 | - |
a-4 | 1.6 | 2.7 | 3.0 | 7.7 |
s-4 | 1.8 | 3.4 | 2.4 | 9.6 |
0-4 | 1.9 | 1.9 | 3.2 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németi, G.; Berkecz, R.; Ozsvár, D.; Szakonyi, Z.; Lindner, W.; Misicka, A.; Tymecka, D.; Tóth, G.; Péter, A.; Ilisz, I. High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids. Int. J. Mol. Sci. 2025, 26, 4004. https://doi.org/10.3390/ijms26094004
Németi G, Berkecz R, Ozsvár D, Szakonyi Z, Lindner W, Misicka A, Tymecka D, Tóth G, Péter A, Ilisz I. High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids. International Journal of Molecular Sciences. 2025; 26(9):4004. https://doi.org/10.3390/ijms26094004
Chicago/Turabian StyleNémeti, Gábor, Róbert Berkecz, Dániel Ozsvár, Zsolt Szakonyi, Wolfgang Lindner, Aleksandra Misicka, Dagmara Tymecka, Géza Tóth, Antal Péter, and István Ilisz. 2025. "High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids" International Journal of Molecular Sciences 26, no. 9: 4004. https://doi.org/10.3390/ijms26094004
APA StyleNémeti, G., Berkecz, R., Ozsvár, D., Szakonyi, Z., Lindner, W., Misicka, A., Tymecka, D., Tóth, G., Péter, A., & Ilisz, I. (2025). High-Performance Liquid Chromatographic Separation of Stereoisomers of ß-Methyl-Substituted Unusual Amino Acids Utilizing Ion Exchangers Based on Cinchona Alkaloids. International Journal of Molecular Sciences, 26(9), 4004. https://doi.org/10.3390/ijms26094004