Glibenclamide Serves as a Potent Vasopressor to Treat Vasoplegia After Cardiopulmonary Bypass and Reperfusion in a Porcine Model
Abstract
:1. Introduction
2. Results
2.1. Hemodynamic Measurements
2.1.1. Control Group (CG)
2.1.2. Study Group (SG) vs. Control Group (CG)
2.2. Laboratory Testing
3. Discussion
4. Materials and Methods
4.1. Porcine Model of Prolonged Cardiopulmonary Bypass
- -
- control group using norepinephrine only (CG)
- -
- study group using norepinephrine and Glibenclamide (SG)
4.2. Experimental Setup
4.3. Hemodynamic Data
4.4. Laboratory Data
4.5. Statistical Analysis
4.6. Hematocrit (HCT) Correction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Aortic cross-clamping |
ATP | Adenosine triphosphate |
BSA | Body surface area |
CG | Control group |
CI | Cardiac index |
CPB | Cardiopulmonary Bypass |
CVP | Central venous pressure |
HCT | Hematocrit |
HR | Heartrate |
KATP | ATP-sensitive potassium channel |
MAP | Mean arterial pressure |
SG | Study group |
SVRI | Systemic vascular resistance index |
VS | Vasoplegic syndrome |
References
- Lambden, S.; Creagh-Brown, B.C.; Hunt, J.; Summers, C.; Forni, L.G. Definitions and Pathophysiology of Vasoplegic Shock. Crit. Care 2018, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, R.J.; Wong, N.; Liu, D.H.; Chua, C.; William, J.; Tee, S.L.; Sata, Y.; Bergin, P.; Hare, J.; Leet, A.; et al. Vasoplegia Following Orthotopic Heart Transplantation: Prevalence, Predictors and Clinical Outcomes. J. Card. Fail. 2021, 28, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Gomes, W.J.; Carvalho, A.C.; Palma, J.H.; Gonçalves, I.; Buffolo, E. Vasoplegic Syndrome: A New Dilemma. J. Thorac. Cardiovasc. Surg. 1994, 107, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Schläpfer, M.; Piegeler, T.; Dull, R.O.; Schwartz, D.E.; Mao, M.; Bonini, M.G.; Z’Graggen, B.R.; Beck-Schimmer, B.; Minshall, R.D. Propofol Increases Morbidity and Mortality in a Rat Model of Sepsis. Crit. Care 2015, 19, 45. [Google Scholar] [CrossRef]
- Van Vessem, M.E.; Palmen, M.; Couperus, L.E.; Mertens, B.; Berendsen, R.R.; Tops, L.F.; Verwey, H.F.; de Jonge, E.; Klautz, R.J.M.; Schalij, M.J.; et al. Incidence and Predictors of Vasoplegia after Heart Failure Surgery. Eur. J. Cardio-Thorac. Surg. 2017, 51, 532–538. [Google Scholar] [CrossRef]
- Polyak, P.; Kwak, J.; Kertai, M.D.; Anton, J.M.; Assaad, S.; Dacosta, M.E.; Dimitrova, G.; Gao, W.D.; Henderson, R.A.; Hollon, M.M.; et al. Vasoplegic Syndrome in Cardiac Surgery: A Narrative Review of Etiologic Mechanisms and Therapeutic Options. J. Cardiothorac. Vasc. Anesth. 2025, in press. [Google Scholar] [CrossRef]
- Torrez, J.P.; Otsuki, D.A.; Zeferino, S.P.; Sanchez, A.F.; Auler, J.O.C. Vasoplegic Syndrome Following Bypass: A Comprehensive Review of Pathophysiology and Proposed Treatments. Cureus 2025, 17, e78057. [Google Scholar] [CrossRef]
- Datt, V.; Wadhhwa, R.; Sharma, V.; Virmani, S.; Minhas, H.S.; Malik, S. Vasoplegic Syndrome after Cardiovascular Surgery: A Review of Pathophysiology and Outcome-Oriented Therapeutic Management. J. Card. Surg. 2021, 36, 3749–3760. [Google Scholar] [CrossRef]
- Jha, R.M.; Bell, J.; Citerio, G.; Hemphill, J.C.; Kimberly, W.T.; Narayan, R.K.; Sahuquillo, J.; Sheth, K.N.; Simard, J.M. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int. J. Mol. Sci. 2020, 21, 409. [Google Scholar] [CrossRef]
- Kimberly, W.T.; Bevers, M.B.; von Kummer, R.; Demchuk, A.M.; Romero, J.M.; Elm, J.J.; Hinson, H.E.; Molyneaux, B.J.; Simard, J.M.; Sheth, K.N. Effect of IV Glyburide on Adjudicated Edema Endpoints in the GAMES-RP Trial. Neurology 2018, 91, e2163–e2169. [Google Scholar] [CrossRef]
- Sheth, K.N.; Albers, G.W.; Saver, J.L.; Campbell, B.C.V.; Molyneaux, B.J.; Hinson, H.E.; Cordonnier, C.; Steiner, T.; Toyoda, K.; Wintermark, M.; et al. Intravenous Glibenclamide for Cerebral Oedema after Large Hemispheric Stroke (CHARM): A Phase 3, Double-Blind, Placebo-Controlled, Randomised Trial. Lancet Neurol. 2024, 23, 1205–1213. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Huang, X.; Xiu, H.; Bai, S.; Li, J.; Cai, Z.; Chen, Z.; Zhang, S.; Zhang, G. Glibenclamide Alleviates LPS-Induced Acute Lung Injury through NLRP3 Inflammasome Signaling Pathway. Mediat. Inflamm. 2022, 2022, 8457010. [Google Scholar] [CrossRef]
- Morelli, A.; Lange, M.; Ertmer, C.; Broeking, K.; Van Aken, H.; Orecchioni, A.; Rocco, M.; Bachetoni, A.; Traber, D.L.; Landoni, G.; et al. Glibenclamide Dose Response in Patients with Septic Shock: Effects on Norepinephrine Requirements, Cardiopulmonary Performance, and Global Oxygen Transport. Shock 2007, 28, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Vanelli, G.; Hussain, S.; Aguggini, G. Glibenclamide, a Blocker of ATP-Sensitive Potassium Channels, Reverses Endotoxin-Induced Hypotension in Pig. Exp. Physiol. 1995, 80, 167–170. [Google Scholar] [CrossRef]
- Hajjar, L.A.; Vincent, J.L.; Barbosa Gomes Galas, F.R.; Rhodes, A.; Landoni, G.; Osawa, E.A.; Melo, R.R.; Sundin, M.R.; Grande, S.M.; Gaiotto, F.A.; et al. Vasopressin versus Norepinephrine in Patients with Vasoplegic Shock after Cardiac Surgery: The VANCS Randomized Controlled Trial. Anesthesiology 2017, 126, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.L.; Degrange, M.A.; Bruno, G.F.; Del Mazo, C.D.; Taborda, D.J.; Griotti, J.J.; Boullon, F.J. Methylene Blue Reduces Mortality and Morbidity in Vasoplegic Patients after Cardiac Surgery. Ann. Thorac. Surg. 2004, 77, 496–499. [Google Scholar] [CrossRef]
- Omar, S.; Zedan, A.; Nugent, K. Cardiac Vasoplegia Syndrome: Pathophysiology, Risk Factors and Treatment. Am. J. Med. Sci. 2015, 349, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.; Salzman, A.L. Inhibition of ATP-activated potassium channels exerts pressor effects and improves survival in a rat model of severe hemorrhagic shock. Shock 1996, 5, 391–394. [Google Scholar] [CrossRef]
- Rogers, H.J.; Spector, R.G.; Morrison, P.J.; Bradbrook, I.D. Pharmacokinetics of Intravenous Glibenclamide Investigated by a High Performance Liquid Chromatographic Assay. Diabetologia 1982, 23, 37–40. [Google Scholar] [CrossRef]
- Musser, J.B.; Bentley, T.B.; Griffith, S.; Sharma, P.; Karaian, J.E.; Mongan, P.D. Hemorrhagic Shock in Swine: Nitric Oxide and Potassium Sensitive Adenosine Triphosphate Channel Activation. Anesthesiology 2004, 101, 399–408. [Google Scholar] [CrossRef]
- Engbersen, R.; Masereeuw, R.; van Gestel, M.A.; van der Logt, E.M.J.; Smits, P.; Russel, F.G.M. Glibenclamide depletes ATP in renal proximal tubular cells by interfering with mitochondrial metabolism. Br. J. Pharmacol. 2005, 145, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Salani, B.; Ravera, S.; Fabbi, P.; Garibaldi, S.; Passalacqua, M.; Brunelli, C.; Maggi, D.; Cordera, R.; Ameri, P. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells. Cell Physiol. Biochem. 2017, 43, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Quantikine® ELISA Porcine TNF-α Immunoassay. Available online: https://resources.rndsystems.com/pdfs/datasheets/pta00.pdf?v=20230306&_ga=2.135862577.1033198956.1678132368-417212213.1678132368 (accessed on 6 March 2023).
- Itoh, T.; Kawabe, M.; Nagase, T.; Endo, K.; Miyoshi, M.; Miyahara, K. Body surface area measurement in laboratory miniature pigs using a computed tomography scanner. J. Toxicol. Sci. 2016, 41, 637–644. [Google Scholar] [CrossRef]
- Schmid, E.; Krajewski, S.; Bachmann, D.; Kurz, J.; Wendel, H.P.; Rosenberger, P.; Balkau, B.; Peter, K.; Unertl, K.; Straub, A. The Volatile Anesthetic Sevoflurane Inhibits Activation of Neutrophil Granulocytes during Simulated Extracorporeal Circulation. Int. Immunopharmacol. 2012, 14, 202–208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, A.; Nepper, P.; Hermann, M.; Bayer, F.; Riess, S.; Salem, R.; Hlavicka, J.; Prinzing, A.; Hecker, F.; Holubec, T.; et al. Glibenclamide Serves as a Potent Vasopressor to Treat Vasoplegia After Cardiopulmonary Bypass and Reperfusion in a Porcine Model. Int. J. Mol. Sci. 2025, 26, 4040. https://doi.org/10.3390/ijms26094040
Winter A, Nepper P, Hermann M, Bayer F, Riess S, Salem R, Hlavicka J, Prinzing A, Hecker F, Holubec T, et al. Glibenclamide Serves as a Potent Vasopressor to Treat Vasoplegia After Cardiopulmonary Bypass and Reperfusion in a Porcine Model. International Journal of Molecular Sciences. 2025; 26(9):4040. https://doi.org/10.3390/ijms26094040
Chicago/Turabian StyleWinter, Andreas, Pascal Nepper, Marcus Hermann, Franziska Bayer, Stephanie Riess, Razan Salem, Jan Hlavicka, Anatol Prinzing, Florian Hecker, Tomas Holubec, and et al. 2025. "Glibenclamide Serves as a Potent Vasopressor to Treat Vasoplegia After Cardiopulmonary Bypass and Reperfusion in a Porcine Model" International Journal of Molecular Sciences 26, no. 9: 4040. https://doi.org/10.3390/ijms26094040
APA StyleWinter, A., Nepper, P., Hermann, M., Bayer, F., Riess, S., Salem, R., Hlavicka, J., Prinzing, A., Hecker, F., Holubec, T., Zacharowski, K., Walther, T., & Emrich, F. (2025). Glibenclamide Serves as a Potent Vasopressor to Treat Vasoplegia After Cardiopulmonary Bypass and Reperfusion in a Porcine Model. International Journal of Molecular Sciences, 26(9), 4040. https://doi.org/10.3390/ijms26094040