Molecular Mechanisms Involved in Sperm Development, Maturation, and Fertilization
Conflicts of Interest
References
- Jumeau, F.; Rives, N.; Lechevallier, P.; Boniou, C.; Letailleur, M.; Réal-Lhommet, A.; Feraille, A. Sperm Chromatin Condensation Defect Accelerates the Kinetics of Early Embryonic Development but Does Not Modify ICSI Outcome. Int. J. Mol. Sci. 2023, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- Agudo-Rios, C.; Sanchez-Rodriguez, A.; Idrovo, I.I.D.; Laborda-Gomariz, J.Á.; Soler, A.J.; Teves, M.E.; Roldan, E.R.S. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int. J. Mol. Sci. 2023, 24, 15954. [Google Scholar] [CrossRef] [PubMed]
- Amor, H.; Juhasz-Böss, I.; Bibi, R.; Hammadeh, M.E.; Jankowski, P.M. H2BFWT Variations in Sperm DNA and Its Correlation to Pregnancy. Int. J. Mol. Sci. 2024, 25, 6048. [Google Scholar] [CrossRef] [PubMed]
- Podgrajsek, R.; Bolha, L.; Pungert, T.; Pizem, J.; Jazbec, K.; Malicev, E.; Stimpfel, M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and MiRNA Expression. Int. J. Mol. Sci. 2024, 25, 4157. [Google Scholar] [CrossRef]
- Muñoz, E.; Castro, M.; Aguila, L.; Contreras, M.J.; Fuentes, F.; Arias, M.E.; Felmer, R. Standardization of a Sex-Sorting Protocol for Stallion Spermatozoa by Means of Absolute RT-QPCR. Int. J. Mol. Sci. 2023, 24, 11947. [Google Scholar] [CrossRef]
- Silva, J.V.; Santiago, J.; Matos, B.; Henriques, M.C.; Patrício, D.; Martins, A.D.; Duarte, J.A.; Ferreira, R.; Alves, M.G.; Oliveira, P.; et al. Effects of Age and Lifelong Moderate-Intensity Exercise Training on Rats’ Testicular Function. Int. J. Mol. Sci. 2022, 23, 11619. [Google Scholar] [CrossRef]
- Jorban, A.; Lunenfeld, E.; Huleihel, M. Effect of Temperature on the Development of Stages of Spermatogenesis and the Functionality of Sertoli Cells In Vitro. Int. J. Mol. Sci. 2024, 25, 2160. [Google Scholar] [CrossRef]
- Balló, A.; Czétány, P.; Busznyákné, K.S.; Márk, L.; Mike, N.; Török, A.; Szántó, Á.; Máté, G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int. J. Mol. Sci. 2023, 24, 11981. [Google Scholar] [CrossRef]
- Lee, H.; You, S.Y.; Han, D.W.; La, H.; Park, C.; Yoo, S.; Kang, K.; Kang, M.H.; Choi, Y.; Hong, K. Dynamic Change of R-Loop Implicates in the Regulation of Zygotic Genome Activation in Mouse. Int. J. Mol. Sci. 2022, 23, 14345. [Google Scholar] [CrossRef]
- Ali, N.; Lunenfeld, E.; Huleihel, M. Effect of IL-1β on the Development of Spermatogenesis In Vitro in Normal and Busulfan-Treated Immature Mice. Int. J. Mol. Sci. 2024, 25, 4926. [Google Scholar] [CrossRef]
- Cormier, N.; Worsham, A.E.; Rich, K.A.; Hardy, D.M. SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization. Int. J. Mol. Sci. 2024, 25, 3652. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, N.E.H.; Ialy-Radio, C.; Denizot, A.L.; Lagoutte, I.; Frolikova, M.; Komrskova, K.; Barbaux, S.; Ziyyat, A. Fertilization, but Not Post-Implantation Development, Can Occur in the Absence of Sperm and Oocyte Beta1 Integrin in Mice. Int. J. Mol. Sci. 2022, 23, 13812. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, B.; Yu, K.; Zheng, N.; Yuan, F.; Miao, J.; Zhang, M.; Wang, Z. The Mature COC Promotes the Ampullary NPPC Required for Sperm Release from Porcine Oviduct Cells. Int. J. Mol. Sci. 2023, 24, 3118. [Google Scholar] [CrossRef]
- Fukuoka, M.; Kang, W.; Katano, D.; Horiike, S.; Miyado, M.; Tanaka, M.; Miyado, K.; Yamada, M. Overdue Calcium Oscillation Causes Polyspermy but Possibly Permits Normal Development in Mouse Eggs. Int. J. Mol. Sci. 2024, 25, 285. [Google Scholar] [CrossRef] [PubMed]
- Tortora, F.; Guerrera, V.; Lettieri, G.; Febbraio, F.; Piscopo, M. Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo. Int. J. Mol. Sci. 2024, 25, 5790. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; del Rey, J.; Closa, L.; Garcia-Martínez, I.; Hobeich, C.; Castel, A.B.; Vidal, F.; Benet, J.; Oliver-Bonet, M. Characterization of Seminal Microbiome of Infertile Idiopathic Patients Using Third-Generation Sequencing Platform. Int. J. Mol. Sci. 2023, 24, 7867. [Google Scholar] [CrossRef]
- Cannarella, R.; Crafa, A.; Barbagallo, F.; Lundy, S.D.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. H19 Sperm Methylation in Male Infertility: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 7224. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Santiago, J.; Silva, J.V.; Oliveira, P.F.; Fardilha, M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int. J. Mol. Sci. 2022, 23, 15235. [Google Scholar] [CrossRef]
- Arowolo, O.; Pilsner, J.R.; Sergeyev, O.; Suvorov, A. Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int. J. Mol. Sci. 2022, 23, 14229. [Google Scholar] [CrossRef]
- Orosz, F. The Role of Tubulin Polymerization-Promoting Protein2 (TPPP2) in Spermatogenesis: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 7017. [Google Scholar] [CrossRef]
- Kwaspen, L.; Kanbar, M.; Wyns, C. Mapping the Development of Human Spermatogenesis Using Transcriptomics-Based Data: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 6925. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Mendoza-Tesarik, R. Cyclic Adenosine Monophosphate: A Central Player in Gamete Development and Fertilization, and Possible Target for Infertility Therapies. Int. J. Mol. Sci. 2022, 23, 15068. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Rodríguez, M.; Catalán, J. Molecular Mechanisms Involved in Sperm Development, Maturation, and Fertilization. Int. J. Mol. Sci. 2025, 26, 4049. https://doi.org/10.3390/ijms26094049
Álvarez-Rodríguez M, Catalán J. Molecular Mechanisms Involved in Sperm Development, Maturation, and Fertilization. International Journal of Molecular Sciences. 2025; 26(9):4049. https://doi.org/10.3390/ijms26094049
Chicago/Turabian StyleÁlvarez-Rodríguez, Manuel, and Jaime Catalán. 2025. "Molecular Mechanisms Involved in Sperm Development, Maturation, and Fertilization" International Journal of Molecular Sciences 26, no. 9: 4049. https://doi.org/10.3390/ijms26094049
APA StyleÁlvarez-Rodríguez, M., & Catalán, J. (2025). Molecular Mechanisms Involved in Sperm Development, Maturation, and Fertilization. International Journal of Molecular Sciences, 26(9), 4049. https://doi.org/10.3390/ijms26094049