Development of PVC Dispensers for Long-Lasting Release of Attractants for the Control of Invasive Crayfish Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Collection and Rearing Conditions
2.2. Preparation of the PVC Substrate
2.3. Chemical Attractants
2.4. Crayfish Bioassay and Supply Protocols of PVC/Attractant Dispensers
- (1)
- In the experiments aimed at evaluating the attractive effectiveness of the PVC/food dispensers over time, dispensers of a same group were repeatedly supplied to the crayfish for 60 days, typically every 3–4 days. In order to ascertain if the attractive degree of the PVC/food dispensers might be storage-dependent, dispensers were divided into three different groups and, when not in use in the experimental tank, were stored under three different conditions for the entire duration of the trial: (1a) out of the water at 23 °C, (1b) out of the water at −20 °C and (1c) underwater, in a separate tank (volume: 4 L) at 23 °C. The last storage modality represents the most reliable and normal condition of use of the dispenser. Each of the 15 crayfish tested (Eight females and seven males) were repeatedly exposed to dispensers from each of the three different storage modalities, until the dispensers became unattractive. In addition to the attractiveness evaluation, we also considered the time the crayfish spent on the dispensers (two time options: less or more than 10 s) as a further index of its attractive strength.
- (2)
- In the experiments aimed at ascertaining the attractiveness of trehalose, leucine and taurocholic acid in PVC, 25 crayfish (14 females and 11 males) were exposed to the compounds, supplied in random order. Each crayfish was supplied with each chemical only once. Also in this case, in addition to the evaluation of the attractiveness, we also considered the time the crayfish spent on the dispensers (two time options: less or more than 10 s) and the time it took the crayfish to find the dispensers (two time options: less or more than 5 min) as additional parameters defining their attractive strength.
2.5. Statistical Analysis
3. Results
3.1. Evaluation of PVC Effectiveness for Prolonged Release of Food as Crayfish Attractant over Time
3.2. Attractiveness of Trehalose, Leucine and Taurocholic Acid Incorporated in the PVC Dispensers
4. Discussion
4.1. Evaluation of PVC Effectiveness for Long-Lasting Release of Food as Crayfish Attractant over Time
4.2. Attractiveness of Trehalose, Leucine and Taurocholic Acid Incorporated in the PVC Dispensers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pysek, P.; Kuhn, I.; Zobel, M.; Bacher, S.; Botta-Dukat, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef]
- Mainka, S.A.; Howard, G.W. Climate change and invasive species: Double jeopardy. Integr. Zool. 2010, 5, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Sala, O.E.; Chapin, F.S., III; Armesto, J.J. Biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Lodge, D.M.; Deines, A.; Gherardi, F.; Yeo, D.C.J.; Arcella, T.; Baldridge, A.K.; Barnes, M.A.; Lindsay Chadderton, W.; Feder, J.L.; Gantz, C.A.; et al. Global introductions of crayfishes: Evaluating the impact of species invasions on ecosystem services. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 449–472. [Google Scholar] [CrossRef]
- Genovesi, P.; Carboneras, C.; Vilà, M.; Walton, P. EU adopts innovative legislation on invasive species: A step towards a global response to biological invasions? Biol. Invasions 2015, 17, 1307–1311. [Google Scholar] [CrossRef]
- Gherardi, F.; Aquiloni, L.; Dieguez-Uribeondo, J.; Tricarico, E. Managing invasive crayfish: Is there a hope? Aquat. Sci. 2011, 73, 185–200. [Google Scholar] [CrossRef]
- Twarlochleb, L.A.; Olden, J.D.; Larson, E.R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 2013, 32, 1367–1382. [Google Scholar] [CrossRef]
- Alcorlo, P.; Geiger, W.; Otero, M. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitats differing in food item diversity. Crustaceana 2004, 77, 435–453. [Google Scholar]
- Gherardi, F. Crayfish invading Europe: The case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 2006, 39, 175–191. [Google Scholar] [CrossRef]
- Gherardi, F.; Acquistapace, P. Invasive crayfish in Europe: The impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshw. Biol. 2007, 52, 1249–1259. [Google Scholar] [CrossRef]
- Chucholl, C.; Wendler, F. Positive selection of beautiful invaders: Long-term persistence and bio-invasion risk of freshwater crayfish in the pet trade. Biol. Invasions 2016, 19, 197–2018. [Google Scholar] [CrossRef]
- Souty-Grosset, C.; Anastácio, M.P.; Aquiloni, L.; Banha, F.; Choquer, J.; Chucholl, C.; Tricarico, E. The red swamp crayfish Procambarus clarkii in Europe: Impacts on aquatic ecosystems and human well-being. Limnologica 2016, 58, 78–93. [Google Scholar] [CrossRef]
- Peiró, D.; Almerão, M.; Delaunay, C.; Jussila, J.; Makkonen, J.; Bouchon, D.; Araujo, P.; Souty-Grosset, C. First detection of the crayfish plague pathogen Aphanomyces astaci in South America: A high potential risk to native crayfish. Hydrobiologia 2016, 781, 181–190. [Google Scholar] [CrossRef]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.P.; Lodge, D.M.; Finnoff, D.C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. USA 2007, 104, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Alonso, F. Efficiency of electrofishing as a sampling method for freshwater crayfish populations in small creeks. Limnetica 2001, 20, 59–72. [Google Scholar]
- Beecher, L.E.; Romaire, R.P. Evaluation of baits for harvesting Procambarid crawfishes with emphasis on bait type and bait quantity. J. Shellfish Res. 2010, 29, 13–18. [Google Scholar] [CrossRef]
- Piazza, F.; Aquiloni, L.; Manfrin, C.; Simi, S.; Duse Masin, M.; Florian, F.; Marson, L.; Peruzza, L.; Borgogna, M.; Paoletti, S.; et al. Development of methods for the containment and the capture of P. Clarkii. RARITY. Eradicate Invasive Louisiana Red Swamp and Preserve Native White Clawed Crayfish in Friuli Venezia Giulia. 2014. Available online: http://docplayer.it/10467015-Rarity-team-coordinator-etp-ente-tutela-pesca-del-friuli-venezia-giulia.html (accessed on 6 December 2018).
- Aquiloni, L.; Brusconi, S.; Cecchinelli, E.; Tricarico, E.; Mazza, G.; Paglianti, A.; Gherardi, F. Biological control of invasive populations of crayfish: The European eel (Anguilla anguilla) as a predator of Procambarus clarkii. Biol. Invasions 2010, 12, 3817–3824. [Google Scholar] [CrossRef]
- Stebbing, P.D.; Bentley, M.G.; Watson, G.J. Mating behaviour and evidence for a female released courtship pheromone in the signal crayfish Pacifastacus leniusculus. J. Chem. Ecol. 2003, 29, 465–475. [Google Scholar] [CrossRef]
- Aquiloni, L.; Gherardi, F. The use of sex pheromones for the control of invasive populations of the crayfish Procambarus clarkii: A field study. Hydrobiologia 2010, 649, 249–254. [Google Scholar] [CrossRef]
- Peay, S.; Hiley, P.D.; Collen, P.; Martin, I. Biocide treatment of ponds in Scotland to eradicate signal crayfish. Bull. Fr. Peche Piscic. 2006, 380–381, 1363–1379. [Google Scholar] [CrossRef]
- Chang, V.C.S.; Lange, V.H. Laboratory and field evaluation of selected pesticides for control of the red crayfish in California rice fields. J. Econ. Entomol. 1967, 60, 473–477. [Google Scholar] [CrossRef]
- Grasso, F.W.; Basil, J.A. How lobsters, crayfishes, and crabs locate sources of odor: Current perspectives and future directions. Curr. Opin. Neurobiol. 2002, 12, 721–727. [Google Scholar] [CrossRef]
- Bergman, D.A.; Moore, P.A. The role of chemical signals in the social behavior of crayfish. Chem. Senses 2005, 30, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Aquiloni, L.; Massolo, A.; Gherardi, F. Sex identification in female crayfish is bimodal. Naturwissenschaften 2009, 96, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Berry, F.C.; Breithaupt, T. To signal or not to signal? Chemical communication by urine-borne signals mirrors sexual conflict in crayfish. BMC Biol. 2010, 8, 25. [Google Scholar] [CrossRef]
- Breithaupt, T. Chemical communication in crayfish. In Chemical Communication in Crustaceans, 1st ed.; Breithaupt, T., Thiel, M., Eds.; Sprinter: New York, NY, USA, 2011; pp. 257–276. [Google Scholar]
- Schmidt, M.; Mellon, D. Neuronal processing of chemical information in crustaceans. In Chemical Communication in Crustaceans, 1st ed.; Breithaupt, T., Thiel, M., Eds.; Sprinter: New York, NY, USA, 2011; pp. 123–147. [Google Scholar]
- Sollai, G.; Solari, P.; Corda, V.; Masala, C.; Crnjar, R. The spike generator in the labellar taste receptors of the blowfly is differently affected by 4-aminopyridine and 5-hydroxytryptamine. J. Insect Physiol. 2012, 58, 1686–1693. [Google Scholar] [CrossRef]
- Solari, P.; Stoffolano, J.G., Jr.; Fitzpatrick, J.; Gelperin, A.; Thomson, A.; Talani, G.; Sanna, E.; Liscia, A. Regulatory mechanisms and the role of calcium and potassium channels controlling supercontractile crop muscles in adult Phormia regina. J. Insect Physiol. 2013, 59, 942–952. [Google Scholar] [CrossRef]
- Solari, P.; Sollai, G.; Masala, C.; Loy, F.; Palmas, F.; Sabatini, A.; Crnjar, R. Antennular morphology and contribution of aesthetascs in the detection of food-related compounds in the shrimp Palaemon adspersus Rathke, 1837 (Decapoda: Palaemonidae). Biol. Bull. 2017, 232, 110–122. [Google Scholar] [CrossRef]
- Sanders, C. Release rates and attraction of pvc lures containing synthetic sex attractant of the spruce budworm, Choristoneura fumiferana (LEPIDOPTERA: TORTRICIDAE). Can. Entomol. 1981, 113, 103–111. [Google Scholar] [CrossRef]
- Hendricks, D.E.; Shaver, T.N.; Goodenough, J.L. Development and bioassay of molded polyvinyl chloride substrates for dispensing tobacco budworm (Lepidoptera: Noctuidae) sex pheromone bait formulations. Environ. Entomol. 1987, 16, 605–613. [Google Scholar] [CrossRef]
- Fitzpatrick, S.M.; Troubridge, J.T.; Maurice, C. Pheromone released from polyvinyl chloride dispensers disrupts mate-finding and pheromone-source location by Rhopobota naevana (Lepidoptera: Tortricidae) in cranberries. Can. Entomol. 2004, 136, 91–108. [Google Scholar] [CrossRef]
- Cork, A.; De Souza, K.; Hall, D.R.; Jones, O.T.; Casagrande, E.; Krishnaiah, K.; Syed, Z. Development of PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer, Scirpophaga incertulas. Crop Prot. 2008, 27, 248–255. [Google Scholar] [CrossRef]
- Bauer, U.; Dudel, J.; Hatt, H. Characteristics of single chemoreceptive units sensitive to amino acids and related substances in the crayfish leg. J. Comp. Physiol. 1981, 144, 67–74. [Google Scholar] [CrossRef]
- Tierney, A.J.; Atema, J. Behavioral responses of crayfish (Orconectes virilis and Orconectes rusticus) to chemical feeding stimulants. J. Chem. Ecol. 1988, 14, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Brown, S.B.; Hara, T.J. Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals. J. Comp. Physiol. B 2001, 171, 161–171. [Google Scholar] [CrossRef]
- Corotto, F.S.; O’Brien, M.R. Chemosensory stimuli for the walking legs of the crayfish Procambarus clarkii. J. Chem. Ecol. 2002, 28, 1117–1130. [Google Scholar] [CrossRef]
- Corotto, F.S.; McKelvey, M.J.; Parvin, E.A.; Rogers, J.L.; Williams, J.M. Behavioral responses of the crayfish Procambarus clarkii to single chemosensory stimuli. J. Crustac. Biol. 2007, 27, 24–29. [Google Scholar] [CrossRef]
- Martinovic-Weigelt, D.; Ekman, D.R.; Villeneuve, D.L.; James, C.M.; Teng, Q.; Collette, T.W.; Ankley, G.T. Fishy aroma of social status: Urinary chemo-signalling of territoriality in male fathead minnows (Pimephales promelas). PLoS ONE 2012, 7, e46579. [Google Scholar] [CrossRef]
- Solari, P.; Melis, M.; Sollai, G.; Masala, C.; Palmas, F.; Sabatini, A.; Crnjar, R. Sensing with the legs: Contribution of pereiopods in the detection of food-related compounds in the red swamp crayfish Procambarus clarkii. J. Crustac. Biol. 2015, 35, 81–87. [Google Scholar] [CrossRef]
- Kreider, J.L.; Watts, S.A. Behavioral (feeding) responses of the crayfish, Procambarus clarkii, to natural dietary items and common components of formulated crustacean feeds. J. Chem. Ecol. 1998, 24, 91–111. [Google Scholar] [CrossRef]
- Sollai, G.; Tomassini Barbarossa, I.; Solari, P.; Crnjar, R. Taste discriminating capability to different bitter compounds by the larval styloconic sensilla in the insect herbivore Papilio hospiton (Gene). J. Insect Physiol. 2015, 74, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Biolchini, M.; Solari, P.; Crnjar, R. Chemosensory basis of larval performance of Papilio hospiton on different host plants. J. Insect Physiol. 2017, 99, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, B.A.; Mastro, V.C.; Devilbiss, E.D. New dispenser for the pheromone of the gypsy moth (Lepidoptera: Lymantriidae). J. Econ. Entomol. 1993, 86, 821–827. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Suckling, D.M.; Wearing, C.H.; Byers, J.A. Potential of mass trapping for long term pest management and eradication of invasive species. J. Econ. Entomol. 2006, 99, 1550–1564. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.C. Insect pheromones: Useful lessons for crystacean pheromone programs? In Chemical Communication in Crustaceans, 1st ed.; Breithaupt, T., Thiel, M., Eds.; Sprinter: New York, NY, USA, 2011; pp. 531–550. [Google Scholar]
- Sollai, G.; Murgia, S.; Secci, F.; Frongia, A.; Cerboneschi, A.; Masala, C.; Liscia, A.; Crnjar, R.; Solari, P. A pheromone analogue affects the evaporation rate of (+)-disparlure in Lymantria dispar. Pest Manag. Sci. 2014, 70, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Solari, P.; Crnjar, R. Olfactory sensitivity to major, intermediate and trace components of sex pheromone in Ceratitis capitata is related to mating and circadian rhythm. J. Insect Physiol. 2018, 110, 23–33. [Google Scholar] [CrossRef]
- Momot, W.T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. 1995, 3, 33–63. [Google Scholar] [CrossRef]
- Holdich, D.M. Biology of Freshwater Crayfish; Blackwell Science: Ames, IA, USA, 2002; p. 702. [Google Scholar]
- Smart, A.C.; Harper, D.M.; Malaisse, F.; Schmitz, S.; Coley, S.; De Beauregard., A.C.G. Feeling of the exotic Louisiana red swamp crayfish, Procambarus clarkii (Crustacea, Decapoda), in an African tropical lake: Lake Naivasha, Kenya. Hydrobiologia 2002, 488, 129–142. [Google Scholar] [CrossRef]
- Gherardi, F.; Barbaresi, S. Feeling preferences of the invasive crayfish, Procambarus clarkii. BFPP/Bull. Fr. Péche Piscic. 2007, 385, 7–20. [Google Scholar] [CrossRef]
- Awapara, J. Free amino acids in invertebrates: A comparative study of their distribution and metabolism. In Amino Acid Pools; Holden, J.T., Ed.; Elsevier: New York, NY, USA, 1962; pp. 158–186. [Google Scholar]
- Ljungdahl, L.G.; Eriksson, K.E. Ecology of microbial cellulose degradation. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Plenum Press: New York, NY, USA, 1985; pp. 237–299. [Google Scholar]
- Mohr, H.; Schopfer, P. Plant Physiology, 1st ed.; Springer: Berlin, Germany; New York, NY, USA, 1995; p. 626. [Google Scholar]
- Fairbairn, D. Trehalose and glucose in helminths and other invertebrates. Can. J. Zool. 1958, 36, 787–795. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solari, P.; Peddio, S.; Sollai, G.; Masala, C.; Podda, C.; Frau, G.; Palmas, F.; Sabatini, A.; Crnjar, R. Development of PVC Dispensers for Long-Lasting Release of Attractants for the Control of Invasive Crayfish Populations. Diversity 2018, 10, 128. https://doi.org/10.3390/d10040128
Solari P, Peddio S, Sollai G, Masala C, Podda C, Frau G, Palmas F, Sabatini A, Crnjar R. Development of PVC Dispensers for Long-Lasting Release of Attractants for the Control of Invasive Crayfish Populations. Diversity. 2018; 10(4):128. https://doi.org/10.3390/d10040128
Chicago/Turabian StyleSolari, Paolo, Stefania Peddio, Giorgia Sollai, Carla Masala, Cinzia Podda, Giacomo Frau, Francesco Palmas, Andrea Sabatini, and Roberto Crnjar. 2018. "Development of PVC Dispensers for Long-Lasting Release of Attractants for the Control of Invasive Crayfish Populations" Diversity 10, no. 4: 128. https://doi.org/10.3390/d10040128
APA StyleSolari, P., Peddio, S., Sollai, G., Masala, C., Podda, C., Frau, G., Palmas, F., Sabatini, A., & Crnjar, R. (2018). Development of PVC Dispensers for Long-Lasting Release of Attractants for the Control of Invasive Crayfish Populations. Diversity, 10(4), 128. https://doi.org/10.3390/d10040128