Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Indicator Species Analysis and Species-Level Redundancy
2.4. Community-Level Functional Diversity and Redundancy
3. Results
3.1. Indicator Species Analysis and Species-Level Redundancy
3.2. Community-Level Functional Diversity
3.3. Community-Level Functional Redundancy
4. Discussion
4.1. Vegetative Plant Height
4.2. Leaf Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Location of the Study Area
Appendix B. Detailed Results of ANOVA Models for Standardized Effect Size of Plant Height (H), Specific Leaf Area (SLA) and Leaf Dry Matter Content (LDMC)
Index | F | p | R2 |
---|---|---|---|
SES-FDH | 16 | <0.001 | 0.23 |
FRH | 16 | <0.001 | 0.23 |
SES-FDSLA | 56.48 | <0.001 | 0.52 |
FRSLA | 48.4 | <0.001 | 0.48 |
SES-FDLDMC | 32.57 | <0.001 | 0.38 |
FRLDMC | 21 | <0.001 | 0.28 |
Appendix C. Functional Composition (Community Weighted Mean: CWMs) of the Analyzed Plant Communities for Plant Height (H), Specific Leaf Area (SLA) and Leaf Dry Matter Content (LDMC)
References
- Götzenberger, L.; de Bello, F.; Bråthen, K.A.; Davison, J.; Dubuis, A.; Guisan, A.; Leps, J.; Lindborg, R.; Moora, M.; Pärtel, M.; et al. Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biol. Rev. 2012, 87, 111–127. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Mouillot, D.; Villéger, S.; Parravicini, V.; Kulbicki, M.; Arias-González, J.E.; Bender, M.; Chabanet, P.; Floeter, S.; Friedlander, A.; Vigliola, L.; et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 2014, 111, 13757–13762. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.; Williams, L.; Wright, J. Revisiting the Holy G rail: Using plant functional traits to understand ecological processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, M.L. Species Diversity in Space and Time, 1st ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Willig, M.R.; Kaufman, D.M.; Stevens, R.D. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 273–309. [Google Scholar] [CrossRef]
- Malavasi, M.; Conti, L.; Carboni, M.; Cutini, M.; Acosta, A.T. Multifaceted analysis of patch-level plant diversity in response to landscape spatial pattern and history on Mediterranean dunes. Ecosystems 2016, 19, 850–864. [Google Scholar] [CrossRef]
- Bricca, A.; Chelli, S.; Canullo, R.; Cutini, M. The Legacy of the Past Logging: How Forest Structure Affects Different Facets of Understory Plant Diversity in Abandoned Coppice Forests. Diversity 2020, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655.ED. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Villéger, S.; Mason, N.W.; Mouillot, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 2010, 24, 867–876. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 9, 488–494. [Google Scholar] [CrossRef]
- Mason, N.W.; De Bello, F. Functional diversity: A tool for answering challenging ecological questions. J. Veg. Sci. 2013, 24, 777–780. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Chelli, S.; Marignani, M.; Barni, E.; Petraglia, A.; Puglielli, G.; Wellstein, C.; Acosta, A.T.R.; Bolpagni, R.; Bragazza, L.; Campetella, G.; et al. Plant-environment interactions through a functional traits perspective: A review of Italian studies. Plant Biosyst. 2019, 153, 853–869. [Google Scholar] [CrossRef]
- Bricca, A.; Tardella, F.M.; Tolu, F.; Goia, I.; Ferrara, A.; Catorci, A. Disentangling the effects of disturbance from those of dominant tall grass features in driving the functional variation of restored grassland in a Sub-Mediterranean context. Diversity 2020, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Boonman, C.C.F.; Santini, L.; Robroek, B.J.M.; Hoeks, S.; Kelderman, S.; Dengler, J.; Bergamini, A.; Biurrun, I.; Carranza, M.L.; Cerabolini, B.E.L.; et al. Plant functional and taxonomic diversity in European grasslands along climatic gradients. J. Veg. Sci. 2021, 32, e13027. [Google Scholar] [CrossRef]
- Botta-Dukát, Z.; Czúcz, B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol. Evol. 2016, 7, 114–126. [Google Scholar] [CrossRef]
- MacArthur, R.; Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Petchey, O.L.; Evans, K.L.; Fishburn, I.S.; Gaston, K.J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 2007, 76, 977–985. [Google Scholar] [CrossRef]
- Cowling, R.M.; Esler, K.J.; Midgley, G.F.; Honig, M.A. Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. J. Arid. Environ. 1994, 27, 141–158. [Google Scholar] [CrossRef]
- Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Keddy, P.A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Pontes, L.P.; Maire, V.; Schellberg, J.; Louault, F. Grass strategies and grassland community responses to environmental drivers: A review. Agron. Sustain. Dev. 2015, 35, 1297–1318. [Google Scholar] [CrossRef]
- Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018, 2, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, A.; Pauli, H.; Calzado, M.R.F.; Lorite, J.; Mesa, J.M.; Steinbauer, K.; Winkler, M. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alp. Bot. 2021, 131, 27–39. [Google Scholar] [CrossRef]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2005, 8, 224–239. [Google Scholar] [CrossRef]
- Sanders, N.J.; Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 2012, 35, 1–3. [Google Scholar] [CrossRef]
- Pescador, D.S.; de Bello, F.; Valladares, F.; Escudero, A. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE 2015, 10, e0118876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bricca, A.; Conti, L.; Tardella, M.F.; Catorci, A.; Iocchi, M.; Theurillat, J.P.; Cutini, M. Community assembly processes along a sub-Mediterranean elevation gradient: Analyzing the interdependence of trait community weighted mean and functional diversity. Plant Ecol. 2019, 220, 1139–1151. [Google Scholar] [CrossRef]
- Stanisci, A.; Bricca, A.; Calabrese, V.; Cutini, M.; Pauli, H.; Steinbauer, K.; Carranza, M.L. Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines. AoB Plants. 2020, 12, plaa004. [Google Scholar] [CrossRef] [Green Version]
- Debouk, H.; de Bello, F.; Sebastià, M.T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS ONE 2015, 10, e0141899. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Ken, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Winkler, M.; Lamprecht, A.; Steinbauer, K.; Hulber, K.; Theurillat, J.P.; Breiner, F.; Choler, P.; Ertl, S.; Girón, A.G.; Rossi, G.; et al. The rich sides of mountain summits—A pan-European view on aspect preferences of alpine plants. J. Biogeogr. 2016, 43, 2261–2273. [Google Scholar] [CrossRef]
- Rogora, M.; Frate, L.; Carranza, M.L.; Freppaz, M.; Stanisci, A.; Bertani, I.; Bottarin, R.; Brambilla, A.; Canullo, R.; Carbognani, M.; et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci. Total Environ. 2018, 624, 1429–1442. [Google Scholar] [CrossRef] [Green Version]
- Bravo, D.N.; Araújo, M.B.; Lasanta, T.; Moreno, J.I.L. Climate change in Mediterranean mountains during the 21st century. Ambio 2008, 37, 280–285. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent plant diversity changes on Europe’s mountain summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frate, L.; Carranza, M.L.; Evangelista, A.; Stinca, A.; Schaminée, J.H.J.; Stanisci, A. Climate and land use change impacts on Mediterranean high-mountain vegetation in the Apennines since the 1950s. Plant Ecol. Divers. 2018, 11, 85–96. [Google Scholar] [CrossRef]
- Calabrese, V.; Carranza, M.L.; Evangelista, A.; Marchetti, M.; Stinca, A.; Stanisci, A. Long-Term Changes in the Composition, Ecology, and Structure of Pinus mugo Scrubs in the Apennines (Italy). Diversity 2018, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The functions of biological diversity in an age of extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Hanisch, M.; Schweiger, O.; Cord, A.F.; Volk, M.; Knapp, S. Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. J. Appl. Ecol. 2020, 57, 1535–1550. [Google Scholar] [CrossRef]
- Stanisci, A.; Carranza, M.L.; Pelino, G.; Chiarucci, A. Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecol. 2011, 212, 595–600. [Google Scholar] [CrossRef]
- Blasi, C.; Di Pietro, R.; Fortini, P.; Catonica, C. The main plant community types of the alpine belt of the Apennine chain. Plant Biosyst. 2003, 137, 83–110. [Google Scholar] [CrossRef]
- Blasi, C.; Di Pietro, R.; Pelino, G. The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst. 2005, 139, 357–385. [Google Scholar] [CrossRef]
- Evangelista, A.; Frate, L.; Carranza, M.L.; Pelino, G.; Attore, F.; Stanisci, A. Long-term changes in ecology and structure of high-mountain vegetation: An insight into LTER Apennines research site (Majella-Italy). AoB Plants 2016, 8, plw004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Musciano, M.; Carranza, M.L.; Frate, L.; Di Cecco, V.; Di Martino, L.; Frattaroli, A.R.; Stanisci, A. Distribution of plant species and dispersal traits along environmental gradients in central Mediterranean summits. Diversity 2018, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Ellenberg, H. Zeigerwerte von pflanzen in Mitteleuropa. Scr. Geobot. 1991, 18, 1–248. [Google Scholar]
- European Commission DG Environment. Interpretation Manual of European Union Habitats. [Eur 28. Nature ENV B.3]. 2013. Available online: http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf (accessed on 26 June 2019).
- Stanisci, A.; Pelino, G.; Blasi, C. Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodivers. Conserv. 2005, 14, 1301–1318. [Google Scholar] [CrossRef]
- Peruzzi, L.; Conti, F.; Bartolucci, F. An inventory of vascular plants endemic to Italy. Phytotaxa 2014, 168, 1–75. [Google Scholar] [CrossRef]
- Theurillat, J.P.; Iocchi, M.; Cutini, M.; De Marco, G. Vascular plant richness along an elevation gradient at Monte Velino (Central Apennines, Italy). Biogeographia 2011, 28, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Petriccione, B.; Bricca, A. Thirty years of ecological research at the Gran Sasso d’Italia LTER site: Climate change in action. Nat. Conserv. 2019, 34, 9–39. [Google Scholar] [CrossRef]
- Cutini, M.; Flavio, M.; Giuliana, B.; Guido, R.; Jean-Paul, T. Bioclimatic pattern in a Mediterranean mountain area: Assessment from a classification approach on a regional scale. Int. J. Biometeorol. 2021, 65, 1085–1097. [Google Scholar] [CrossRef]
- Curci, G.; Guijarro, J.A.; Di Antonio, L.; Di Bacco, M.; Di Lena, B.; Scorzini, A.R. Building a local climate reference dataset: Application to the Abruzzo region (Central Italy), 1930–2019. Int. J. Climatol. 2021, 41, 4414–4436. [Google Scholar] [CrossRef]
- Pignatti, S.; Menegoni, P.; Pietrosanti, S. Bioindicazione attraverso le piante vascolari. Valori Di Indicazione Secondo Ellenberg (Zeigerwerte) per Le Specie Della Flora d’Italia. Braun-Blanquetia 2005, 39, 1–97. [Google Scholar]
- Stanisci, A.; Evangelista, A.; Frate, L.; Stinca, A.; Carranza, M.L. VIOLA—Database of High Mountain Vegetation of Central Apennines. Phytocoenologia 2016, 46, 231–232. [Google Scholar] [CrossRef]
- Chytrý, M.; Hennekens, S.M.; Jiménez-Alfaro, B.; Knollová, I.; Dengler, J.; Jansen, F.; Landucci, F.; Schaminée, J.H.; Aćić, S.; Agrillo, E.; et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 2016, 19, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Italian Interpretation Manual of the 92/43/EEC Directive Habitats. 2009. Available online: http://vnr.unipg.it/habitat/index.jsp (accessed on 6 September 2021).
- Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant communities of Italy: The Vegetation Prodrome. Plant Biosyst. 2014, 148, 728–814. [Google Scholar] [CrossRef] [Green Version]
- Pignatti, S. Flora D’Italia; Edagricole New Business Multimedia: Milano, Italy, 2019. [Google Scholar]
- Májeková, M.; Paal, T.; Plowman, N.S.; Bryndová, M.; Kasari, L.; Norberg, A.; Weiss, M.; Bishop, T.R.; Luke, S.H.; Sam, K.; et al. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 2016, 11, e0149270. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Zanzottera, M.; Fratte, M.D.; Caccianiga, M.; Pierce, S.; Cerabolini, B.E. Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecol. 2020, 21, 55–65. [Google Scholar] [CrossRef]
- Rosbakh, S.; Römermann, C.; Poschlod, P. Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alp. Bot. 2015, 125, 79–86. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Ricotta, C.; de Bello, F.; Moretti, M.; Caccianiga, M.; Cerabolini, B.E.; Pavoine, S. Measuring the functional redundancy of biological communities: A quantitative guide. Methods Ecol. Evol. 2016, 7, 1386–1395. [Google Scholar] [CrossRef] [Green Version]
- de Cáceres, M.; Legendre, P.; Wiser, S.K.; Brotons, L. Using species combinations in indicator value analyses. Methods Ecol. Evol. 2012, 3, 973–982. [Google Scholar] [CrossRef]
- Pavoine, S.; Vallet, J.; Dufour, A.B.; Gachet, S.; Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 2009, 118, 391–402. [Google Scholar] [CrossRef]
- Rao, C.R. Diversity and dissimilarity coefficients: A unified approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- de Bello, F.; Lavergne, S.; Meynard, C.N.; Lepš, J.; Thuiller, W. The partitioning of diversity: Showing Theseus a way out of the labyrinth. J. Veg. Sci. 2010, 21, 992–1000. [Google Scholar] [CrossRef]
- Yandell, B.S. Practical Data Analysis for Designed Experiments; Chapman and Hall Press: London, UK, 1997. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life, 2nd ed.; Springer: Berlin, Germany, 2003. [Google Scholar]
- Galland, T.; Carmona, C.P.; Götzenberger, L.; Valencia, E.; de Bello, F. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecol. Indic. 2020, 116, 106488. [Google Scholar] [CrossRef]
- Weiher, E.; Keddy, P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos 1995, 74, 159–164. [Google Scholar] [CrossRef] [Green Version]
- de Bello, F.D.; Lavorel, S.; Lavergne, S.; Albert, C.H.; Boulangeat, I.; Mazel, F.; Thuiller, W. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 2013, 36, 393–402. [Google Scholar] [CrossRef]
- Di Biase, L.; Fattorini, S.; Cutini, M.; Bricca, A. The Role of Inter-and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area. Plants 2021, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Plant adaptation to cold climates. F1000Research 2016, 5, 2769. [Google Scholar] [CrossRef] [PubMed]
- Dainese, M.; Scotton, M.; Clementel, F.; Pecile, A.; Lepš, J. Do climate, resource availability, and grazing pressure filter floristic composition and functioning in Alpine pastures? Community Ecol. 2012, 13, 45–54. [Google Scholar] [CrossRef]
- Di Pietro, R.; Proietti, S.; Fortini, P.; Blasi, C. La vegetazione dei ghiaioni nel settore sud-orientale del Parco Nazionale d’Abruzzo, Lazio e Molise. Fitosociologia 2004, 41, 3–20. [Google Scholar]
- Choler, P. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct. Antarct. Alp. Res. 2005, 37, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Winkler, D.E.; Lubetkin, K.C.; Carrell, A.A.; Jabis, M.D.; Yang, Y.; Kueppers, L.M. Responses of alpine plant communities to climate warming. In Ecosystem Consequences of Soil Warming; Mohan, J.E., Ed.; Academic Press: Athens, GA, USA, 2019; pp. 297–346. [Google Scholar]
- Lovari, S.; Franceschi, S.; Chiatante, G.; Fattorini, L.; Fattorini, N.; Ferretti, F. Climatic changes and the fate of mountain herbivores. Clim. Chang. 2020, 162, 2319–2337. [Google Scholar] [CrossRef]
- Olano, J.M.; Almería, I.; Eugenio, M.; von Arx, G. Under pressure: How a M editerranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 2013, 27, 1295–1303. [Google Scholar] [CrossRef]
- Garnier, E.; Vile, D.; Roumet, C.; Lavorel, S.; Grigulis, K.; Navas, M.L.; Lloret, F. Inter-and intra-specific trait shifts among sites differing in drought conditions at the north western edge of the Mediterranean Region. Flora 2019, 254, 147–160. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R. Quantifying resilience. J. Appl. Ecol. 2016, 53, 617–624. [Google Scholar] [CrossRef]
- Ricotta, C.; Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 2011, 167, 181–188. [Google Scholar] [CrossRef]
- Zelený, D. Which results of the standard test for community-weighted mean approach are too optimistic? J. Veg. Sci. 2018, 29, 953–966. [Google Scholar] [CrossRef]
- Zelený, D. R Package; Version 0.1.18; Weighted Mean Analysis: Weimea, HI, USA, 2020. [Google Scholar]
A—Leucopoa dimorpha Community | B—Sesleria juncifolia Community | C—Plantago atrata Community | D—Silene acaulis Community | ||
---|---|---|---|---|---|
Land unit | Screes | Steep slopes | Snowbeds | Ridges | |
Taxonomic diversity | Species richness | 11 (6) | 20 (5) | 18 (6) | 17 (7) |
Species diversity | 0.61 (0.25) | 0.8 (0.07) | 0.77 (0.09) | 0.77 (0.17) | |
Community Mean Ellenberg indicator values (CMEIVS) | CML | 8.7 (0.9) | 9.0 (0.3) | 8.4 (0.3) | 9.1 (0.3) |
CMT | 4.0 (0.9) | 4.2 (0.8) | 3.2 (0.3) | 3.2 (0.3) | |
CMU | 3.5 (0.5) | 3.2 (0.2) | 3.9 (0.3) | 3.5 (0.3) | |
CMR | 6.9 (0.5) | 6.8 (0.4) | 6.5 (0.4) | 6.9 (0.4) | |
CMN | 2.3 (0.6) | 2.3 (0.2) | 2.5 (0.4) | 2.1 (0.3) | |
Environmental variables | Elevation (m a.s.l) | 2266 (307) | 2085 (264) | 2392 (158) | 2547 (165) |
Slope (°) | 32.5 (10) | 20.4 (10) | 9.9 (12) | 17.9 (16) |
Plant Community | IndVal | rH | rSLA | rLDMC |
---|---|---|---|---|
A. Leucopoa dimorpha community | ||||
Achillea barrelieri subsp. barrelieri | 0.43 *** | 0.86 | 0.79 | 0.64 |
Arabis caucasica | 0.51 *** | 0.86 | 0.90 | 0.76 |
+ Cymbalaria pallida | 0.63 *** | 0.63 | 0.81 | 0.67 |
Doronicum columnae | 0.58 *** | 0.74 | 0.79 | 0.66 |
+ Isatis apennina | 0.69 *** | 0.74 | 0.87 | 0.64 |
+ Leucopoa dimorpha | 0.69 *** | 0.68 | 0.73 | 0.52 |
B. Sesleria juncifolia community | ||||
Anthyllis montana | 0.80 *** | 0.80 | 0.92 | 0.86 |
Aster alpinus subsp. alpinus | 0.44 * | 0.83 | 0.87 | 0.84 |
Bromopsis erecta | 0.54 *** | 0.65 | 0.91 | 0.79 |
Carex humilis | 0.76 *** | 0.82 | 0.92 | 0.88 |
Globularia meridionalis | 0.79 *** | 0.65 | 0.88 | 0.86 |
Sesleria juncifolia subsp. juncifolia | 0.95 *** | 0.73 | 0.92 | 0.83 |
C. Plantago atrata community | ||||
Crepis aurea subsp. glabrescens | 0.71 *** | 0.87 | 0.65 | 0.65 |
Gnaphalium diminutum | 0.94 *** | 0.81 | 0.82 | 0.79 |
Plantago atrata subsp. atrata | 0.96 *** | 0.85 | 0.75 | 0.78 |
Poa alpina subsp. alpine | 0.96 *** | 0.88 | 0.80 | 0.67 |
+ Ranunculus pollinensis | 0.92 *** | 0.87 | 0.79 | 0.79 |
+ Taraxacum apenninum | 0.70 *** | 0.81 | 0.72 | 0.70 |
+ Taraxacum glaciale | 0.66 *** | 0.87 | 0.58 | 0.64 |
+ Trifolium pratense subsp. semipurpureum | 0.76 *** | 0.88 | 0.72 | 0.82 |
Trifolium thalii | 0.98 *** | 0.76 | 0.82 | 0.75 |
D. Silene acaulis community | ||||
+ Androsace villosa subsp. villosa | 0.55 ** | 0.80 | 0.87 | 0.85 |
Anthyllis vulneraria subsp. pulchella | 0.68 *** | 0.84 | 0.92 | 0.68 |
Arenaria grandiflora subsp. grandiflora | 0.57 *** | 0.83 | 0.90 | 0.84 |
+ Armeria gracilis subsp. majellensis | 0.67 *** | 0.76 | 0.76 | 0.76 |
+ Festuca violacea subsp. italica | 0.50 * | 0.82 | 0.92 | 0.83 |
+ Galium magellense | 0.57 ** | 0.87 | 0.69 | 0.78 |
Kobresia myosuroides | 0.52 *** | 0.78 | 0.91 | 0.75 |
+ Pedicularis elegans | 0.54 ** | 0.86 | 0.84 | 0.84 |
Salix retusa | 0.80 *** | 0.83 | 0.88 | 0.82 |
Silene acaulis subsp. bryoides | 0.76 *** | 0.69 | 0.92 | 0.84 |
Traits | A | B | C | D |
---|---|---|---|---|
SES-FDH | 0.35 n.s. | 0.25 ** | −0.49 *** | −0.3 * |
SES-FDSLA | −0.08 n.s. | −1.35 *** | 0.29 * | −1.1 *** |
SES-FDLDMC | 0.17 n.s. | −1.2 *** | −0.41 *** | −1 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bricca, A.; Carranza, M.L.; Varricchione, M.; Cutini, M.; Stanisci, A. Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines. Diversity 2021, 13, 466. https://doi.org/10.3390/d13100466
Bricca A, Carranza ML, Varricchione M, Cutini M, Stanisci A. Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines. Diversity. 2021; 13(10):466. https://doi.org/10.3390/d13100466
Chicago/Turabian StyleBricca, Alessandro, Maria Laura Carranza, Marco Varricchione, Maurizio Cutini, and Angela Stanisci. 2021. "Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines" Diversity 13, no. 10: 466. https://doi.org/10.3390/d13100466
APA StyleBricca, A., Carranza, M. L., Varricchione, M., Cutini, M., & Stanisci, A. (2021). Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines. Diversity, 13(10), 466. https://doi.org/10.3390/d13100466