Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Sampling
2.3. Bird Functional Traits
2.4. Data Analysis
2.4.1. Functional Diversity Analysis
2.4.2. Functional Composition Analysis
3. Results
3.1. Functional Diversity
3.2. Functional Composition
4. Discussion
4.1. Functional Diversity
4.2. Functional Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Barral, M.P.; Benayas, J.M.R.; Meli, P.; Maceira, N.O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agric. Ecosyst. Environ. 2015, 202, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.D.; Evans, J.D.; Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 2010, 49, 134–136. [Google Scholar] [CrossRef]
- Tapella, E. Heterogeneidad Social y Valoración Diferencial de Servicios Ecosistémicos. Un abordaje Multi-Actoral en el Oeste de Córdoba (Argentina). Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2012. [Google Scholar]
- Kim, J.H.; Park, S.; Kim, S.H.; Kang, K.; Waldman, B.; Lee, M.H.; Yu, M.; Yang, H.; Chung, H.Y.; Lee, E.J. Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecol. Evol. 2020, 10, 12973–12982. [Google Scholar] [CrossRef] [PubMed]
- Luck, G.W.; Carter, A.; Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 2013, 8, e63671. [Google Scholar] [CrossRef] [Green Version]
- Sekercioglu, C.H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 2012, 153, 153–161. [Google Scholar] [CrossRef]
- Bohada-Murillo, M.; Castaño-Villa, G.J.; Fontúrbel, F.E. The effects of forestry and agroforestry plantations on bird diversity: A global synthesis. Land Degrad. Dev. 2020, 31, 646–654. [Google Scholar] [CrossRef]
- Ancillo, G.; Medina, A. Los Cítricos; Publicacions de la Universitat de València: València, Spain, 2015. [Google Scholar]
- Sánchez, V.; Zambrano, J.; Iglesias, C. La Cadena de Valor del Cacao en América Latina y el Caribe; FONTAGRO: Washington, DC, USA, 2019. [Google Scholar]
- FAO. FAOSTAT Statistics Database (Updated March 2021); Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Chain-Guadarrama, A.; Martínez-Salinas, A.; Aristizábal, N.; Ricketts, T.H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 2019, 280, 53–67. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef] [Green Version]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [Green Version]
- Flynn, D.F.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Petit, L.J.; Petit, D.R. Evaluating the importance of human-modified lands for neotropical bird conservation. Conserv. Biol. 2003, 17, 687–694. [Google Scholar] [CrossRef]
- Clough, Y.; Putra, D.D.; Pitopang, R.; Tscharntke, T. Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol. Conserv. 2009, 142, 1032–1041. [Google Scholar] [CrossRef]
- Philpott, S.M.; Arendt, W.J.; Armbrecht, I.; Bichier, P.; Diestch, T.V.; Gordon, C.; Greenberg, R.; Perfecto, I.; Reynoso-Santos, R.; Soto-Pinto, L.; et al. Biodiversity Loss in Latin American Coffee Landscapes: Review of the Evidence on Ants, Birds, and Trees. Conserv. Biol. 2008, 22, 1093–1105. [Google Scholar] [CrossRef]
- Lavorel, S.; Storkey, J.; Bardgett, R.D.; De Bello, F.; Berg, M.P.; Le Roux, X.; Moretti, M.; Mulder, C.; Pakeman, R.J.; Díaz, S. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 2013, 24, 942–948. [Google Scholar] [CrossRef]
- Prescott, G.W.; Gilroy, J.J.; Haugaasen, T.; Uribe, C.A.M.; Foster, W.A.; Edwards, D.P. Reducing the impacts of Neotropical oil palm development on functional diversity. Biol. Conserv. 2016, 197, 139–145. [Google Scholar] [CrossRef]
- Magurran, A.E.; Baillie, S.R.; Buckland, S.T.; Dick, J.M.; Elston, D.A.; Scott, E.M.; Smith, R.I.; Somerfield, P.J.; Watt, A.D. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Eeology Evol. 2010, 25, 574–582. [Google Scholar] [CrossRef]
- Petchey, O.L.; Hector, A.; Gaston, K.J. How do different measures of functional diversity perform? Ecology 2004, 85, 847–857. [Google Scholar] [CrossRef]
- Casanoves, F.; Pla, L.; Di Rienzo, J.A.; Díaz, S. FDiversity: A software package for the integrated analysis of functional diversity. Methods Ecol. Evol. 2011, 2, 233–237. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Suding, K.N.; Lavorel, S.; Chapin Iii, F.; Cornelissen, J.H.; Díaz, S.; Garnier, E.; Goldberg, D.; Hooper, D.U.; Jackson, S.T.; Navas, M.L. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 2008, 14, 1125–1140. [Google Scholar] [CrossRef] [Green Version]
- Stattersfield, A.J. Endemic bird areas of the world-Priorities for biodiversity conservation. Bird Life Int. 1998. [Google Scholar] [CrossRef]
- Castaño-Villa, G.J.; Estevez, J.V.; Fontúrbel, F.E. The role of native forest plantations in the conservation of Neotropical birds: The case of the Andean alder. J. Nat. Conserv. 2014, 22, 547–551. [Google Scholar] [CrossRef]
- Castaño-Villa, G.J.; Ramos-Valencia, S.A.; Fontúrbel, F.E. Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecologica 2014, 61, 19–23. [Google Scholar] [CrossRef]
- Castaño-Villa, G.J.; Santisteban-Arenas, R.; Hoyos-Jaramillo, A.; Estevez-Varon, J.V.; Fontúrbel, F.E. Foraging behavioural traits of tropical insectivorous birds lead to dissimilar communities in contrasting forest habitats. Wildl. Biol. 2019, 2019, wlb–00483. [Google Scholar] [CrossRef] [Green Version]
- Betancurt-Grisales, J.F.; Vargas-Daza, A.M.; Castaño-Villa, G.J.; Ospina-Bautista, F. Bird functional diversity in restored and secondary forests of the Colombian Andes. Restor. Ecol. 2021, 29, e13315. [Google Scholar] [CrossRef]
- Fierro-Calderón, E.; Eusse, D. Estado de Conocimiento de las Aves en el Departamento de Caldas: Prioridades de Conservación y Vacíos de Información; Asociación Calidris: Cali, Colombia, 2010. [Google Scholar]
- Castaño, J.H.; Corrales, J.D. Mamíferos de la cuenca del río La Miel (Caldas): Diversidad y uso cultural. Boletín Científico. Cent. De Museos. Mus. De Hist. Nat. 2010, 14, 56–75. [Google Scholar]
- Bregman, T.P.; Lees, A.C.; MacGregor, H.E.; Darski, B.; de Moura, N.G.; Aleixo, A.; Barlow, J.; Tobias, J.A. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcila, J.; Farfán, F.; Moreno, A.; Salazar, L.F.; Hincapié, E. Sistemas de Producción de Café en Colombia; CENICAFE: Manizales, Colombia, 2007. [Google Scholar]
- Martínez-Sánchez, E.T.; Cardona-Romero, M.; Rivera-Páez, F.A.; Pérez-Cárdenas, J.E.; Castaño-Villa, G.J. Contribution of agroecosystems to the conservation of bird diversity in the department of Caldas. Rev. Fac. Nac. De Agron. Medellín 2018, 71, 8445–8457. [Google Scholar] [CrossRef] [Green Version]
- IDEAM. Promedios de Precipitación y Temperatura Media. Promedio de Los Años 1981–2010; IDEAM: Bogotá, Colombia, 2017. Available online: https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Promedios-Precipitaci-n-y-Temperatura-media-Promed/nsxu-h2dh/data (accessed on 8 May 2021).
- Blake, J.G.; Loiselle, B.A. Bird assemblages in second-growth and old-growth forests, Costa Rica: Perspectives from mist nets and point counts. Auk 2001, 118, 304–326. [Google Scholar] [CrossRef]
- Faria, D.; Laps, R.R.; Baumgarten, J.; Cetra, M. Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers. Conserv. 2006, 15, 587–612. [Google Scholar] [CrossRef]
- Karr, J.R. Surveying birds with mist nets. Stud. Avian Biol. 1981, 6, 62–67. [Google Scholar]
- Dunn, E.H.; Ralph, C.J. The use of mist nets as a tool for bird population monitoring. Stud. Avian Biol. 2004, 29, 1–6. [Google Scholar]
- Remsen, J.; Areta, J.; Bonaccorso, E.; Claramunt, S.; Jaramillo, A.; Pacheco, J.; Ribas, C.; Robbins, M.; Stiles, F.; Stotz, D. A Classification of the Bird Species of South America; American Ornithological Society: Chicago, IL, USA, 2020. [Google Scholar]
- Luck, G.W.; Lavorel, S.; McIntyre, S.; Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 2012, 81, 1065–1076. [Google Scholar] [CrossRef]
- Cardona-Salazar, L.J.; Benavides-Ossa, Y.A.; Vargas-Daza, A.M.; Betancurt-Grisales, J.F.; Bohada-Murillo, M.; Martinez-Sanchez, E.T.; Cardona-Romero, M.; Busi, A.; Tobon-Escobar, W.D.; Ortiz-Giraldo, M.; et al. A morphological, reproductive, and molt phenology database for 379 bird species from the Colombian Tropical Andes. Ecology 2020, 101, e03016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilty, S.L.; Brown, W.L.; Brown, B. A Guide to the Birds of Colombia; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Del Hoyo, J.; Elliott, A.; Christie, D. Handbook of Birds of the World; Lynx edicions: Barcelona, Spain, 1992. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Pillar, V.D.; Duarte, L.D.S. A framework for metacommunity analysis of phylogenetic structure. Ecol. Lett. 2010, 13, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Pillar, V.D.; Duarte, L.d.S.; Sosinski, E.E.; Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 2009, 20, 334–348. [Google Scholar] [CrossRef]
- Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 2005, 16, 533–540. [Google Scholar] [CrossRef]
- Mason, N.W.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Cosset, C.C.; Edwards, D.P. The effects of restoring logged tropical forests on avian phylogenetic and functional diversity. Ecol. Appl. 2017, 27, 1932–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaaf, A.A.; Gomez, D.; Ruggera, R.A.; Tallei, E.; Vivanco, C.G.; Politi, N.; Rivera, L. Functional diversity of tree cavities for secondary cavity-nesting birds in logged subtropical Piedmont forests of the Andes. For. Ecol. Manag. 2020, 464, 118069. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B.; Laliberté, M.E. Package ‘FD’. Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology, Version 1.0; CRAN, 2014. [Google Scholar]
- R Development Core Team. R: A language and Environment for Statistical Computing, Reference Index, Version 3.6.1; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes. R Package Version 0.999375-39. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 8 May 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Debastiani, V. Package “SYNCSA”: Analysis of Functional and Phylogenetic Patterns in Metacommunities, R Package; CRAN, 2018. [Google Scholar]
- Morelli, F.; Benedetti, Y.; Perna, P.; Santolini, R. Associations among taxonomic diversity, functional diversity and evolutionary distinctiveness vary among environments. Ecol. Indic. 2018, 88, 8–16. [Google Scholar] [CrossRef]
- Solé-Senan, X.; Juárez-Escario, A.; Robleño, I.; Conesa, J.; Recasens, J. Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agric. Ecosyst. Environ. 2017, 247, 255–264. [Google Scholar] [CrossRef]
- Alexander, J.; Smith, D.A.E.; Smith, Y.C.E.; Downs, C.T. Drivers of fine-scale avian functional diversity with changing land use: An assessment of the effects of eco-estate housing development and management. Landsc. Ecol. 2019, 34, 537–549. [Google Scholar] [CrossRef]
- Cabrera, O.; Hildebrandt, P.; Stimm, B.; Günter, S.; Fries, A.; Mosandl, R. Functional Diversity Changes after Selective Thinning in a Tropical Mountain Forest in Southern Ecuador. Diversity 2020, 12, 256. [Google Scholar] [CrossRef]
- Makumbe, P.; Chikorowondo, G.; Dzamara, P.C.; Ndaimani, H.; Gandiwa, E. Effects of Fire Frequency on Woody Plant Composition and Functional Traits in a Wet Savanna Ecosystem. Int. J. Ecol. 2020, 2020, 1672306. [Google Scholar] [CrossRef]
- Tsianou, M.A.; Kallimanis, A.S. Trait selection matters! A study on European amphibian functional diversity patterns. Ecol. Res. 2019, 34, 225–234. [Google Scholar] [CrossRef]
- Villéger, S.; Miranda, J.R.; Hernández, D.F.; Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 2010, 20, 1512–1522. [Google Scholar] [CrossRef]
- Tscharntke, T.; Sekercioglu, C.H.; Dietsch, T.V.; Sodhi, N.S.; Hoehn, P.; Tylianakis, J.M. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 2008, 89, 944–951. [Google Scholar] [CrossRef]
- Rocha, J.; Laps, R.R.; Machado, C.G.; Campiolo, S. The conservation value of cacao agroforestry for bird functional diversity in tropical agricultural landscapes. Ecol. Evol. 2019, 9, 7903–7913. [Google Scholar] [CrossRef] [Green Version]
- Gliessman, S.R.; Guadarrama-Zugasti, C.; Mendez, V.E.; Trujillo, L.; Bacon, C.; Cohen, R. Agroecología: Un enfoque sustentable de la agricultura ecológica. In ¿Qué Es La Agroecología? Universidad Complutense de Madrid: Madrid, Spain, 2006. [Google Scholar]
- Edwards, F.A.; Edwards, D.P.; Larsen, T.H.; Hsu, W.W.; Benedick, S.; Chung, A.; Vun Khen, C.; Wilcove, D.S.; Hamer, K.C. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Anim. Conserv. 2014, 17, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.; Edwards, D.; Edwards, F. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 2020, 23, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Villéger, S.; Mason, N.W.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borkhataria, R.R.; Collazo, J.A.; Groom, M.J. Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation. Ecol. Appl. 2006, 16, 696–703. [Google Scholar] [CrossRef]
- Borkhataria, R.R.; Collazo, J.A.; Groom, M.J. Species abundance and potential biological control services in shade vs. sun coffee in Puerto Rico. Agric. Ecosyst. Environ. 2012, 151, 1–5. [Google Scholar] [CrossRef]
- García-Navas, V.; Thuiller, W. Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France. J. Biogeogr. 2020, 47, 2392–2404. [Google Scholar] [CrossRef]
- MacArthur, R.H.; MacArthur, J.W. On bird species diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Jessel, H.R.; Aharoni, L.; Efroni, S.; Bachelet, I. A modeling algorithm for exploring the architecture and construction of bird nests. Sci. Rep. 2019, 9, 14772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellamy, P.E.; Burgess, M.D.; Mallord, J.W.; Cristinacce, A.; Orsman, C.J.; Davis, T.; Grice, P.V.; Charman, E.C. Nest predation and the influence of habitat structure on nest predation of Wood Warbler Phylloscopus sibilatrix, a ground-nesting forest passerine. J. Ornithol. 2018, 159, 493–506. [Google Scholar] [CrossRef]
- Johnson, R.J.; Jedlicka, J.A.; Quinn, J.E.; Brandle, J.R. Global perspectives on birds in agricultural landscapes. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Navalón, G.; Bright, J.A.; Marugán-Lobón, J.; Rayfield, E.J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 2019, 73, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.M.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sust. 2014, 8, 53–61. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez-Trujillo, V.; Betancurt-Grisales, J.F.; Vargas-Daza, A.M.; Lara, C.E.; Rivera-Páez, F.A.; Fontúrbel, F.E.; Castaño-Villa, G.J. Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes. Diversity 2021, 13, 493. https://doi.org/10.3390/d13100493
Velásquez-Trujillo V, Betancurt-Grisales JF, Vargas-Daza AM, Lara CE, Rivera-Páez FA, Fontúrbel FE, Castaño-Villa GJ. Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes. Diversity. 2021; 13(10):493. https://doi.org/10.3390/d13100493
Chicago/Turabian StyleVelásquez-Trujillo, Vanessa, Juan F. Betancurt-Grisales, Angela M. Vargas-Daza, Carlos E. Lara, Fredy A. Rivera-Páez, Francisco E. Fontúrbel, and Gabriel J. Castaño-Villa. 2021. "Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes" Diversity 13, no. 10: 493. https://doi.org/10.3390/d13100493
APA StyleVelásquez-Trujillo, V., Betancurt-Grisales, J. F., Vargas-Daza, A. M., Lara, C. E., Rivera-Páez, F. A., Fontúrbel, F. E., & Castaño-Villa, G. J. (2021). Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes. Diversity, 13(10), 493. https://doi.org/10.3390/d13100493