Microzooplankton Communities in a Changing Ocean: A Risk Assessment
Abstract
:1. Introduction
2. Methods
3. Global Hazards to Planktonic Communities
4. Observed Impacts and Projected Risk to Microzooplankton as a Consequence of Global Hazards
4.1. Warming
4.1.1. Temperature Effect on Growth Rate
4.1.2. Temperature Effect on Grazing Rate
4.1.3. Latitudinal Range Shift and Temporal Redistribution
4.2. Ocean Acidification
4.2.1. Direct Effects
4.2.2. Prey-Mediated Effects
4.3. Deoxygenation
4.4. Coastal Eutrophication
4.5. Other Hazards
4.5.1. Shoaling of the Remineralization Depth
4.5.2. Shifts in N:P Ratios
5. Projected Impacts on Carbon Export
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bindoff, N.; Cheung, W.W.; Kairo, J.; Arstegui, J.; Guinder, V.; Hallberg, R.; Hilmi, N.; Jiao, N.; Karim, M.; Levin, L. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate tipping points—Too risky to bet against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef]
- Bopp, L.; Resplandy, L.; Orr, J.C.; Doney, S.C.; Dunne, J.P.; Gehlen, M.; Halloran, P.; Heinze, C.; Ilyina, T.; Séférian, R.; et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 2013, 10, 6225–6245. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.K.; Kremer, C.T.; Klausmeier, C.A.; Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 2012, 338, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.; Glöckner, F.O.; Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. 1999, 18, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Walworth, N.G.; Zakem, E.J.; Dunne, J.P.; Collins, S.; Levine, N.M. Microbial evolutionary strategies in a dynamic ocean. Proc. Natl. Acad. Sci. USA 2020, 117, 5943–5948. [Google Scholar] [CrossRef] [Green Version]
- Irwin, A.J.; Finkel, Z.V.; Müller-Karger, F.E.; Ghinaglia, L.T. Phytoplankton adapt to changing ocean environments. Proc. Natl. Acad. Sci. USA 2015, 112, 5762–5766. [Google Scholar] [CrossRef] [Green Version]
- Sarmento, H.; Montoya, J.M.; Vázquez-Domínguez, E.; Vaqué, D.; Gasol, J.M. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2137–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint, I.; Doney, S.C.; Karl, D.M. Will ocean acidification affect marine microbes? ISME J. 2011, 5, 1–7. [Google Scholar] [CrossRef]
- Sala, M.M.; Aparicio, F.L.; Balagué, V.; Boras, J.A.; Borrull, E.; Cardelús, C.; Cros, L.; Gomes, A.; López-Sanz, A.; Malits, A.; et al. Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES J. Mar. Sci. 2015, 73, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Wohlers, J.; Engel, A.; Zollner, E.; Breithaupt, P.; Jurgens, K.; Hoppe, H.G.; Sommer, U.; Riebesell, U. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci. USA 2009, 106, 7067–7072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morán, X.A.G.; López-Urrutia, Á.; Calvo-Díaz, A.; Li, W.K.W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 2010, 16, 1137–1144. [Google Scholar] [CrossRef]
- Boyd, P.W. Toward quantifying the response of the oceans’ biological pump to climate change. Front. Mar. Sci. 2015, 2, 77. [Google Scholar] [CrossRef] [Green Version]
- Caron, D.A.; Countway, P.D.; Jones, A.C.; Kim, D.Y.; Schnetzer, A. Marine protistan diversity. Annu. Rev. Mar. Sci. 2012, 4, 467–493. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Flynn, K.J.; Tillmann, U.; Raven, J.A.; Caron, D.; Stoecker, D.K.; Not, F.; Hansen, P.J.; Hallegraeff, G.; Sanders, R.; et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist 2016, 167, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Calbet, A.; Landry, M.R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 2004, 49, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Buitenhuis, E.T.; Rivkin, R.B.; Sailley, S.; Le Quéré, C. Biogeochemical fluxes through microzooplankton. Glob. Biogeochem. Cycles 2010, 24, GB4015. [Google Scholar] [CrossRef]
- Polimene, L.; Sailley, S.; Clark, D.; Mitra, A.; Allen, J.I. Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration. J. Plankton Res. 2016, 39, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593. [Google Scholar] [CrossRef] [Green Version]
- Armengol, L.; Calbet, A.; Franchy, G.; Rodríguez-Santos, A.; Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 2019, 9, 2044. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, D.K.; Landry, M.R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 2017, 9, 413–444. [Google Scholar] [CrossRef] [PubMed]
- Caron, D.A.; Hutchins, D.A. The effects of changing climate on microzooplankton grazing and community structure: Drivers, predictions and knowledge gaps. J. Plankton Res. 2013, 35, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, J.; Bertrand, R.; Comte, L.; Bourgeaud, L.; Hattab, T.; Murienne, J.; Grenouillet, G. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 2020, 4, 1044–1059. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.J.; Skibinski, D.O.F. Exploring evolution of maximum growth rates in plankton. J. Plankton Res. 2020, 42, 497–513. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Zommers, Z.; Marbaix, P.; Fischlin, A.; Ibrahim, Z.Z.; Grant, S.; Magnan, A.K.; Pörtner, H.-O.; Howden, M.; Calvin, K.; Warner, K. Burning embers: Towards more transparent and robust climate-change risk assessments. Nat. Rev. Earth Environ. 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Smetacek, V.; Lenz, J. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [Green Version]
- Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335. [Google Scholar] [CrossRef]
- Taucher, J.; Bach, L.T.; Riebesell, U.; Oschlies, A. The viscosity effect on marine particle flux: A climate relevant feedback mechanism. Glob. Biogeochem. Cycles 2014, 28, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar]
- Keeling, R.F.; Körtzinger, A.; Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2010, 2, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Heisler, J.; Glibert, P.; Burkholder, J.; Anderson, D.; Cochlan, W.; Dennison, W.; Gobler, C.; Dortch, Q.; Heil, C.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabalais, N.; Diaz, R.J.; Levin, L.; Turner, R.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.-J.; Hu, X.; Huang, W.-J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.-C.; Zhai, W.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Legault, R.; Zogg, G.P., II; Travis, S.E. Competitive interactions between native Spartina alterniflora and non-native Phragmites australis depend on nutrient loading and temperature. PLoS ONE 2018, 13, e0192234. [Google Scholar] [CrossRef] [Green Version]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levinsen, H.; Nielsen, T.G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 2002, 47, 427–439. [Google Scholar] [CrossRef]
- Weisse, T.; Stadler, P.; Lindström, E.S.; Kimmance, S.A.; Montagnes, D.J. Interactive effect of temperature and food concentration on growth rate: A test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 2002, 47, 1447–1455. [Google Scholar] [CrossRef]
- Montagnes, D.J.; Kimmance, S.A.; Atkinson, D. Using Q10: Can growth rates increase linearly with temperature? Aquat. Microb. Ecol. 2003, 32, 307–313. [Google Scholar] [CrossRef]
- Rose, J.M.; Caron, D.A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 2007, 52, 886–895. [Google Scholar] [CrossRef]
- Montagnes, D.J.; Morgan, G.; Bissinger, J.E.; Atkinson, D.; Weisse, T. Short-term temperature change may impact freshwater carbon flux: A microbial perspective. Glob. Change Biol. 2008, 14, 2823–2838. [Google Scholar] [CrossRef]
- O’Connor, M.I.; Piehler, M.F.; Leech, D.M.; Anton, A.; Bruno, J.F. Warming and Resource Availability Shift Food Web Structure and Metabolism. PLoS ONE 2009, 7, e1000178. [Google Scholar]
- Aberle, N.; Bauer, B.; Lewandowska, A.; Gaedke, U.; Sommer, U. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar. Biol. 2012, 159, 2441–2453. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.M.; Fitzpatrick, E.; Wang, A.; Gast, R.J.; Caron, D.A. Low temperature constrains growth rates but not short-term ingestion rates of Antarctic ciliates. Polar Biol. 2013, 36, 645–659. [Google Scholar] [CrossRef]
- Wilken, S.; Huisman, J.; Naus-Wiezer, S.; van Donk, E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol. Lett. 2013, 16, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Franzè, G.; Lavrentyev, P.J. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 2014, 9, e86429. [Google Scholar] [CrossRef] [Green Version]
- Aberle, N.; Malzahn, A.M.; Lewandowska, A.M.; Sommer, U. Some like it hot: The protozooplankton-copepod link in a warming ocean. Mar. Ecol. Prog. Ser. 2015, 519, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, L.; Zhu, X.; Wang, J.; Montagnes, D.J. An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer–prey dynamics. ISME J. 2016, 10, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Franzè, G.; Lavrentyev, P.J. Microbial food web structure and dynamics across a natural temperature gradient in a productive polar shelf system. Mar. Ecol. Prog. Ser. 2017, 569, 89–102. [Google Scholar] [CrossRef]
- Wang, Q.; Lyu, Z.; Omar, S.; Cornell, S.; Yang, Z.; Montagnes, D.J. Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology’s “canonical” activation energies. Limnol. Oceanogr. 2019, 64, 1172–1185. [Google Scholar] [CrossRef]
- Franzè, G.; Menden-Deuer, S. Common temperature-growth dependency and acclimation response in three herbivorous protists. Mar. Ecol. Prog. Ser. 2020, 634, 1–13. [Google Scholar] [CrossRef]
- Strom, S.L.; Brainard, M.A.; Holmes, J.L.; Olson, M.B. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar. Biol. 2001, 138, 355–368. [Google Scholar] [CrossRef]
- Chen, B.; Liu, H.; Landry, M.R.; Chen, M.; Sun, J.; Shek, L.; Chen, X.; Harrison, P.J. Estuarine nutrient loading affects phytoplankton growth and microzooplankton grazing at two contrasting sites in Hong Kong coastal waters. Mar. Ecol. Prog. Ser. 2009, 379, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.M.; Feng, Y.; Gobler, C.J.; Gutierrez, R.; Hare, C.E.; Leblanc, K.; Hutchins, D.A. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar. Ecol. Prog. Ser. 2009, 388, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Landry, M.R.; Huang, B.; Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 2012, 57, 519–526. [Google Scholar] [CrossRef]
- Lawrence, C.; Menden-Deuer, S. Drivers of protistan grazing pressure: Seasonal signals of plankton community composition and environmental conditions. Mar. Ecol. Prog. Ser. 2012, 459, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Lara, E.; Arrieta, J.M.; Garcia-Zarandona, I.; Boras, J.A.; Duarte, C.M.; Agustí, S.; Wassmann, P.F.; Vaqué, D. Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquat. Microb. Ecol. 2013, 70, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Laws, E.A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 2017, 62, 806–817. [Google Scholar] [CrossRef]
- Anderson, S.R.; Harvey, E.L. Seasonal variability and drivers of microzooplankton grazing and phytoplankton growth in a subtropical estuary. Front. Mar. Sci. 2019, 6, 174. [Google Scholar] [CrossRef]
- Cabrerizo, M.J.; Marañón, E. Grazing pressure is independent of prey size in a generalist herbivorous protist: Insights from experimental temperature gradients. Microb. Ecol. 2020, 1–10. [Google Scholar] [CrossRef]
- Liu, K.; Chen, B.; Zheng, L.; Su, S.; Huang, B.; Chen, M.; Liu, H. What controls microzooplankton biomass and herbivory rate across marginal seas of China? Limnol. Oceanogr. 2020. [Google Scholar] [CrossRef]
- Aberle, N.; Lengfellner, K.; Sommer, U. Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 2007, 150, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Sommer, U.; Aberle, N.; Engel, A.; Hansen, T.; Lengfellner, K.; Sandow, M.; Wohlers, J.; Zöllner, E.; Riebesell, U. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 2007, 150, 655–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winder, M.; Berger, S.A.; Lewandowska, A.; Aberle, N.; Lengfellner, K.; Sommer, U.; Diehl, S. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Mar. Biol. 2012, 159, 2491–2501. [Google Scholar] [CrossRef]
- Berger, A.S.; Diehl, S.; Stibor, H.; Sebastian, P.; Scherz, A. Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: No sign of trophic mismatch. Freshw. Biol. 2014, 59, 2204–2220. [Google Scholar] [CrossRef]
- Calbet, A.; Sazhin, A.F.; Nejstgaard, J.C.; Berger, S.A.; Tait, Z.S.; Olmos, L.; Sousoni, D.; Isari, S.; Martínez, R.A.; Bouquet, J.-M.; et al. Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency. PLoS ONE 2014, 9, e94388. [Google Scholar] [CrossRef] [Green Version]
- Horn, H.G.; Boersma, M.; Garzke, J.; Löder, M.G.; Sommer, U.; Aberle, N. Effects of high CO2 and warming on a Baltic Sea microzooplankton community. ICES J. Mar. Sci. 2016, 73, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Itaki, T.; Ito, M.; Narita, H.; Ahagon, N.; Sakai, H. Depth distribution of radiolarians from the Chukchi and Beaufort Seas, western Arctic. Deep Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 1507–1522. [Google Scholar] [CrossRef]
- Edwards, M.; Johns, D.; Leterme, S.; Svendsen, E.; Richardson, A. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol. Oceanogr. 2006, 51, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Field, D.B.; Baumgartner, T.R.; Charles, C.D.; Ferreira-Bartrina, V.; Ohman, M.D. Planktonic foraminifera of the California Current reflect 20th-century warming. Science 2006, 311, 63–66. [Google Scholar] [CrossRef] [PubMed]
- McLeod, D.J.; Hallegraeff, G.M.; Hosie, G.W.; Richardson, A.J. Climate-driven range expansion of the red-tide dinoflagellate Noctiluca scintillans into the Southern Ocean. J. Plankton Res. 2012, 34, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Hinder, S.L.; Manning, J.E.; Gravenor, M.B.; Edwards, M.; Walne, A.W.; Burkill, P.H.; Hays, G.C. Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea. J. Plankton Res. 2012, 34, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Langer, M.R.; Weinmann, A.E.; Lötters, S.; Rödder, D. “Strangers” in paradise: Modeling the biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea. J. Foraminifer. Res. 2012, 42, 234–244. [Google Scholar] [CrossRef]
- Beaugrand, G.; McQuatters-Gollop, A.; Edwards, M.; Goberville, E. Long-term responses of North Atlantic calcifying plankton to climate change. Nat. Clim. Chang. 2013, 3, 263–267. [Google Scholar] [CrossRef]
- Langer, M.R.; Weinmann, A.E.; Lötters, S.; Bernhard, J.M.; Rödder, D. Climate-driven range extension of Amphistegina (Protista, Foraminiferida): Models of current and predicted future ranges. PLoS ONE 2013, 8, e54443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikenoue, T.; Bjørklund, K.; Kruglikova, S.; Onodera, J.; Kimoto, K.; Harada, N. Flux variations and vertical distributions of microzooplankton (Radiolaria) in the western Arctic Ocean: Environmental indices in a warming Arctic. Biogeosci. Discuss. 2014, 11. [Google Scholar] [CrossRef]
- Chivers, W.J.; Walne, A.W.; Hays, G.C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 2017, 8, 14434. [Google Scholar] [CrossRef]
- Jonkers, L.; Hillebrand, H.; Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 2019, 570, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Saiz, E.; Calbet, A. Copepod feeding in the ocean: Scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 2011, 666, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Vidussi, F.; Mostajir, B.; Fouilland, E.; le Floch, E.; Nouguier, J.; Roques, C.; Got, P.; Thibault-Botha, D.; Bouvier, T.; Troussellier, M. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 2011, 56, 206–218. [Google Scholar] [CrossRef]
- Dolan, J.R.; Yang, E.J.; Kim, T.W.; Kang, S.-H. Microzooplankton in a warming Arctic: A comparison of tintinnids and radiolarians from summer 2011 and 2012 in the Chukchi Sea. Acta Protozool. 2014, 53, 101–113. [Google Scholar]
- Lewandowska, A.M.; Boyce, D.G.; Hofmann, M.; Matthiessen, B.; Sommer, U.; Worm, B. Effects of sea surface warming on marine plankton. Ecol. Lett. 2014, 17, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, S.; Wang, L.; Li, T.; Huang, H. Feeding response of the tropical copepod Acartia erythraea to short-term thermal stress: More animal-derived food was consumed. PeerJ 2018, 6, e6129. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Flynn, K.J.; Mitra, A.; Glibert, P.M. Simulating effects of variable stoichiometry and temperature on mixotrophy in the harmful dinoflagellate Karlodinium veneficum. Front. Mar. Sci. 2018, 5, 320. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G.; Esteban, G.F. Achieving temperature-size changes in a unicellular organism. ISME J. 2013, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Suffrian, K.; Simonelli, P.; Nejstgaard, J.C.; Putzeys, S.; Carotenuto, Y.; Antia, A.N. Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences 2008, 5, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Weisse, T.; Stadler, P. Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 2006, 51, 1708–1715. [Google Scholar] [CrossRef]
- Nielsen, L.T.; Jakobsen, H.H.; Hansen, P.J. High resilience of two coastal plankton communities to twenty-first century seawater acidification: Evidence from microcosm studies. Mar. Biol. Res. 2010, 6, 542–555. [Google Scholar] [CrossRef]
- Nielsen, L.T.; Hallegraeff, G.M.; Wright, S.W.; Hansen, P.J. Effects of experimental seawater acidification on an estuarine plankton community. Aquat. Microb. Ecol. 2012, 65, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Aberle, N.; Schulz, K.G.; Stuhr, A.; Malzahn, A.M.; Ludwig, A.; Riebesell, U. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community. Biogeosciences 2013, 10, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Leu, E.; Daase, M.; Schulz, K.G.; Stuhr, A.; Riebesell, U. Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 2013, 10, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Rossoll, D.; Sommer, U.; Winder, M. Community interactions dampen acidification effects in a coastal plankton system. Mar. Ecol. Prog. Ser. 2013, 486, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, R.J.; Winder, M.; Stuhr, A.; Almén, A.-K.; Engström-Öst, J.; Riebesell, U. Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences 2016, 13, 6625–6635. [Google Scholar] [CrossRef] [Green Version]
- Horn, H.G.; Sander, N.; Stuhr, A.; Algueró-Muñiz, M.; Bach, L.T.; Löder, M.G.J.; Boersma, M.; Riebesell, U.; Aberle, N. Low CO2 sensitivity of microzooplankton communities in the Gullmar Fjord, Skagerrak: Evidence from a long-term mesocosm study. PLoS ONE 2016, 11, e0165800. [Google Scholar] [CrossRef] [Green Version]
- Langer, J.A.F.; Sharma, R.; Schmidt, S.I.; Bahrdt, S.; Horn, H.G.; Algueró-Muñiz, M.; Nam, B.; Achterberg, E.P.; Riebesell, U.; Boersma, M.; et al. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak. PLoS ONE 2017, 12, e0175808. [Google Scholar] [CrossRef]
- Lischka, S.; Bach, L.T.; Schulz, K.G.; Riebesell, U. Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: Insights from a large-scale mesocosm experiment. Biogeosciences 2017, 14, 447–466. [Google Scholar] [CrossRef] [Green Version]
- Meunier, C.L.; Algueró-Muñiz, M.; Horn, H.G.; Lange, J.A.; Boersma, M. Direct and indirect effects of near-future pCO2 levels on zooplankton dynamics. Mar. Freshw. Res. 2017, 68, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, X.; Zhuang, Y.; Lu, J.; Wang, Y.; Gonçalves, R.J.; Li, X.; Lou, Y.; Guan, W. Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi. Harmful Algae 2019, 81, 1–9. [Google Scholar] [CrossRef]
- Horn, H.G.; Boersma, M.; Garzke, J.; Sommer, U.; Aberle, N. High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community. Mar. Biol. 2020, 167, 69. [Google Scholar] [CrossRef]
- Park, K.-T.; Lee, K.; Shin, K.; Yang, E.J.; Hyun, B.; Kim, J.-M.; Noh, J.H.; Kim, M.; Kong, B.; Choi, D.H. Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environ. Sci. Technol. 2014, 48, 4750–4756. [Google Scholar] [CrossRef]
- Moy, A.D.; Howard, W.R.; Bray, S.G.; Trull, T.W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2009, 2, 276–280. [Google Scholar] [CrossRef]
- Errera, R.M.; Yvon-Lewis, S.; Kessler, J.D.; Campbell, L. Reponses of the dinoflagellate Karenia brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 2014, 37, 110–116. [Google Scholar] [CrossRef]
- Bręk-Laitinen, G.; Bellido, J.L.; Ojala, A. Response of a microbial food web to prolonged seasonal hypoxia in a boreal lake. Aquat. Biol. 2012, 14, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, B.A.; Schnetzer, A.; Gellene, A.G.; Oberg, C.; Sukhatme, G.S.; Caron, D.A. Effects of an acute hypoxic event on microplankton community structure in a coastal harbor of Southern California. Estuaries Coasts 2013, 36, 135–148. [Google Scholar] [CrossRef]
- Rocke, E.; Jing, H.; Xia, X.; Liu, H. Effects of hypoxia on the phylogenetic composition and species distribution of protists in a subtropical harbor. Microb. Ecol. 2016, 72, 96–105. [Google Scholar] [CrossRef]
- Stock, A.; Jürgens, K.; Bunge, J.; Stoeck, T. Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat. Microb. Ecol. 2009, 55, 267–284. [Google Scholar] [CrossRef]
- Orsi, W.; Song, Y.C.; Hallam, S.; Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 2012, 6, 1586–1601. [Google Scholar] [CrossRef]
- Parris, D.J.; Ganesh, S.; Edgcomb, V.P.; DeLong, E.F.; Stewart, F.J. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. Front. Microbiol. 2014, 5, 543. [Google Scholar] [CrossRef] [Green Version]
- Capriulo, G.M.; Smith, G.; Troy, R.; Wikfors, G.H.; Pellet, J.; Yarish, C. The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia 2002, 475, 263–333. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Al-Rasheid, K.A.S.; Warren, A.; Hu, X.; Song, W. Planktonic ciliate communities in a semi-enclosed bay of Yellow Sea, northern China: Annual cycle. J. Mar. Biol. Assoc. 2010, 91, 97–105. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Hu, X.; Zhu, M.; Al-Rasheid, K.A.S.; Warren, A. An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar. Pollut. Bull. 2011, 62, 227–235. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Hu, X.; Warren, A.; Song, W. Functional groups of marine ciliated protozoa and their relationships to water quality. Environ. Sci. Pollut. Res. 2013, 20, 5272–5280. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, H.; Warren, A. Insights into discriminating environmental quality status using taxonomic distinctness based on a small species pool of ciliated protozoa in marine ecosystems. Sci. Total Environ. 2014, 468–469, 663–670. [Google Scholar]
- Xu, K.; Choi, J.K.; Lei, Y.; Yang, E.J. Marine ciliate community in relation to eutrophication of coastal waters in the Yellow Sea. Chin. J. Oceanol. Limnol. 2011, 29, 118–127. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, W.; Wang, W.; Zhang, G.; Xiao, T.; Xu, H. Can tintinnids be used for discriminating water quality status in marine ecosystems? Mar. Pollut. Bull. 2015, 101, 549–555. [Google Scholar] [CrossRef] [PubMed]
- López-Abbate, M.C.; Molinero, J.C.; de Cao, M.S.B.; Silva, R.; Negri, R.; Guinder, V.A.; Hozbor, M.C.; Hoffmeyer, M.S. Eutrophication disrupts summer trophic links in an estuarine microbial food web. Food Webs 2019, 20, e00121. [Google Scholar] [CrossRef]
- López-Abbate, M.C.; de Cao, M.S.B.; Pettigrosso, R.E.; Guinder, V.A.; Dutto, M.S.; Berasategui, A.A.; Chazarreta, C.J.; Hoffmeyer, M.S. Seasonal changes in microzooplankton feeding behavior under varying eutrophication level in the Bahía Blanca estuary (SW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 2016, 481, 25–33. [Google Scholar] [CrossRef]
- Sivasankar, R.; Ezhilarasan, P.; Kumar, P.S.; Naidu, S.A.; Rao, G.D.; Kanuri, V.V.; Rao, V.R.; Ramu, K. Loricate ciliates as an indicator of eutrophication status in the estuarine and coastal waters. Mar. Pollut. Bull. 2018, 129, 207–211. [Google Scholar] [CrossRef]
- Redden, A.M.; Sanderson, B.G.; Rissik, D. Extending the analysis of the dilution method to obtain the phytoplankton concentration at which microzooplankton grazing becomes saturated. Mar. Ecol. Prog. Ser. 2002, 226, 27–33. [Google Scholar] [CrossRef]
- Juhl, A.R.; Murrell, M.C. Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary. Aquat. Microb. Ecol. 2005, 38, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Flynn, K.J. Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2006, 2, 194–197. [Google Scholar] [CrossRef]
- Teixeira, I.; Figueiras, F. Feeding behaviour and non-linear responses in dilution experiments in a coastal upwelling system. Aquat. Microb. Ecol. 2009, 55, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, B.G.; Redden, A.M.; Evans, K. Grazing constants are not constant: Microzooplankton grazing is a function of phytoplankton production in an Australian lagoon. Estuaries Coasts 2012, 35, 1270–1284. [Google Scholar] [CrossRef]
- Schmoker, C.; Russo, F.; Drillet, G.; Trottet, A.; Mahjoub, M.S.; Hsiao, S.H.; Larsen, O.; Tun, K.; Calbet, A. Effects of eutrophication on the planktonic food web dynamics of marine coastal ecosystems: The case study of two tropical inlets. Mar. Environ. Res. 2016, 119, 176–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, A.M.; Baustian, M.M.; Turner, R.E.; Rabalais, N.N.; Chmura, G.L. Dinoflagellate cysts track eutrophication in the Northern Gulf of Mexico. Estuaries Coasts 2018, 41, 1322–1336. [Google Scholar] [CrossRef]
- Li, A.; Stoecker, D.K.; Coats, D.W. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): Grazing responses to light intensity and inorganic nutrients. J. Phycol. 2000, 36, 33–45. [Google Scholar] [CrossRef]
- Heil, C.A.; Glibert, P.M.; Fan, C. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 2005, 4, 449–470. [Google Scholar] [CrossRef]
- Glibert, P.M.; Burkholder, J.M.; Parrow, M.W.; Lewitus, A.J.; Gustafson, D.E. Direct uptake of nitrogen by Pfiesteria piscicida and Pfiesteria shumwayae, and nitrogen nutritional preferences. Harmful Algae 2006, 5, 380–394. [Google Scholar] [CrossRef]
- Glibert, P.M.; Mayorga, E.; Seitzinger, S. Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: Application of spatially explicit nutrient export models. Harmful Algae 2008, 8, 33–38. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Glibert, P.M.; Skelton, H.M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 2008, 8, 77–93. [Google Scholar] [CrossRef]
- Hall, N.S.; Litaker, R.W.; Fensin, E.; Adolf, J.E.; Bowers, H.A.; Place, A.R.; Paerl, H.W. Environmental factors contributing to the development and demise of a toxic dinoflagellate (Karlodinium veneficum) bloom in a shallow, eutrophic, lagoonal estuary. Estuaries Coasts 2008, 31, 402–418. [Google Scholar] [CrossRef]
- Kudela, R.M.; Lane, J.Q.; Cochlan, W.P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae 2008, 8, 103–110. [Google Scholar] [CrossRef]
- Harrison, P.J.; Furuya, K.; Glibert, P.M.; Xu, J.; Liu, H.; Yin, K.; Lee, J.H.; Anderson, D.M.; Gowen, R.; Al-Azri, A. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 2011, 29, 807–831. [Google Scholar] [CrossRef]
- Suikkanen, S.; Pulina, S.; Engström-Öst, J.; Lehtiniemi, M.; Lehtinen, S.; Brutemark, A. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 2013, 8, e66475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, A.; Flynn, K.J.; Burkholder, J.M.; Berge, T.; Calbet, A.; Raven, J.A.; Granéli, E.; Glibert, P.M.; Hansen, P.J.; Stoecker, D.K.; et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 2014, 11, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Liu, X.; Irwin, A.J.; Laws, E.A.; Wang, L.; Chen, B.; Zeng, Y.; Huang, B. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Res. 2018, 128, 206–216. [Google Scholar] [CrossRef]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Allen, A.P.; Gillooly, J.F.; Brown, J.H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 2005, 19, 202–213. [Google Scholar] [CrossRef]
- Kimmance, S.A.; Atkinson, D.; Montagnes, D.J.S. Do temperature-food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina. Aquat. Microb. Ecol. 2006, 42, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Domínguez, E.; Vaqué, D.; Gasol, J.M. Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of the NW Mediterranean. Aquat. Microb. Ecol. 2012, 67, 107–121. [Google Scholar] [CrossRef]
- Calbet, A.; Saiz, E.; Almeda, R.; Movilla, J.I.; Alcaraz, M. Low microzooplankton grazing rates in the Arctic Ocean during a Phaeocystis pouchetii bloom (Summer 2007): Fact or artifact of the dilution technique? J. Plankton Res. 2011, 33, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Fenton, A.; Kettley, L.; Roberts, P.; Montagnes, D.J.S. Reconsidering the importance of the past in predator-prey models: Both numerical and functional responses depend on delayed prey densities. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131389. [Google Scholar] [CrossRef]
- Nielsen, T.G.; Kiørboe, T. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. Ciliates. Limnol. Oceanogr. 1994, 39, 508–519. [Google Scholar] [CrossRef]
- Banse, K. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial 1, 2. Limnol. Oceanogr. 1982, 27, 1059–1071. [Google Scholar] [CrossRef]
- Leles, S.; Mitra, A.; Flynn, K.J.; Stoecker, D.K.; Hansen, P.J.; Calbet, A.; McManus, G.B.; Sanders, R.W.; Caron, D.A.; Not, F. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilken, S.; Soares, M.; Urrutia-Cordero, P.; Ratcovich, J.; Ekvall, M.K.; van Donk, E.; Hansson, L.A. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 2018, 63, S142–S155. [Google Scholar] [CrossRef] [Green Version]
- Kvale, K.F.; Meissner, K.J.; Keller, D.P. Potential increasing dominance of heterotrophy in the global ocean. Environ. Res. Lett. 2015, 10, 074009. [Google Scholar] [CrossRef]
- Princiotta, S.D.; Smith, B.T.; Sanders, R.W. Temperature-dependent phagotrophy and phototrophy in a mixotrophic chrysophyte. J. Phycol. 2016, 52, 432–440. [Google Scholar] [CrossRef]
- Heinze, A.W.; Truesdale, C.L.; DeVaul, S.B.; Swinden, J.; Sanders, R.W. Role of temperature in growth, feeding, and vertical distribution of the mixotrophic chrysophyte Dinobryon. Aquat. Microb. Ecol. 2013, 71, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Peters, F. Prediction of planktonic protistan grazing rates. Limnol. Oceanogr. 1994, 39, 195–206. [Google Scholar] [CrossRef]
- Eppley, R.W. Temperature and phytoplankton growth in the sea. Fish. Bull. 1972, 70, 1063–1085. [Google Scholar]
- López-Urrutia, Á.; Martin, E.S.; Harris, R.P.; Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl. Acad. Sci. USA 2006, 103, 8739–8744. [Google Scholar] [CrossRef] [Green Version]
- Schmoker, C.; Hernández-León, S.; Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 2013, 35, 691–706. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F.; Ross, C. Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 94, 57–67. [Google Scholar] [CrossRef]
- Menden-Deuer, S.; Lawrence, C.; Franzè, G. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom. PeerJ 2018, 6, e5264. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.G.; Ashjian, C.J.; Sherr, E.B.; Sherr, B.F.; Lomas, M.W.; Ross, C.; Alatalo, P.; Gelfman, C.; Keuren, D.V. Mesozooplankton grazing during spring sea-ice conditions in the eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 134, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.G.; Sherr, E.B.; Ashjian, C.J.; Plourde, S.; Sherr, B.F.; Hill, V.; Stockwell, D.A. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1274–1289. [Google Scholar] [CrossRef]
- Levinsen, H.; Turner, J.T.; Nielsen, T.G.; Hansen, B.W. On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar. Ecol. Prog. Ser. 2000, 204, 65–77. [Google Scholar] [CrossRef]
- Agatha, S. Global diversity of aloricate oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water. PLoS ONE 2011, 6, e22466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimmler, A.; Korn, R.; de Vargas, C.; Audic, S.; Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 2016, 6, 33555. [Google Scholar] [CrossRef] [Green Version]
- Caron, D.A. Past president’s address: Protistan biogeography: Why all the fuss? J. Eukaryot. Microbiol. 2009, 56, 105–112. [Google Scholar] [CrossRef]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Messer, L.F.; Ostrowski, M.; Doblin, M.A.; Petrou, K.; Baird, M.E.; Ingleton, T.; Bissett, A.; van de Kamp, J.; Nelson, T.; Paulsen, I.; et al. Microbial tropicalization driven by a strengthening western ocean boundary current. Glob. Chang. Biol. 2020, 26, 5613–5629. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Edwards, M.; Helaouët, P.; Johns, D.G.; Owens, N.J.P.; Raitsos, D.E.; Schroeder, D.; Skinner, J.; Stern, R.F. The continuous plankton recorder survey: How can long-term phytoplankton datasets contribute to the assessment of good environmental status? Estuar. Coast. Shelf Sci. 2015, 162, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Hinder, S.L.; Hays, G.C.; Edwards, M.; Roberts, E.C.; Walne, A.W.; Gravenor, M.B. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Chang. 2012, 2, 271–275. [Google Scholar] [CrossRef]
- Johns, D.; Edwards, M.; Richardson, A.; Spicer, J. Increased blooms of a dinoflagellate in the NW Atlantic. Mar. Ecol. Prog. Ser. 2003, 265, 283–287. [Google Scholar] [CrossRef]
- Trubovitz, S.; Lazarus, D.; Renaudie, J.; Noble, P.J. Marine plankton show threshold extinction response to Neogene climate change. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.L.; Selden, R.L.; Kitchel, Z.J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annu. Rev. Mar. Sci. 2020, 12, 153–179. [Google Scholar] [CrossRef]
- Feng, Z.; Ji, R.; Campbell, R.G.; Ashjian, C.J.; Zhang, J. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean. J. Geophys. Res. Oceans 2016, 121, 6137–6158. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- Bach, L.T.; Alvarez-Fernandez, S.; Hornick, T.; Stuhr, A.; Riebesell, U. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS ONE 2017, 12, e0188198. [Google Scholar] [CrossRef] [Green Version]
- Beaufort, L.; Probert, I.; de Garidel-Thoron, T.; Bendif, E.M.; Ruiz-Pino, D.; Metzl, N.; Goyet, C.; Buchet, N.; Coupel, P.; Grelaud, M.; et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 2011, 476, 80–83. [Google Scholar] [CrossRef]
- Hansen, B.W.; Andersen, C.M.B.; Hansen, P.J.; Nielsen, T.G.; Vismann, B.; Tiselius, P. In situ and experimental evidence for effects of elevated pH on protistan and metazoan grazers. J. Plankton Res. 2017, 41, 257–271. [Google Scholar] [CrossRef]
- Pedersen, M.F.; Hansen, P.J. Effects of high pH on a natural marine planktonic community. Mar. Ecol. Prog. Ser. 2003, 260, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.F.; Hansen, P.J. Effects of high pH on the growth and survival of six marine heterotrophic protists. Mar. Ecol. Prog. Ser. 2003, 260, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hinga, K.R. Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Mar. Ecol. Prog. Ser. 1992, 86, 181–187. [Google Scholar] [CrossRef]
- Kawahata, H.; Fujita, K.; Iguchi, A.; Inoue, M.; Iwasaki, S.; Kuroyanagi, A.; Maeda, A.; Manaka, T.; Moriya, K.; Takagi, H.; et al. Perspective on the response of marine calcifiers to global warming and ocean acidification-Behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 2019, 6, 5. [Google Scholar] [CrossRef]
- Beare, D.; McQuatters-Gollop, A.; van der Hammen, T.; Machiels, M.; Teoh, S.J.; Hall-Spencer, J.M. Long-term trends in calcifying plankton and pH in the North Sea. PLoS ONE 2013, 8, e61175. [Google Scholar] [CrossRef] [Green Version]
- De Kluijver, A.; Soetaert, K.; Czerny, J.; Schulz, K.G.; Boxhammer, T.; Riebesell, U.; Middelburg, J.J. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels. Biogeosciences 2013, 10, 1425–1440. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.B.; Solem, K.; Love, B. Microzooplankton grazing responds to simulated ocean acidification indirectly through changes in prey cellular characteristics. Mar. Ecol. Prog. Ser. 2018, 604, 83–97. [Google Scholar] [CrossRef]
- Riebesell, U.; Schulz, K.G.; Bellerby, R.; Botros, M.; Fritsche, P.; Meyerhöfer, M.; Neill, C.; Nondal, G.; Oschlies, A.; Wohlers, J. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450, 545–548. [Google Scholar] [CrossRef]
- Rossoll, D.; Bermúdez, R.; Hauss, H.; Schulz, K.G.; Riebesell, U.; Sommer, U.; Winder, M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 2012, 7, e34737. [Google Scholar] [CrossRef] [PubMed]
- Bellerby, J.R.G.; Schulz, K.G.; Riebesell, U.; Neill, C.; Nondal, G.; Heegaard, E.; Johannessen, T.; Brown, K.R. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 2008, 5, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, C.; Noordeloos, A.; Witte, H.; Collenteur, M.; Schulz, K.G.; Ludwig, A.; Riebesell, U. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 2013, 10, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [Green Version]
- Edgcomb, V.; Orsi, W.; Taylor, G.T.; Vdacny, P.; Taylor, C.; Suarez, P.; Epstein, S. Accessing marine protists from the anoxic Cariaco Basin. ISME J. 2011, 5, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Medina, L.E.; Taylor, C.D.; Pachiadaki, M.G.; Henríquez-Castillo, C.; Ulloa, O.; Edgcomb, V.P. A review of protist grazing below the photic zone emphasizing studies of oxygen-depleted water columns and recent applications of in situ approaches. Front. Mar. Sci. 2017, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Edgcomb, V.P.; Pachiadaki, M. Ciliates along oxyclines of permanently stratified marine water columns. J. Eukaryot. Microbiol. 2014, 61, 434–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsi, W.; Edgcomb, V.; Jeon, S.; Leslin, C.; Bunge, J.; Taylor, G.T.; Varela, R.; Epstein, S. Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME J. 2011, 5, 1357–1373. [Google Scholar] [CrossRef] [PubMed]
- Orsi, W.; Charvet, S.; Vdacny, P.; Bernhard, J.; Edgcomb, V. Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Front. Microbiol. 2012, 3, 341. [Google Scholar] [CrossRef] [Green Version]
- More, K.D.; Orsi, W.D.; Galy, V.; Giosan, L.; He, L.; Grice, K.; Coolen, M.J.L. A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth Planet. Sci. Lett. 2018, 496, 248–256. [Google Scholar] [CrossRef]
- Rocke, E.; Liu, H. Respiration, growth and grazing rates of three ciliate species in hypoxic conditions. Mar. Pollut. Bull. 2014, 85, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.M.; Daly, K.L. Micro-grazer biomass, composition and distribution across prey resource and dissolved oxygen gradients in the far eastern tropical north Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 75, 28–38. [Google Scholar] [CrossRef]
- Foissner, W. Protists as bioindicators in activated sludge: Identification, ecology and future needs. Eur. J. Protistol. 2016, 55, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Buskey, E.J. How does eutrophication affect the role of grazers in harmful algal bloom dynamics? Harmful Algae 2008, 8, 152–157. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat. Microb. Ecol. 2009, 57, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Calbet, A.; Vaqué, D.; Felipe, J.; Vila, M.; Sala, M.M.; Alcaraz, M.; Estrada, M. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar. Ecol. Prog. Ser. 2003, 259, 303–309. [Google Scholar] [CrossRef]
- Rosetta, C.H.; McManus, G.B. Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae 2003, 2, 109–126. [Google Scholar] [CrossRef]
- Davis, T.W.; Koch, F.; Marcoval, M.A.; Wilhelm, S.W.; Gobler, C.J. Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 2012, 15, 26–35. [Google Scholar] [CrossRef]
- Frost, B. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 1972, 17, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, C.L. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: Nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 1989, 57, 23–33. [Google Scholar] [CrossRef]
- Evans, G.T.; Paranjape, M.A. Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers may be nonlinear. Mar. Ecol. Prog. Ser. 1992, 80, 285–290. [Google Scholar] [CrossRef]
- McManus, G.B.; Ederington-Cantrell, M.C. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Mar. Ecol. Prog. Ser. 1992, 87, 77–85. [Google Scholar] [CrossRef]
- Elser, J.J.; Frees, D.L. Microconsumer grazing and sources of limiting nutrients for phytoplankton growth: Application and complications of a nutrient-depletion/dilution-gradient technique. Limnol. Oceanogr. 1995, 40, 1–16. [Google Scholar] [CrossRef]
- Olson, M.B.; Strom, S.L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: Insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5969–5990. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Dagg, M. Interactions between nutrients, phytoplankton growth, and micro-and mesozooplankton grazing in the plume of the Mississippi River. Mar. Ecol. Prog. Ser. 2003, 258, 31–42. [Google Scholar] [CrossRef]
- Worden, A.Z.; Binder, B.J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 2003, 30, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Moigis, A.-G. The clearance rate of microzooplankton as the key element for describing estimated non-linear dilution plots demonstrated by a model. Mar. Biol. 2006, 149, 743–762. [Google Scholar] [CrossRef]
- Kim, S.; Park, M.G.; Moon, C.; Shin, K.; Chang, M. Seasonal variations in phytoplankton growth and microzooplankton grazing in a temperate coastal embayment, Korea. Estuar. Coast. Shelf Sci. 2007, 71, 159–169. [Google Scholar] [CrossRef]
- Strom, S.L.; Macri, E.L.; Olson, M.B. Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton. Limnol. Oceanogr. 2007, 52, 1480–1494. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Meunier, C.; Wiltshire, K.H.; Boersma, M.; Aberle, N. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar. Biol. 2011, 158, 1551–1580. [Google Scholar] [CrossRef] [Green Version]
- York, J.K.; Costas, B.A.; McManus, G.B. Microzooplankton grazing in green water-results from two contrasting estuaries. Estuaries Coasts 2011, 34, 373–385. [Google Scholar] [CrossRef]
- Calbet, A.; Martínez, R.A.; Isari, S.; Zervoudaki, S.; Nejstgaard, J.C.; Pitta, P.; Sazhin, A.F.; Sousoni, D.; Gomes, A.; Berger, S.A. Effects of light availability on mixotrophy and microzooplankton grazing in an oligotrophic plankton food web: Evidences from a mesocosm study in Eastern Mediterranean waters. J. Exp. Mar. Biol. Ecol. 2012, 424, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Calbet, A.; Saiz, E. Effects of trophic cascades in dilution grazing experiments: From artificial saturated feeding responses to positive slopes. J. Plankton Res. 2013, 35, 1183–1191. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Huang, L.; Hu, Z.; Ke, Z. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon. Biogeosci. Discuss. 2015, 12, 6809–6899. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.P.; Franks, P.J.S.; Landry, M.R. Recovering growth and grazing rates from nonlinear dilution experiments. Limnol. Oceanogr. 2017, 62, 1825–1835. [Google Scholar] [CrossRef]
- Chen, B.; Laws, E.A.; Liu, H.; Huang, B. Estimating microzooplankton grazing half-saturation constants from dilution experiments with nonlinear feeding kinetics. Limnol. Oceanogr. 2014, 59, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Dolan, J.; Gallegos, C.; Moigis, A. Dilution effects on microzooplankton in dilution grazing experiments. Mar. Ecol. Prog. Ser. 2000, 200, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Thingstad, T.F.; HagstrÖm, Å.; Rassoulzadegan, F. Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop? Limnol. Oceanogr. 1997, 42, 398–404. [Google Scholar] [CrossRef]
- Irwin, A.J.; Finkel, Z.V.; Schofield, O.M.E.; Falkowski, P.G. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankton Res. 2006, 28, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Irigoien, X.; Flynn, K.; Harris, R. Phytoplankton blooms: A ‘loophole’in microzooplankton grazing impact? J. Plankton Res. 2005, 27, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Sunda, W.G.; Graneli, E.; Gobler, C.J. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J. Phycol. 2006, 42, 963–974. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 2007, 352, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chin. J. Oceanol. Limnol. 2011, 29, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Wakelin, S.; Lowe, J.; Tinker, J. The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog. Oceanogr. 2010, 86, 361–379. [Google Scholar] [CrossRef]
- Lefort, S.; Aumont, O.; Bopp, L.; Arsouze, T.; Gehlen, M.; Maury, O. Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Glob. Chang. Biol. 2015, 21, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Onda, D.F.L.; Medrinal, E.; Comeau, A.M.; Thaler, M.; Babin, M.; Lovejoy, C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front. Mar. Sci. 2017, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Laufkötter, C.; John, J.G.; Stock, C.A.; Dunne, J.P. Temperature and oxygen dependence of the remineralization of organic matter. Glob. Biogeochem. Cycles 2017, 31, 1038–1050. [Google Scholar] [CrossRef]
- Capotondi, A.; Alexander, M.A.; Bond, N.A.; Curchitser, E.N.; Scott, J.D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Kwiatkowski, L.; Aumont, O.; Bopp, L.; Ciais, P. The impact of variable phytoplankton stoichiometry on projections of primary production, food quality, and carbon uptake in the global ocean. Glob. Biogeochem. Cycles 2018, 32, 516–528. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Oxford, UK, 2002. [Google Scholar]
- Talmy, D.; Martiny, A.; Hill, C.; Hickman, A.; Follows, M. Microzooplankton regulation of surface ocean POC: PON ratios. Glob. Biogeochem. Cycles 2016, 30, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Marki, A.; Pahlow, M. Microzooplankton stoichiometric plasticity inferred from modeling mesocosm experiments in the Peruvian upwelling region. Front. Mar. Sci. 2016, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Golz, A.-L.; Burian, A.; Winder, M. Stoichiometric regulation in micro- and mesozooplankton. J. Plankton Res. 2015, 37, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, P.; Villar-Argaiz, M.; Medina-Sanchez, J.M. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse? Microb. Ecol. 2008, 56, 350–363. [Google Scholar] [CrossRef]
- Meunier, C.L.; Alvarez-Fernandez, S.; Cunha-Dupont, A.Ö.; Geisen, C.; Malzahn, A.M.; Boersma, M.; Wiltshire, K.H. The craving for phosphorus in heterotrophic dinoflagellates and its potential implications for biogeochemical cycles. Limnol. Oceanogr. 2018, 63, 1774–1784. [Google Scholar] [CrossRef]
- Pree, B.; Larsen, A.; Egge, J.K.; Simonelli, P.; Madhusoodhanan, R.; Tsagaraki, T.M.; Våge, S.; Erga, S.R.; Bratbak, G.; Thingstad, T.F. Dampened copepod-mediated trophic cascades in a microzooplankton-dominated microbial food web: A mesocosm study. Limnol. Oceanogr. 2017, 62, 1031–1044. [Google Scholar] [CrossRef]
- Johnson, M.D. Inducible mixotrophy in the dinoflagellate Prorocentrum minimum. J. Eukaryot. Microbiol. 2015, 62, 431–443. [Google Scholar] [CrossRef]
- D’Alelio, D.; Libralato, S.; Wyatt, T.; d’Alcalà, M.R. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 2016, 6, 21806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Randerson, J.T.; Moore, J.K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 2016, 13, 5151–5170. [Google Scholar] [CrossRef] [Green Version]
- Marinov, I.; Doney, S.C.; Lima, I.D. Response of ocean phytoplankton community structure to climate change over the 21st century: Partitioning the effects of nutrients, temperature and light. Biogeosciences 2010, 7, 3941–3959. [Google Scholar] [CrossRef] [Green Version]
- Morán, X.A.G.; Alonso-Sáez, L.; Nogueira, E.; Ducklow, H.W.; González, N.; López-Urrutia, Á.; Díaz-Pérez, L.; Calvo-Díaz, A.; Arandia-Gorostidi, N.; Huete-Stauffer, T.M. More, smaller bacteria in response to ocean’s warming? Proc. R. Soc. B Biol. Sci. 2015, 282, 20150371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutkiewicz, S.; Morris, J.J.; Follows, M.J.; Scott, J.; Levitan, O.; Dyhrman, S.T.; Berman-Frank, I. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 2015, 5, 1002–1006. [Google Scholar] [CrossRef]
- Chust, G.; Allen, J.I.; Bopp, L.; Schrum, C.; Holt, J.; Tsiaras, K.; Zavatarelli, M.; Chifflet, M.; Cannaby, H.; Dadou, I.; et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 2014, 20, 2124–2139. [Google Scholar] [CrossRef] [PubMed]
Global Hazard | Impact | Reference Agreement | References |
---|---|---|---|
Warming | Higher growth rate | high | [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Higher grazing rate | high | [44,45,47,49,50,51,54,55,56,57,58,59,60,61,62,63] | |
Higher trophic coupling with phytoplankton in polar and subpolar ecosystems | high | [42,45,46,49,51,57,64,65,66,67,68,69] | |
Poleward range expansion of warm-water species | medium | [70,71,72,73,74,75,76,77,78,79,80] | |
Shifts in timing | medium | [45,49,52,69,71,74] | |
Increased predation risk on ciliates, especially in oligotrophic areas | low | [49,81,82,83,84,85] | |
Higher relative contribution of heterotrophy to the growth of primarily heterotrophic mixotrophs | low | [47,86] | |
Cell volume reduction | low | [43,51,53,87] | |
Trophic mismatch | low | [79] | |
OA and pCO2 Increase | Weak or no direct impact to non-calcifying organisms | high | [69,88,89,90,91,92,93,94,95,96,97,98,99,100] |
Weak or nondetectable effect on composition and diversity | high | [69,90,91,92,94,96,97,101] | |
Weak to moderate effect on grazing rate | medium | [88,96,101] | |
Positive effect on biomass due to increasing prey edibility | low | [56,96,98] | |
Negative effect on biomass due to decreasing prey edibility and/or nutritional quality | low | [68,99,101,102] | |
Growth inhibition of calcifying organisms | low | [103] | |
Growth stimulation of primarily phototrophic mixotrophs | low | [98,104] | |
Deoxygenation | Ciliates species replacement | medium | [105,106,107] |
Diversity loss | medium/high | [106,107,108,109,110] | |
Coastal Eutrophication | Species replacement | high | [111,112,113,114,115,116,117,118,119,120] |
Lower trophic coupling | high | [55,68,118,119,121,122,123,124,125,126] | |
Increased biomass | medium | [55,120,126,127] | |
Stimulation of mixotrophic taxa | medium | [128,129,130,131,132,133,134,135,136,137,138] |
Hazard | Exposure | Sensitivity | Adaptive Capacity | Overall Effect | Vulnerability |
---|---|---|---|---|---|
Warming | high | high | Moderate/high: most species will be stimulated by higher temperatures due to a lower thermal restriction on metabolism. Species can shift their range distribution toward the poles and can widen their productive windows to meet thermal niches and to match prey pulses. | + | low |
OA and pCO2 Increase | high | low | High: most non-calcifying species can tolerate the projected pH for 2100. Most community-level effects will be mediated by prey composition and quality. Mixotrophy and wide internal stoichiometry are adaptations to cope with shifts in prey driven by increasing pCO2. | +/0/− | low |
Deoxygenation | low | high | Moderate/low: at the community level, oxygen depletion can be compensated with species replacement. Some species may form cysts to overcome periodic hypoxic events. However, ciliates have specific oxygen niches and sustained hypoxic conditions cannot be coped with individual plasticity but with species replacement. Neritic species will show the highest vulnerability given the increasing frequency and magnitude of hypoxic events in coastal areas. | 0/− | medium/high |
Coastal Eutrophication | medium | medium | High: many species are able to tolerate severe organic pollution and can compensate for a drop in water quality by species replacement. Species will take advantage of the abundant prey stimulated by nutrient pulses. Mixotrophic species will be benefited under nutrient imbalance conditions due to their trophic plasticity. However, a lower trophic efficiency is expected due to feeding saturation and a relative increase in unpalatable prey. | +/− | low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Abbate, M.C. Microzooplankton Communities in a Changing Ocean: A Risk Assessment. Diversity 2021, 13, 82. https://doi.org/10.3390/d13020082
López-Abbate MC. Microzooplankton Communities in a Changing Ocean: A Risk Assessment. Diversity. 2021; 13(2):82. https://doi.org/10.3390/d13020082
Chicago/Turabian StyleLópez-Abbate, M. Celeste. 2021. "Microzooplankton Communities in a Changing Ocean: A Risk Assessment" Diversity 13, no. 2: 82. https://doi.org/10.3390/d13020082
APA StyleLópez-Abbate, M. C. (2021). Microzooplankton Communities in a Changing Ocean: A Risk Assessment. Diversity, 13(2), 82. https://doi.org/10.3390/d13020082