Flora and Vegetation of Yunnan, Southwestern China: Diversity, Origin and Evolution
Abstract
:1. Introduction
2. Composition and Characteristics of the Flora and Vegetation of Yunnan
2.1. Floristic Composition and Geographical Elements
2.2. Vegetation Types and Distribution
2.3. Biogeographical Divergence of the Flora and Vegetation of Yunnan
3. Uplift in the Himalayan-Qinghai-Tibet Plateau and the Following Monsoon Climate Formation Affected the Evolution of Vegetation and Flora in Yunnan
4. Origin and Evolution of Yunnan Biodiversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, H. A biogeographical comparison between Yunnan, Southwest China, and Taiwan, Southeast China, with implications for the evolutionary history of the East Asian Flora. Ann. Mo. Bot. Gard. 2016, 101, 750–771. [Google Scholar] [CrossRef]
- Zhu, H. Vegetation diversity of Yunnan. J. Southwest For. Univ. 2022, 42, 1–12. [Google Scholar]
- Zhu, H. The tropical rainforest vegetation in Xishuangbanna. Chin. Geogr. Sci. 1992, 2, 64–73. [Google Scholar] [CrossRef]
- Zhu, H. Floristic plant geography on the dipterocarp forest of Xishuangbanna. Acta Bot. Yunnan 1993, 15, 233–253. [Google Scholar]
- Zhu, H. The floristic characteristics of the tropical rainforest in Xishuangbanna. Chin. Geogr. Sci. 1994, 4, 174–185. [Google Scholar] [CrossRef]
- Zhu, H. Floristic relationships between dipterocarp forest of Xishuangbanna and forests of tropical Asia and S China. Acta Bot. Yunnan 1994, 16, 97–106. [Google Scholar]
- Zhu, H. Ecological and biogeographical studies on the tropical rain forest of south Yunnan, SW China with a special reference to its relation with rain forests of tropical Asia. J. Biogeogr. 1997, 24, 647–662. [Google Scholar] [CrossRef]
- Zhu, H. Forest vegetation of Xishuangbanna, south China. For. Stud. China 2006, 8, 1–58. [Google Scholar]
- Zhu, H. The tropical flora of southern Yunnan, China, and its biogeographical affinities. Ann. Mo. Bot. Gard. 2008, 95, 661–680. [Google Scholar]
- Zhu, H. Advances in biogeography of the tropical rainforest in southern Yunnan, southwestern China. Trop. Conserv. Sci. 2008, 1, 34–42. [Google Scholar]
- Zhu, H. Biogeographical divergence of the flora of Yunnan, southwestern China initiated by the uplift of Himalaya and extrusion of Indochina block. PLoS ONE 2012, 7, e45601. [Google Scholar]
- Zhu, H. The tropical forests of southern China and conservation of biodiversity. Bot. Rev. 2017, 83, 87–105. [Google Scholar] [CrossRef]
- Zhu, H. A biogeographical study on tropical flora of southern China. Ecol. Evol. 2017, 7, 10398–10408. [Google Scholar] [CrossRef]
- Zhu, H.; Shi, J.P.; Zhao, C.J. Species composition, physiognomy and plant diversity of the tropical montane evergreen broad-leaved forest in southern Yunnan. Biodivers. Conserv. 2005, 14, 2855–2870. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, M.; Hu, H.B. Geological history, flora, and vegetation of Xishuangbanna, southern Yunnan, China. Biotropica 2006, 38, 310–317. [Google Scholar] [CrossRef]
- Zhu, H.; Chai, Y.; Zhou, S.S.; Wang, H.; Yan, L.C. Vegetation, floristic composition and species diversity in a tropical mountain nature reserve in southern Yunnan, SW China with implications to conservation. Trop. Conserv. Sci. 2015, 8, 528–546. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Tan, Y.H.; Yan, L.C.; Liu, F.Y. Flora of the savanna-like vegetation in hot dry valleys, southwestern China with implications to their origin and evolution. Bot. Rev. 2020, 86, 281–297. [Google Scholar] [CrossRef]
- Zhu, H.; Ashton, P.; Gu, B.J.; Zhou, S.S.; Tan, Y.H. Tropical deciduous forest in Yunnan, southwestern China: Implications for geological and climatic histories from a little-known forest formation. Plant Divers. 2021, 34, 444–451. [Google Scholar] [CrossRef]
- Zhu, H.; Chai, Y.; Zhou, S.S.; Yan, L.C.; Shi, J.P.; Yang, G.P. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China. Plant Divers. 2016, 38, 295–302. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, S.S.; Yan, L.C.; Shi, J.P.; Shen, Y.X. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China. Bot. Rev. 2019, 85, 131–148. [Google Scholar] [CrossRef]
- Zhu, H. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China. Chin. J. Plant Ecol. 2021, 45, 224–241. [Google Scholar] [CrossRef]
- Wu, Z.Y. Vegetation of Yunnan; Science Press: Beijing, China, 1987; pp. 143–163. [Google Scholar]
- Clark, M.K.; Schoenbohm, L.M.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W.; Wang, E.; Chen, L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 2004, 23, TC1006. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories. PLoS ONE 2013, 8, e64213. [Google Scholar]
- Zhu, H. Biogeography of Shangri-la flora in southwestern China. Phytotaxa 2015, 203, 231–244. [Google Scholar]
- Zhu, H. Geographical patterns of Yunnan seed plants may be influenced by the Clockwise Rotation of the Simao-Indochina Geoblock. Front. Earth Sci. 2015, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H. On the origin and evolution of the flora of Yunnan. Plant Sci. J. 2018, 36, 32–37. [Google Scholar]
- Zhu, H.; Yan, L.C. Biogeographical affinities of the flora of southeastern Yunnan, China. Bot. Stud. 2009, 50, 467–475. [Google Scholar]
- Zhu, H.; Wang, H.; Li, B.G.; Sirirugsa, P. Biogeography and floristic affinity of the limestone flora in southern Yunnan, China. Ann. Mo. Bot. Gard. 2003, 90, 444–465. [Google Scholar] [CrossRef]
- Tanaka, T. Species Problem in Citrus; Japanese Society for the Promotion of Science: Tokyo, Japan, 1954; pp. 58–69. [Google Scholar]
- Li, H.; He, D.M.; Bartholomew, B.; eLong, C.-L. Re-examination of the biological effect of plate movement—Impact of Shan-Malay Plate displacement (the movement of Burma-Malay Geoblock) on the biota of the Gaoligong Mountains. Acta Bot. Yunnan 1999, 21, 407–425. [Google Scholar]
- Zhu, H.; Yan, L.C. A discussion on biogeographical lines of the tropical-subtropical Yunnan. Chin. Geogr. Sci. 2002, 12, 90–96. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, L.C. Note on the realities and significances of the“Tanaka line”and the “Ecogeographical Diagonal line”in Yunnan. Adv. Earth Sci. 2003, 18, 871–877. [Google Scholar]
- Zhu, H. A new biogeographical line between south Yunnan and southeast Yunnan. Adv. Earth Sci. 2011, 26, 916–925. [Google Scholar]
- Jacques, F.M.B.; Su, T.; Spicer, R.A.; Xing, Y.W.; Huang, Y.J.; Zhou, Z.K. Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeogr. Palaeocl. 2014, 411, 208–215. [Google Scholar] [CrossRef]
- Jacques, F.M.B.; Shi, G.L.; Su, T.; Zhou, Z.K. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 2015, 216, 76–91. [Google Scholar] [CrossRef]
- Zhu, H. Floristic divergence of the evergreen broad-leaved forests in Yunnan, southwestern China. Phytotaxa 2019, 393, 001–020. [Google Scholar] [CrossRef]
- Huang, Y.J.; Jia, L.B.; Wang, Q.; Mosbrugger, V.; Utescher, T.; Su, T.; Zhou, Z.K. Cenozoic plant diversity of Yunnan: A review. Plant Divers. 2016, 38, 271–282. [Google Scholar] [CrossRef]
- Ding, W.N.; Ree, R.H.; Spicer, R.A.; Xing, Y.W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 2020, 369, 578–581. [Google Scholar] [CrossRef]
- Tang, H.; Li, F.S.; Su, T.; Spicer, R.A.; Zhang, S.; Li, S.; Liu, J.; Lauretano, V.; Witkowski, C.R.; Spicer, T.E.V.; et al. Early Oligocene vegetation and climate of southwestern China inferred from palynology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 109988. [Google Scholar] [CrossRef]
- Su, T.; Spicer, R.A.; Wu, F.X.; Farnsworth, A.; Huang, J.; del Rio, C.; Deng, T.; Ding, L.; Deng, W.; Huang, Y.; et al. Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl. Acad. Sci. USA 2020, 117, 32989–32995. [Google Scholar] [CrossRef]
- Li, X.W. Floristic study of Yunnan province. Acta Bot. Yunnan 1985, 7, 361–382. [Google Scholar]
- Li, X.W.; Walker, D. The plant geography of Yunnan Province, southwest China. J. Biogeogr. 1986, 13, 367–397. [Google Scholar]
- Wu, Z.Y. Flora Yunnanica; Science Press: Beijing, China, 1977–2005. (In Chinese) [Google Scholar]
- Liu, S.Y.; Zhu, H.; Yang, J. A phylogenetic perspective on biogeographical divergence of the flora in Yunnan, Southwestern China. Sci. Rep. 2017, 7, 43032. [Google Scholar] [CrossRef]
- Li, R.; Yang, J. A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia. J. Syst. Evol. 2020, 58, 413–442. [Google Scholar] [CrossRef]
- Wang, C.W. A preliminary study of the vegetation of Yunnan. Bull. Fan. Mem. Inst. Bot. 1939, 9, 65–135. [Google Scholar]
- Zeng, J.M. The classification system of natural forest and its geographical distribution in Yunnan. J. Southwest For. Univ. 2018, 38, 1–18. [Google Scholar]
- Liu, S.E.; Feng, Z.W.; Zhao, D.C. Some principles of vegetation zoning in China. J. Integr. Plant Biol. 1959, 8, 87–105. (In Chinese) [Google Scholar]
- Ren, M.E.; Xiang, R.Z. Some theoretical problems of natural zoning in China from a contradictory perspective—On the issue of natural zoning again in China. J. Nanjing Univ. Nat. Sci. Ed. 1963, 3, 1–12. (In Chinese) [Google Scholar]
- Zhu, H. Distribution patterns of genera of Yunnan seed plants with references to their biogeographical significances. Adv. Earth Sci. 2008, 23, 830–839. [Google Scholar]
- Jiang, H.Q. Distribution features and zonal regularity of vegetation in Yunnan. Acta Bot. Yunnan 1980, 2, 22–32. [Google Scholar]
- Jiang, H.Q. Distribution features and zonal regularity of vegetation in Yunnan (continue). Acta Bot. Yunnan 1980, 2, 142–151. [Google Scholar]
- Takhtajian, Y. Floristic Region of the World, English ed.; Cronquist, A., Ed.; Crovello, T.S., Translator; Soviet Sciences Press: Leningrad Branch, 1986; p. 50. (In Russian) [Google Scholar]
- Wu, Z.Y.; Wu, S.G. A Proposal for a new floristic kingdom (realm)—The Asiatic kingdom, its delineation and characteristics. In Floristic Characteristics and Diversity of East Asian Plants; Zhang, A.L., Wu, S.G., Eds, Eds.; China Higher Education & Springer Press: Beijing, China, 1996; pp. 3–42. [Google Scholar]
- Li, X.W.; Li, J. On the validity of Tanaka Line and its significance viewed from the distribution of eastern Asiatic genera in Yunnan. Acta Bot. Yunnan 1992, 14, 1–12, (In Chinese with English Abstract). [Google Scholar]
- Li, X.W.; Li, J. The Tanaka-Kaiyong Line—An important floristic line for the study of the flora of East Asia. Ann. Mo. Bot. Gard. 1997, 84, 888–892. [Google Scholar]
- Feng, J.M.; Zhu, Y.Y. Tanaka line and its biogeographical significance: A further discussion. Chin. J. Ecol. 2010, 29, 1–7. [Google Scholar]
- Fan, D.M.; Yue, J.P.; Nie, Z.L.; Li, Z.M.; Comes, H.P.; Sun, H. Phylogeography of Sophora davidii (Leguminosae) across the “Tanaka-Kaiyong Line”, an important phytogeographic boundary in southwest China. Mol. Ecol. 2013, 22, 4270–4288. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Zhou, Z.; Du, F.K.; He, C.; Xin, P.; Ma, H. The Tanaka line shaped the phylogeographic pattern of the cotton tree (Bombax ceiba) in southwest China. Biochem. Syst. Ecol. 2015, 60, 150–157. [Google Scholar] [CrossRef]
- Ye, J.W.; Zhang, Y.; Wang, X.J. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Chin. J. Plant Ecol. 2017, 41, 1003–1019. [Google Scholar]
- Ju, M.M.; Fu, Y.; Zhao, G.F.; He, C.Z.; Li, Z.H.; Tian, B. Effects of the Tanaka Line on the genetic structure of Bombax ceiba (Malvaceae) in dry- hot valley areas of southwest China. Ecol. Evol. 2018, 8, 3599–3608. [Google Scholar] [CrossRef]
- Pang, X.M.; Hu, C.G.; Deng, X.X. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet. Resour. Crop Evol. 2007, 54, 429–436. [Google Scholar] [CrossRef]
- Zhu, H. Problems of “Tanaka line” and its application on biogeography as a floristic line. Plant Sci. J. 2018, 36, 761–766. [Google Scholar]
- Fortey, R.A.; Cocks, L.R.M. Biogeography and palaeogeography of the Sibumasu terrene in the Ordovician: A review. In Biogeography and Geological Evolution of SE Asia; Hall, R., Holloway, J.D., Eds.; Backbuys Publishers: Leiden, The Netherlands, 1998; pp. 43–56. [Google Scholar]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Zhu, H.; Ashton, P. Ecotones in the tropical-subtropical vegetation transition at the tropical margin of southern China. Chin. Sci. Bull. 2021, 66, 3732–3743. [Google Scholar] [CrossRef]
- Jain, A.K. When did India-Asia collide and make the Himalaya? Curr. Sci. India 2014, 106, 254–266. [Google Scholar]
- Tapponnier, P.; Pelter, G.; Armijo, R.; Le Dain, A.Y.; Cobbold, P. Propagation extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Schärer, U.; Zhong, D.L.; Liu, X.H.; Ji, S.C.; Zhang, L.S.; Zhong, J.Y. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 1990, 343, 431–437. [Google Scholar] [CrossRef]
- Schärer, U.; Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Zhong, D.-L.; Ji, S.-C. Intraplate tectonics in Asia, a precise age for large-scale Miocene movements along the Ailao Shan-Red River shear zone, China. Earth Planet. Sci. Lett. 1990, 97, 65–77. [Google Scholar] [CrossRef]
- Lee, T.Y.; Lawver, L.A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 1995, 251, 85–138. [Google Scholar] [CrossRef]
- Leloup, P.H.; Laeassin, R.; Tapponnier, P.; Scharer, U.; Zhong, D.L.; Liu, X.; Zhang, L.; Ji, S.C.; Phan, T.T. The Ailao Shan—Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 1995, 251, 3–8. [Google Scholar] [CrossRef]
- Hall, R. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and Geological Evolution of SE Asia; Hall, R., Holloway, J.D., Eds.; Backbuys Publishers: Leiden, The Netherlands, 1998; pp. 99–131. [Google Scholar]
- Sato, K.; Liu, Y.Y.; Zhu, Z.C.; Yang, Z.Y.; Otofuji, Y. Tertiary paleomagnetic data from northwestern Yunnan, China: Further evidence for large clockwise rotation of the Indochina block and its tectonic implications. Earth Planet. Sci. Lett. 2001, 185, 185–198. [Google Scholar] [CrossRef]
- Sato, K.; Liu, Y.Y.; Wang, Y.B.; Yokoyam, M.; Yoshioka, S.; Yang, Z.Y.; Otofuji, Y. Paleomagnetic study of Cretaceous rocks from Pu’er, western Yunnan, China: Evidence of internal deformation of the Indochina block. Earth Planet. Sci. Lett. 2007, 258, 1–15. [Google Scholar] [CrossRef]
- Chen, H.H.; Dobson, J.; Heller, F.; Hao, J. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous, A consequence of India-Asia collision. Earth Planet. Sci. Lett. 1995, 134, 203–217. [Google Scholar]
- Mitchell, A.H.G. Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region. J. Geol. Soc. 1993, 150, 1089–1102. [Google Scholar] [CrossRef]
- Zhu, H. Suggestions for the northern boundary of the tropical zone in China. Plant Sci. J. 2018, 36, 893–898. (In Chinese) [Google Scholar]
- Raymo, M.; Ruddimen, W. Tectonic forcing of late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Shi, Y.F. Plateau uplift and environmental evolution. In Formation, Evolution and Development of Qinghai-Xizang (Tibetan); Plateausun, H.L., Zheng, D., Eds.; Guangdong Science and Technology Press: Guangzhou, China, 1998; pp. 73–138. [Google Scholar]
- Shi, Y.F.; Li, J.Y.; Li, B.Y. Uplift of the Qinghai-Xizang (Tibetan) plateau and east Asia environmental change during late Cenozoic. Acta Geogr. Sin. 1999, 54, 10–21. [Google Scholar]
- Liu, D.S.; Zhang, X.S.; Yan, B.Y. The impact of plateau uplifting on surrounding areas. In Formation, Evolution and Development of Qinghai-Xizang (Tibetan) Plateau; Sun, H.L., Zheng, D., Eds.; Guangdong Science and Technology Press: Guangzhou, China, 1998; pp. 179–230. [Google Scholar]
- Pan, Y.S. Plateau lithosphere structure, evolution, and dynamics. In Formation, Evolution and Development of Qinghai-Xizang (Tibetan) Plateau; Sun, H.L., Zheng, D., Eds.; Guangdong Science and Technology Press: Guangzhou, China, 1998; pp. 1–72. [Google Scholar]
- Su, T.; Farnsworth, A.; Spicer, R.A.; Huang, J.; Wu, F.-X.; Liu, J.; Li, S.-F.; Xing, Y.-W.; Huang, Y.-J.; Deng, W.-Y.-D.; et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 2019, 5, eaav2189. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Su, T.; Spicera, R.A.; Tang, H.; Deng, W.-Y.; Wu, F.-X.; Srivastava, G.; Spicer, T.; Van Do, T.; Deng, T.; et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr. Palaeocl. 2019, 524, 33–40. [Google Scholar] [CrossRef]
- Li, S.F.; Valdes, P.J.; Farnsworth, A.; Davies-Barnard, T.; Su, T.; Lunt, D.J.; Spicer, R.A.; Liu, J.; Deng, W.-Y.; Huang, J.; et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 2021, 7, eabc7741. [Google Scholar] [CrossRef]
- Spicer, R.A.; Farnsworth, A.; Su, T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Divers. 2020, 42, 229–254. [Google Scholar] [CrossRef]
- Shi, G.; Li, H. A fossil fruit wing of Dipterocarpus from the Middle Miocene of Fujian, China, and its peoclimatic significance. Rev. Palaeobot. Palyn. 2010, 162, 599–608. [Google Scholar] [CrossRef]
- Wang, B.; Shi, G.; Xu, C.; Spicer, R.A.; Perrichot, V.; Schmidt, A.R.; Feldberg, K.; Heinrichs, J.; Chény, C.; Pang, H.; et al. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Sci. Adv. 2021, 7, eabg0625. [Google Scholar] [CrossRef]
- Sun, X.J. Palynofloristical investigation on the Late Cretaceous and Paleocene of China. J. Syst. Evol. 1979, 17, 8–21. [Google Scholar]
- Liu, J.L.; Tan, L.Y.; Qiao, Y.; Head, M.J.; Walker, D. Late Quaternary vegetation history at Menghai, Yunnan province, southwest China. J. Biogeogr. 1986, 13, 399–418. [Google Scholar]
- Song, Z.Z.; Li, H.M.; Zheng, Y.H. Miocene floristic region of China. In Editorial Board of Basic Palaeobiogeographic Theory Series. Palaeobiogeographic Provinces of China; Science Press: Beijing, China, 1983; pp. 178–184. [Google Scholar]
- Song, Z.Z. Miocene Phytogeographical Area of East Asia. In Stratum and Paleontology; Nanjing Institute of Geology and Paleontology, Ed.; Nanjing Institute of Geology and Paleontology: Nanjing, China, 1984; Volume 13, pp. 63–69. [Google Scholar]
- Wang, W.M. A palynological survey of Neocene strata in Xiaolongtan Basin, Yunnan province of south China. Acta Bot. Sin. 1996, 38, 743–748. [Google Scholar]
- Walker, D. Late Pleistocene—Early Holocene vegetational and climatic changes in Yunnan Province, southwest China. J. Biogeogr. 1986, 13, 477–486. [Google Scholar] [CrossRef]
- Zhou, Z.; Gu, B.G.; Sun, H.; Zhu, H.; Tan, Y.H. Molecular phylogenetic analyses of Euphorbiaceae tribe Epiprineae, with the description of a new genus, Tsaiodendron gen. nov., from south-western China. Bot. J. Linn. Soc. 2017, 184, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, D.X.; Li, T.Q.; Li, Z.H. Phylogeographic study of Musella lasiocarpa (Musaceae): Providing insightinto the historical river capture events. Pak. J. Bot. 2019, 51, 191–199. [Google Scholar] [CrossRef]
- Zhang, T.C.; Sun, H. Phylogeographic structure of Terminalia franchetii (Combretaceae) in southwest China and its implications for drainage geological history. J. Plant Res. 2011, 124, 63–73. [Google Scholar] [CrossRef]
- Zhang, T.C.; Comes, H.P.; Sun, H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol. Phylogenetics Evol. 2011, 60, 1–12. [Google Scholar] [CrossRef]
- Morley, R.J. Assembly and division of the South and South East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 2018, 34, 209–234. [Google Scholar] [CrossRef]
- Mai, D.H. Development and regional differentiation of the European vegetation during the Tertiary. Plant Syst. Evol. 1989, 162, 79–91. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z.M. Qinghai-Tibet plateau uplift and its act on Tethys flora. Adv. Earth Sci. 2003, 18, 852–862. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Tan, Y. Flora and Vegetation of Yunnan, Southwestern China: Diversity, Origin and Evolution. Diversity 2022, 14, 340. https://doi.org/10.3390/d14050340
Zhu H, Tan Y. Flora and Vegetation of Yunnan, Southwestern China: Diversity, Origin and Evolution. Diversity. 2022; 14(5):340. https://doi.org/10.3390/d14050340
Chicago/Turabian StyleZhu, Hua, and Yunhong Tan. 2022. "Flora and Vegetation of Yunnan, Southwestern China: Diversity, Origin and Evolution" Diversity 14, no. 5: 340. https://doi.org/10.3390/d14050340
APA StyleZhu, H., & Tan, Y. (2022). Flora and Vegetation of Yunnan, Southwestern China: Diversity, Origin and Evolution. Diversity, 14(5), 340. https://doi.org/10.3390/d14050340