Amphibian-Friendly Water Drainages for Agricultural Landscapes, Based on Multiple Species Surveys and Behavioural Trials for Pelophylax nigromaculatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species and Research Area
2.2. Monitoring
2.3. Experimental Models
2.4. Manipulative Experiments
2.5. Statistical Analyses
3. Results
3.1. Monitoring
3.2. Manipulative Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.; Oldfield, S.; Magin, G. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 2002, 16, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.T.; Cooper, C.M.; Farris, J.L. Drainage ditches. In Water Encyclopedia: Surface and Agricultural Water; Lehr, J.H., Keeley, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 87–92. [Google Scholar]
- Lehtinen, R.M.; Galatowitsch, S.M. Colonization of restored wetlands by amphibians in Minnesota. Am. Midl. Nat. 2001, 145, 388–396. [Google Scholar] [CrossRef]
- Chapin, I.F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Mack, M.C. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.F.; Maltchik, L. Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands? Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 39–46. [Google Scholar] [CrossRef]
- Natuhara, Y. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol. Eng. 2013, 56, 97–106. [Google Scholar] [CrossRef]
- Borzée, A.; Kim, K.; Heo, K.; Jablonski, P.G.; Jang, Y. Impact of land reclamation and agricultural water regime on the distribution and conservation status of the endangered Dryophytes suweonensis. PeerJ 2017, 5, e3872. [Google Scholar] [CrossRef] [Green Version]
- Holzer, K.A.; Bayers, R.P.; Nguyen, T.T.; Lawler, S.P. Habitat value of cities and rice paddies for amphibians in rapidly urbanizing Vietnam. J. Urban Ecol. 2017, 3, 7. [Google Scholar] [CrossRef]
- Borzée, A.; Jang, Y. Description of a seminatural habitat of the endangered Suweon treefrog Hyla suweonensis. Anim. Cells Syst. 2015, 19, 216–220. [Google Scholar] [CrossRef]
- Borzée, A.; Heo, K.; Jang, Y. Relationship between agro-environmental variables and breeding Hylids in rice paddies. Sci. Rep. 2018, 8, 8049. [Google Scholar] [CrossRef]
- Herzon, I.; Helenius, J. Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 2008, 141, 1171–1183. [Google Scholar] [CrossRef]
- Kiritani, K. Integrated biodiversity management in paddy fields: Shift of paradigm from IPM toward IBM. Integr. Pest Manag. Rev. 2000, 5, 175–183. [Google Scholar] [CrossRef]
- Groffen, J.; Borzée, A.; Jang, Y. Positioning of two treefrog species within rice paddies in relation to different habitat borders. Anim. Cells Syst. 2018, 22, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, Y.; Kong, S.; Yi, Y.; Borzée, A.; Jang, Y. Impact of agricultural practises on the predation of Hynobius salamanders eggs masses by loaches (Misgurnus spp.). Anim. Biol. 2017, 69, 451–461. [Google Scholar] [CrossRef]
- Fujioka, M.; Lane, S.J. The impact of changing irrigation practices in rice fields on frog populations of the Kanto Plain, central Japan. Ecol. Res. 1997, 12, 101–108. [Google Scholar] [CrossRef]
- Lane, S.J.; Fujioka, M. The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biol. Conserv. 1998, 83, 221–230. [Google Scholar] [CrossRef]
- Katayama, N.; Saitoh, D.; Amano, T.; Miyashita, T. Effects of modern drainage systems on the spatial distribution of loach in rice ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 146–154. [Google Scholar] [CrossRef]
- Bishop, P.; Angulo, A.; Lewis, J.; Moore, R.; Rabb, G.; Moreno, J.G. The Amphibian Extinction Crisis-what will it take to put the action into the Amphibian Conservation Action Plan? SAPIENS. Surv. Perspect. Integr. Environ. Soc. 2012, 5, 97–111. [Google Scholar]
- Hanna, G.; Jon, W.; Barnes, W.P.J. Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 1991, 155, 103–125. [Google Scholar] [CrossRef]
- Smiley, P.C., Jr.; Knight, S.S.; Shields, F.D., Jr.; Cooper, C.M. Influence of gully erosion control on amphibian and reptile communities within riparian zones of channelized streams. Ecohydrology 2009, 2, 303–312. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, D. The Encyclopedia of Korean Amphibians; Checklist of Organisms in Korea 17: Seoul, Korea, 2016; Volume 17, p. 248. [Google Scholar]
- Lee, S.-D.; Miller-Rushing, A.J. Degradation, urbanization, and restoration: A review of the challenges and future of conservation on the Korean Peninsula. Biol. Conserv. 2014, 176, 262–276. [Google Scholar] [CrossRef]
- Borzée, A.; Struecker, M.-Y.; Yi, Y.; Kim, D.; Kim, H. Time for Korean wildlife conservation. Science 2019, 363, 1161–1162. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, S.; Maslova, I.; Tuniyev, B.; Matsui, M.; Pipeng, L.; Kaneko, Y. Pelophylax nigromaculatus; IUCN: Gland, Switzerland, 2004; Volume 2004, p. e.T58679A11809026. [Google Scholar]
- Watabe, K.; Mori, A.; Koizumi, N.; Takemura, T. Fundamental experiments to develop eco-friendly techniques for conserving frog habitat in paddy areas. Jpn. Agric. Res. Q. 2010, 44, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Green, D.M.; Carson, J. The adhesion of treefrog toe-pads to glass: Cryogenic examination of a capillary adhesion system. J. Nat. Hist. 1988, 22, 131–135. [Google Scholar] [CrossRef]
- Borzée, A.; Ren, J.; Li, J.-T.; Groffen, J.; Jang, Y.; Messenger, R.K. Microhabitat segregation between Black-spotted Pond Frogs, Pelophylax nigromaculatus, and Gold-striped Pond Frogs, P. plancyi (Anura: Ranidae). Reptiles Amphib. Conserv. Nat. Hist. 2019, 26, 119–120. [Google Scholar] [CrossRef]
- Osawa, S.; Shimada, M.; Katsuno, T. Environmental factors that regulate the density of Rana porosa porosa on the levees of flatland paddy fields. J. Rural. Plan. Assoc. 2005, 24, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Ra, N.Y.; Park, D.; Cheong, S.; Kim, N.S.; Sung, H.C. Habitat associatons of the endangered Gold-spotted pond frog (Rana chosenica). Zool. Sci. 2010, 27, 396–401. [Google Scholar] [CrossRef]
- Eom, J.; Lee, J.-H.; Ra, N.-Y.; Park, D.-S. Preferred feeding sites and prey of the adult gold-spotted pond frog Rana plancyi chosenica. J. Ecol. Field Biol. 2007, 30, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Ra, N.Y.; Cheong, S.K.; Lee, J.H.; Eom, J.H.; Park, D.S.; Sung, H.C. Habitat requirements of the Gold-spotted pond frog (Rana chosenica): Implications for conservation and management plans. In Proceedings of the 63th Annual Meeting of the Korean Association of Biological Sciences, Mokpo, Korea, 20–22 August 2008; p. 192. [Google Scholar]
- Borzée, A. Recommendations for IUCN Red List conservation status of the “Dryophytes immaculatus group” in North East Asia. Diversity 2020, 12, 336. [Google Scholar] [CrossRef]
- Groffen, J.; Kong, S.; Jang, Y.; Borzée, A. The invasive American bullfrog (Lithobates catesbeianus) in the Republic of Korea: History and recommendation for population control. Manag. Biol. Invasions 2019, 10, 517–535. [Google Scholar] [CrossRef] [Green Version]
- Brusch, G.; Christian, K.; Brown, G.; Shine, R.; DeNardo, D. Cane toads (Rhinella marina) rely on water access, not drought tolerance, to invade xeric Australian environments. Oecologia 2019, 189, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.; Hill, M.; McGeoch, M.; Clusella-Trullas, S. Niche shift and resource supplementation facilitate an amphibian range expansion. Divers. Distrib. 2019, 25, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Hartel, T.; Băncilă, R.; Cogălniceanu, D. Spatial and temporal variability of aquatic habitat use by amphibians in a hydrologically modified landscape. Freshw. Biol. 2011, 56, 2288–2298. [Google Scholar] [CrossRef]
Species | Concrete Ditch | Natural Ditch | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Pelophylax chosenicus | 6.50 | 4.12 | 7.16 | 2.36 |
Pelophylax nigromaculatus | 1.31 | 0.79 | 2.18 | 1.48 |
Dryophytes japonicus | 6.63 | 3.74 | 8.64 | 2.17 |
Rana sp. | 0.13 | 0.50 | 0.00 | 0.00 |
Lithobates catesbeianus | 1.06 | 0.44 | 1.23 | 0.89 |
B | S.E. | Wald | df | p-Value | ||
---|---|---|---|---|---|---|
Step 1 | Precipitation (mm) | −1.39 | 0.83 | 2.83 | 1 | 0.092 |
Humidity | −0.05 | 0.03 | 2.55 | 1 | 0.111 | |
P. chosenicus | −0.30 | 0.18 | 2.77 | 1 | 0.053 | |
P. nigromaculatus | 0.48 | 0.38 | 1.56 | 1 | 0.173 | |
D. japonicus | 0.43 | 0.19 | 5.08 | 1 | 0.010 | |
Rana sp. | −11.94 | 20,096.49 | 0.00 | 1 | 0.019 | |
L. catesbeianus | 0.32 | 0.50 | 0.41 | 1 | 0.519 | |
Time | 0.00 | 0.00 | 0.82 | 1 | 0.365 | |
Step 2 | Precipitation (mm) | −1.50 | 0.80 | 3.46 | 1 | 0.063 |
Humidity | −0.05 | 0.03 | 2.98 | 1 | 0.084 | |
P. chosenicus | −0.31 | 0.18 | 3.05 | 1 | 0.048 | |
P. nigromaculatus | 0.37 | 0.33 | 1.29 | 1 | 0.233 | |
D. japonicus | 0.44 | 0.19 | 5.63 | 1 | 0.006 | |
Rana sp. | −11.99 | 20,096.49 | 0.00 | 1 | 0.017 | |
Time | 0.00 | 0.00 | 1.77 | 1 | 0.183 | |
Step 3 | Precipitation (mm) | −1.62 | 0.77 | 4.39 | 1 | 0.036 |
Humidity | −0.05 | 0.03 | 3.57 | 1 | 0.059 | |
P. chosenicus | −0.31 | 0.17 | 3.11 | 1 | 0.045 | |
D. japonicus | 0.48 | 0.19 | 6.83 | 1 | 0.002 | |
Rana sp. | −12.04 | 20,096.49 | 0.00 | 1 | 0.016 | |
Time | 0.00 | 0.00 | 2.74 | 1 | 0.098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Bae, Y.; Choi, Y.; Yu, D.; Jang, Y.; Borzée, A. Amphibian-Friendly Water Drainages for Agricultural Landscapes, Based on Multiple Species Surveys and Behavioural Trials for Pelophylax nigromaculatus. Diversity 2022, 14, 414. https://doi.org/10.3390/d14050414
Yu S, Bae Y, Choi Y, Yu D, Jang Y, Borzée A. Amphibian-Friendly Water Drainages for Agricultural Landscapes, Based on Multiple Species Surveys and Behavioural Trials for Pelophylax nigromaculatus. Diversity. 2022; 14(5):414. https://doi.org/10.3390/d14050414
Chicago/Turabian StyleYu, Sanghong, Yoonhyuk Bae, Yoonjung Choi, Daeun Yu, Yikweon Jang, and Amaël Borzée. 2022. "Amphibian-Friendly Water Drainages for Agricultural Landscapes, Based on Multiple Species Surveys and Behavioural Trials for Pelophylax nigromaculatus" Diversity 14, no. 5: 414. https://doi.org/10.3390/d14050414
APA StyleYu, S., Bae, Y., Choi, Y., Yu, D., Jang, Y., & Borzée, A. (2022). Amphibian-Friendly Water Drainages for Agricultural Landscapes, Based on Multiple Species Surveys and Behavioural Trials for Pelophylax nigromaculatus. Diversity, 14(5), 414. https://doi.org/10.3390/d14050414