Advertisement Call Variation of Two Frog Species along an Urban–Rural Gradient in Shanghai, China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Study Sites
2.2. Study Species
2.3. Urbanization Index
2.4. Field Recordings
2.5. Bioacoustics Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seddon, N.; Mace, G.M.; Naeem, S.; Tobias, J.A.; Pigot, A.L.; Cavanagh, R.; Mouillot, D.; Vause, J.; Walpole, M. Biodiversity in the anthropocene: Prospects and policy. Proc. Biol. Sci. 2016, 283, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Concepción, E.D.; Moretti, M.; Altermatt, F.; Nobis, M.P.; Obrist, M.K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 2015, 124, 1571–1582. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 2015, 30, 114–126. [Google Scholar] [CrossRef]
- Johnson, M.T.J.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef]
- Gerhardt, H.C.; Huber, F. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Brumm, H.; Slabbekoorn, H. Acoustic communication in noise. Adv. Stud. Behav. 2005, 35, 151–209. [Google Scholar]
- Higham, V.; Deal, N.D.S.; Chan, Y.K.; Chanin, C.; Davine, E.; Gibbings, G.; Keating, R.; Kennedy, M.; Reilly, N.; Symons, T.; et al. Traffic noise drives an immediate increase in call pitch in an urban frog. J. Zool. 2021, 313, 307–315. [Google Scholar] [CrossRef]
- Giraudeau, M.; Nolan, P.M.; Black, C.E.; Earl, S.R.; Hasegawa, M.; McGraw, K.J. Song characteristics track bill morphology along a gradient of urbanization in house finches (Haemorhous mexicanus). Front. Zool. 2014, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.H.; Tsai, C.G.; Lin, C.; Lin, Y.K. Urban canyon effect: Storm drains enhance call characteristics of the mientien tree frog. J. Zool. 2014, 294, 77–84. [Google Scholar] [CrossRef]
- Caorsi, V.; Guerra, V.; Furtado, R.; Llusia, D.; Miron, L.R.; Borges-Martins, M.; Both, C.; Narins, P.M.; Meenderink, S.W.F.; Márquez, R. Anthropogenic substrate-borne vibrations impact anuran calling. Sci. Rep. 2019, 9, 19456. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cardoso, G.C. Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 2009, 20, 1268–1273. [Google Scholar] [CrossRef] [Green Version]
- Brumm, H.; Zollinger, S.A. The evolution of the lombard effect: 100 years of psychoacoustic research. Behaviour 2011, 148, 1173–1198. [Google Scholar] [CrossRef] [Green Version]
- Halfwerk, W.; Varkevisser, J.; Simon, R.; Mendoza, E.; Scharff, C.; Riebel, K. Toward testing for multimodal perception of mating signals. Front. Ecol. Evol. 2019, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Kempenaers, B.; Borgstrom, P.; Loes, P.; Schlicht, E.; Valcu, M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 2010, 20, 1735–1739. [Google Scholar] [CrossRef] [Green Version]
- International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species. 2021. Available online: https://www.iucnredlist.org/en (accessed on 14 March 2021).
- Pillsbury, F.C.; Miller, J.R. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. Ecol. Appl. 2008, 18, 1107–1118. [Google Scholar] [CrossRef]
- Gagné, S.A.; Fahrig, L. Effect of landscape context on anuran communities in breeding ponds in the national capital region, Canada. Landsc. Ecol. 2006, 22, 205–215. [Google Scholar] [CrossRef]
- Lourenço-de-Moraes, R.; Malagoli, L.R.; Guerra, V.; Ferreira, R.B.; Affonso, I.d.P.; Haddad, D.F.B.; Sawaya, R.J.; Bastos, R.P. Nesting patterns among neotropical species assemblages: Can reserves in urban areas be failing to protect anurans? Urban Ecosyst. 2018, 21, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Wells, K.D.; Schwartz, J.J. The behavioral ecology of anuran communication. In Hearing and Sound Communication in Amphibians; Narins, P.M., Feng, A.S., Fay, R.R., Eds.; Springer Press: New York, NY, USA, 2007; pp. 44–86. [Google Scholar]
- Simmons, A.M.; Narins, P.M. Effects of Anthropogenic Noise on Amphibians and Reptiles; Slabbekoorn, H., Dooling, R., Popper, A., Kay, R., Eds.; Springer Press: New York, NY, USA, 2018; pp. 179–208. [Google Scholar]
- Kohler, J.; Jansen, M.; Rodriguez, A.; Kok, P.J.R.; Toledo, L.F.; Emmrich, M.; Glaw, F.; Haddad, C.F.B.; Rödel, M.-O.; Vences, M. The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa 2017, 4251, 1–124. [Google Scholar] [CrossRef] [Green Version]
- Poyarkov, N.A., Jr.; Gorin, V.A.; Zaw, T.; Kretova, V.D.; Gogoleva, S.S.; Pawangkhanant, P.; Che, J. On the road to mandalay: Contribution to the Microhyla tschudi, 1838 (amphibia: Anura: Microhylidae) fauna of myanmar with description of two new species. Zool. Res. 2019, 40, 244–276. [Google Scholar] [CrossRef] [PubMed]
- Forrest, T.G. From sender to receiver: Propagation and environmental effects on acoustic signals. Am. Zool. 1994, 34, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Morton, E. Ecological sources of selection on avian sounds. Am. Nat. 1975, 109, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Zaffaroni-Caorsi, V.; Both, C.; Márquez, R.; Llusia, D.; Narins, P.; Debon, M.; Borges-Martins, M. Effects of anthropogenic noise on anuran amphibians. Bioacoustics 2022, 1–31. [Google Scholar] [CrossRef]
- Sun, J.W.C.; Narins, P.A. Anthropogenic sounds differentially affect amphibian call rate. Biol. Conserv. 2005, 121, 419–427. [Google Scholar] [CrossRef]
- Cunnington, G.M.; Fahrig, L. Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecol. 2010, 36, 463–470. [Google Scholar] [CrossRef]
- Kruger, D.J.D.; Du Preez, L.H. The effect of airplane noise on frogs: A case study on the critically endangered pickersgill’s reed frog (Hyperolius pickersgilli). Ecol. Res. 2016, 31, 393–405. [Google Scholar] [CrossRef]
- Alloush, M.; Scofield, D.; Marczak, S.; Jones, R.; Kaiser, K.; Oliva, M.; Narins, P.M.; Martineau, K. When sounds collide: The effect of anthropogenic noise on a breeding assemblage of frogs in Belize, central America. Behaviour 2011, 148, 215–232. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Salinas, F.; Cunnington, G.M.; Amézquita, A.; Fahrig, L. Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosyst. 2014, 17, 945–953. [Google Scholar] [CrossRef]
- Narins, P.M.; Meenderink, S.W. Climate change and frog calls: Long-term correlations along a tropical altitudinal gradient. Proc. Biol. Sci. 2014, 281, 20140401. [Google Scholar] [CrossRef]
- Wong, B.B.M.; Cowling, A.N.N.; Cunningham, R.B.; Donnelly, C.F.; Cooper, P.D. Do temperature and social environment interact to affect call rate in frogs (Crinia signifera)? Austral Ecol. 2004, 29, 209–214. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Lin, Y.F.; Tang, Y.; Ding, G.H.; Wu, Y.Q.; Lin, Z.-H. Acoustic divergence in advertisement calls among three sympatric Microhyla species from east china. PeerJ 2020, 8, e8708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.F.; Chen, Z.Q.; Tang, Y.; Chen, J.Y.; Ding, G.H.; Lin, Z.H.; Ji, X. Advertisement calls of Fejervarya multistriata (anura: Dicroglossidae), with a review of anurans in china. Anim. Biol. 2020, 70, 459–481. [Google Scholar] [CrossRef]
- Shu, X.X.; Zhang, W.; Li, B.; Pei, E.L.; Yuan, X.; Wang, T.H.; Wang, Z.H. Major factors affecting the distribution of anuran communities in the urban, suburban and rural areas of shanghai, china. Asian Herpetol. Res. 2016, 7, 287–294. [Google Scholar]
- Zhang, W.; Li, B.; Shu, X.X.; Pei, E.L.; Yuan, X.; Sun, Y.J.; Wang, T.; Wang, Z. Responses of anuran communities to rapid urban growth in Shanghai, China. Urban Front. Urban Green 2016, 20, 365–374. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.X.; Pei, E.L.; Yuan, X.; Wang, T.H.; Wang, Z.H. Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban Front. Urban Green 2018, 32, 56–63. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.X.; Pei, E.L.; Yuan, X.; Sun, Y.J.; Wang, T.H.; Wang, Z.H. The impacts of urbanization on the distribution and body condition of the rice-paddy frog (Fejervarya multistriata) and gold-striped pond frog (Pelophylax plancyi) in Shanghai, China. Asian Herpetol. Res. 2016, 7, 200–209. [Google Scholar]
- Wei, X.; Huang, M.L.; Yue, Q.; Ma, S.; Li, B.; Mu, Z.Q.; Peng, C.; Gao, W.X.; Liu, W.L.; Zheng, J.X.; et al. Long-term urbanization impacts the eastern golden frog (Pelophylax plancyi) in Shanghai city: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evol. Appl. 2021, 14, 117–135. [Google Scholar] [CrossRef]
- Penna, M.; Pottstock, H.; Velasquez, N. Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Anim. Behav. 2005, 70, 639–651. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Shanghai Statistical Yearbook; China Statistics Press: Beijing, China, 2004. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Ribeiro, J.; Colli, G.R.; Caldwell, J.P.; Ferreira, E.; Batista, R.; Soares, A. Evidence of neotropical anuran community disruption on rice crops: A multidimensional evaluation. Biodivers. Conserv. 2017, 26, 3363–3383. [Google Scholar] [CrossRef]
- Suárez, R.P.; Zaccagnini, M.E.; Babbitt, K.J.; Calamari, N.C.; Natale, G.S.; Cerezo, A.; Codugnello, N.; Boca, T.; Damonte, M.J.; Vera-Candioti, J.; et al. Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landsc. Ecol. 2016, 31, 2485–2505. [Google Scholar] [CrossRef] [Green Version]
- Fei, L.; Ye, C.Y.; Jiang, J.P. Colored Atlas of Chinese Amphibians and Their Distributions; Publishing House of Technology and Sciences Press: Chengdu, China, 2012. [Google Scholar]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. 2012. Available online: https://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 8 June 2021).
- Houlahan, J.E.; Findlay, C.S. The effects of adjacent land use on wetland amphibian species richness and community composition. Can. J. Fish. Aquat. Sci. 2003, 60, 1078–1094. [Google Scholar] [CrossRef]
- Halfwerk, W.; Blaas, M.; Kramer, L.; Hijner, N.; Trillo, P.A.; Bernal, X.E.; Page, R.A.; Goutte, S.; Ryan, M.J.; Ellers, J. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 2019, 3, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bee, M.A. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int. J. Psychophysiol. 2015, 95, 216–237. [Google Scholar] [CrossRef] [Green Version]
- Boersma, P.; Weenink, D. Praat: Doing Phonetics by Computer (Computer Program). 2018. Available online: https://www.fon.hum.uva.nl/praat/ (accessed on 20 July 2021).
- Ziegler, L.; Arim, M.; Bozinovic, F. Intraspecific scaling in frog calls: The interplay of temperature, body size and metabolic condition. Oecologia 2016, 181, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Neter, J.; Kutner, M.H.; Nachtsheim, C. Applied Linear Statistical Models; Irwin Press: Chicago, IL, USA, 1996. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons Press: New York, NY, USA, 2006. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel inference—Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Calcagno, V. Glmulti: Model Selection and Multimodel Inference Made Easy. 2019. Available online: https://cran.r-project.org/web/packages/glmulti/index.html (accessed on 15 August 2021).
- Bartoń, K. Mumin: Multi-Model Inference. 2019. Available online: https://cran.r-project.org/web/packages/MuMIn/index.html (accessed on 15 August 2021).
- Wang, J.C.; Cui, J.G.; Shi, H.T.; Brauth, S.E.; Tang, Y.Z. Effects of body size and environmental factors on the acoustic structure and temporal rhythm of calls in Rhacophorus dennysi. Asian Herpetol. Res. 2012, 3, 205–212. [Google Scholar]
- Zhang, F.; Chen, P.; Chen, Z.Q.; Zhao, J. Ultrasonic frogs call at a higher pitch in noisier ambiance. Curr. Zool. 2015, 61, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.H.; Sun, X.Q.; Chen, Q.H.; Yang, Y.; Wang, J.C.; Ran, J.H.; Brauth, S.E.; Tang, Y.Z.; Cui, J.G. Males increase call frequency, not intensity, in response to noise, revealing no lombard effect in the little torrent frog. Ecol. Evol. 2018, 8, 11733–11741. [Google Scholar] [CrossRef] [Green Version]
- Lukanov, S.; Simeonovska-Nikolova, D.; Tzankov, N. Effects of traffic noise on the locomotion activity and vocalization of the marsh frog, pelophylax ridibundus. North-West. J. Zool. 2014, 10, 359–364. [Google Scholar]
- Caorsi, V.Z.; Both, C.; Cechin, S.; Antunes, R.; Borges-Martins, M. Correction: Effects of traffic noise on the calling behavior of two neotropical hylid frogs. PLoS ONE 2018, 13, e0197632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kime, N.M.; Turner, W.R.; Ryan, M.J. The transmission of advertisement calls in central american frogs. Behav. Ecol. 2000, 11, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Badyaev, A.V.; Leaf, E.S. Habitat associations of song characteristic in Phylloscopus and Hippolais warblers. AUK 1997, 114, 40–46. [Google Scholar] [CrossRef]
- Gerhardt, H.C. The evolution of vocalization in frogs and toads. Annu. Rev. Ecol. Syst. 1994, 25, 293–324. [Google Scholar] [CrossRef]
- Gergus, E.W.A.; Sullivan, B.K.; Malmos, K.B. Call variation in the Bufo microscaphus complex: Implications for species boundaries and the evolution of mate recognition. Ethology 1997, 103, 979–989. [Google Scholar] [CrossRef]
- Lemmon, E.M. Diversification of conspecific signals in sympatry: Geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution 2009, 63, 1155–1170. [Google Scholar] [CrossRef]
- Bee, M.A.; Suyesh, R.; Biju, S.D. Vocal behavior of the ponmudi bush frog (Raorchestes graminirupes): Repertoire and individual variation. Herpetologica 2013, 69, 22–35. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Gasser, H.; Amézquita, A.; Hödl, W. Who is calling? Intraspecific call variation in the Aromobatid frog Allobates femoralis. Ethology 2009, 115, 596–607. [Google Scholar] [CrossRef]
- Toledo, L.F.; Haddad, C.F.B. Defensive vocalizations of neotropical anurans. S. Am. J. Herpetol. 2009, 4, 25–42. [Google Scholar] [CrossRef]
- Both, C.; Grant, T. Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Lett. 2012, 8, 714–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, M.; Plath, M.; Brusquetti, F.; Ryan, M.J. Asymmetric frequency shift in advertisement calls of sympatric frogs. Amphib. -Reptil. 2016, 37, 137–152. [Google Scholar] [CrossRef] [Green Version]
Frog Call Parameter | Definition |
---|---|
Call duration (CD) | Duration of a single call, regardless of whether comprising single or multiple notes; measured from beginning to the end of the call (in s). |
Call interval (CI) | Interval between two consecutive calls, measured from the end of the call to the beginning of the next call (in s). |
Call rate (CR) | Number of calls emitted in 1 min (calls/min). |
Pulse rate (PR) | Number of pulses repeated in 1 s within a note (pulses/s). |
Dominant frequency (DF) | Peak frequency of the call (i.e., the frequency containing the highest sound energy, in Hz). |
Frog Call Parameter | Species | Min–Max | Mean | SD | Sample Size |
---|---|---|---|---|---|
Call duration (s) | M. fissipes (N = 22) | 0.204−0.346 | 0.284 | 0.041 | 100 |
F. multistriata (N = 20) | 0.131−0.338 | 0.225 | 0.062 | 89 | |
Call interval (s) | M. fissipes (N = 22) | 0.305−0.646 | 0.443 | 0.099 | 100 |
F. multistriata (N = 20) | 0.067−0.117 | 0.086 | 0.011 | 89 | |
Call rate (calls/min) | M. fissipes (N = 22) | 68.703−119.648 | 93.070 | 16.308 | 100 |
F. multistriata (N = 20) | 182.683−340.424 | 240.573 | 44.049 | 89 | |
Pulse rate (pulses/s) | M. fissipes (N = 22) | 42.739−72.172 | 53.577 | 7.809 | 100 |
F. multistriata (N = 20) | 69.483−95.361 | 81.704 | 8.145 | 89 | |
Dominant frequency (Hz) | M. fissipes (N = 22) | 1854.546−3208.715 | 2560.587 | 327.888 | 100 |
F. multistriata (N = 20) | 1402.905−2693.004 | 2034.459 | 408.559 | 89 |
Species | Call Parameter | Variable | Estimate | SE | Lower 95% CI | Upper 95% CI | p |
---|---|---|---|---|---|---|---|
M. fissipes | Call duration | Intercept | 0.224 | 0.202 | −0.171 | 0.620 | 0.266 |
(N = 22) | Air temperature | −0.012 | 0.003 | −0.018 | −0.005 | <0.001 | |
Snout–vent length | 0.016 | 0.007 | 0.002 | 0.030 | 0.026 | ||
Calling situation | |||||||
Two species | −0.015 | 0.014 | −0.043 | 0.013 | 0.296 | ||
Call interval | Intercept | 1.382 | 0.373 | 0.650 | 2.113 | <0.001 | |
Air temperature | −0.033 | 0.009 | −0.050 | −0.016 | <0.001 | ||
Urbanization index | −0.070 | 0.063 | −0.192 | 0.053 | 0.264 | ||
Snout–vent length | −0.019 | 0.019 | −0.057 | 0.019 | 0.332 | ||
Call rate | Intercept | −51.132 | 35.893 | −121.481 | 19.217 | 0.154 | |
Air temperature | 5.608 | 1.382 | 2.899 | 8.318 | <0.001 | ||
Calling situation | |||||||
Two species | 5.565 | 6.186 | −6.559 | 17.689 | 0.368 | ||
Pulse rate | Intercept | −6.514 | 31.503 | −68.260 | 55.231 | 0.836 | |
Air temperature | 2.970 | 0.536 | 1.920 | 4.021 | <0.001 | ||
Snout–vent length | −1.633 | 1.169 | −3.925 | 0.659 | 0.162 | ||
Dominant frequency | Intercept | 4070.500 | 1632.030 | 871.772 | 7269.226 | 0.012 | |
Urbanization index | −631.460 | 212.250 | −1047.458 | −215.453 | 0.003 | ||
Snout–vent length | −108.500 | 65.120 | −236.121 | 19.127 | 0.096 | ||
Calling situation | |||||||
Two species | 152.470 | 122.600 | −87.821 | 392.770 | 0.214 | ||
F. multistriata | Call interval | Intercept | −0.056 | 0.065 | −0.183 | 0.071 | 0.388 |
(N = 20) | Snout–vent length | 0.004 | 0.002 | 0.000 | 0.007 | 0.031 | |
Urbanization index | 0.009 | 0.008 | −0.008 | 0.025 | 0.299 | ||
Pulse rate | Intercept | 23.529 | 19.198 | −14.098 | 61.156 | 0.220 | |
Urbanization index | −7.579 | 3.018 | −13.493 | −1.665 | 0.012 | ||
Air temperature | 3.025 | 0.630 | 1.790 | 4.260 | <0.001 | ||
Snout–vent length | −1.072 | 0.524 | −2.100 | −0.044 | 0.041 | ||
Calling situation | |||||||
Two species | −3.727 | 1.637 | −6.936 | −0.517 | 0.023 | ||
Dominant frequency | Intercept | 3646.220 | 2319.860 | −900.619 | 8193.063 | 0.116 | |
Urbanization index | −530.060 | 350.130 | −1216.290 | 156.179 | 0.130 | ||
Snout–vent length | −92.710 | 67.360 | −224.729 | 39.319 | 0.169 | ||
Air temperature | −64.040 | 58.480 | −178.667 | 50.582 | 0.273 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zhong, S.; Wang, T.; Li, X.; Wei, L.; Zou, C.; Zhao, S.; Li, B. Advertisement Call Variation of Two Frog Species along an Urban–Rural Gradient in Shanghai, China. Diversity 2022, 14, 550. https://doi.org/10.3390/d14070550
Liu N, Zhong S, Wang T, Li X, Wei L, Zou C, Zhao S, Li B. Advertisement Call Variation of Two Frog Species along an Urban–Rural Gradient in Shanghai, China. Diversity. 2022; 14(7):550. https://doi.org/10.3390/d14070550
Chicago/Turabian StyleLiu, Ningning, Shurong Zhong, Tianhou Wang, Xiuzhen Li, Li Wei, Chunjing Zou, Shanshan Zhao, and Ben Li. 2022. "Advertisement Call Variation of Two Frog Species along an Urban–Rural Gradient in Shanghai, China" Diversity 14, no. 7: 550. https://doi.org/10.3390/d14070550
APA StyleLiu, N., Zhong, S., Wang, T., Li, X., Wei, L., Zou, C., Zhao, S., & Li, B. (2022). Advertisement Call Variation of Two Frog Species along an Urban–Rural Gradient in Shanghai, China. Diversity, 14(7), 550. https://doi.org/10.3390/d14070550