Characteristics of Grassland Plant Community Change with Elevation and Its Relationship with Environmental Factors in the Burqin Forest Region of the Altai Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. Vegetation Structure
2.3.2. Species Importance Values and Dominance
2.3.3. Community Similarity Coefficient
2.3.4. Species Diversity Calculations
2.3.5. Redundancy Analysis (RDA)
2.3.6. Grey Correlation Analysis
2.4. Data Processing and Analysis
3. Results
3.1. Characteristics of Grassland Plant Community Structure at Different Elevations
3.1.1. Species Composition of Grassland Plant Communities at Different Elevations
3.1.2. Characterization of Grassland Vegetation Structure at Different Elevations
3.2. Similarity Coefficients of Grassland Plant Communities at Different Elevations
3.3. Species Diversity Characteristics of Grassland Plant Communities at Different Elevations
3.4. RDA Analysis of Biomass and Species Diversity of Grassland Plant Communities with Environmental Factors
3.5. Analysis of Biomass and Species Diversity of Grassland Plant Communities in Relation to Environmental Factors
4. Discussion
4.1. Effects of Different Elevations on Grassland Plant Community Structure
4.2. Effects of Different Elevations on the Similarity of Grassland Plant Communities
4.3. Effects of Different Elevations on Species Diversity of Grassland Plant Communities
4.4. Biomass and Species Diversity of Grassland Plant Communities in Relation to Environmental Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Statistic | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
---|---|---|---|---|
Eigenvalues | 0.0045 | 0.0011 | 0.0002 | 0.0001 |
Explained variation (cumulative) | 67.45 | 83.66 | 86.45 | 88.55 |
Gradient length | 0.20 | 0.12 | 0.13 | 0.13 |
Pseudo-canonical correlation (suppl.) | 0.9251 | 0.6469 | 0.6843 | 0.6637 |
References
- Xiao, H.; Zhou, H.; Yao, Y.; Chen, J.; Lin, D. Characterization of alpine grassland vegetation and soil in Sanjiangyuan area with different degradation levels. Grassl. Turf 2023, 43, 85–91. [Google Scholar]
- Chen, H.Y.; Biswas, S.R.; Sobey, T.M.; Brassard, B.W.; Bartels, S.F. Reclamation strategies for mined forest soils and overstorey drive understory vegetation. J. Appl. Ecol. 2018, 55, 166–172. [Google Scholar] [CrossRef]
- Li, Q.; He, G.; Wen, T.; Yang, D.; Zhang, D. Response of soil physicochemical properties of alpine meadows in the East Qilian Mountains to elevation and slope orientation and their relationship with vegetation characteristics. Arid Zone Geogr. 2022, 45, 1559–1569. [Google Scholar]
- He, I.J.; Chen, W. Characteristics of gradient changes in species diversity of terrestrial plant communities. J. Ecol. 1997, 58, 93–101. [Google Scholar]
- Tian, Q.; Li, Z.; Wang, J.; Song, L.; Han, R. Characteristics of herbaceous plant communities at different elevation gradients in the southeastern part of the north slope of Motianling. Grass Sci. 2016, 33, 755–763. [Google Scholar]
- Dorji, T.; Moe, S.R.; Klein, J.A.; Totland, Ø. Species Richness, Evenness, and Composition along Environmental Gradients in an Alpine Meadow Grazing Ecosystem in Central Tibet, China. Arct. Antarct. Alp. Res. 2014, 46, 308–326. [Google Scholar] [CrossRef]
- Guo, J.; Ye, M.; Yin, X.; Zhang, K. Spatial patterns of aboveground biomass and species diversity in grasslands of the two river sources in Altay Mountains. J. Northwest AF Universit. 2022, 50, 87–96. [Google Scholar]
- Zhou, H.; Li, S.; Sun, J.; Qu, J.; Zhang, Z. Characteristics of plant communities and soil physicochemical properties in alpine meadows along the altitudinal gradient in the Sanjiangyuan area. J. Grassl. 2023, 31, 1735–1740. [Google Scholar]
- Liu, W.; Shi, B.; Yan, X.; Huang, W.; Li, X. Response of species diversity and biomass of natural grassland to environmental gradient in Ningxia. China Grassl. J. 2022, 44, 10–19+115. [Google Scholar]
- Huang, J.; Lu, X.; Guo, Z. Ecosystem service function assessment of natural forests in Burqin Forestry, Xinjiang. Arid Zone Res. 2014, 31, 866–873. [Google Scholar]
- Zhou, Q.; Ye, M.; Zhao, F. Evaluation of forest ecosystem health in Altay Mountain forest area based on VOR model. J. Gansu Agric. Univ. 2021, 56, 137–148. [Google Scholar]
- Yin, X.; Ye, M.; Guo, J.; Zhang, K.; Zhao, F. Relationships between species diversity characteristics and productivity of different grassland types in the Burqin forest area of Altai Mountains. J. Soil Water Conserv. 2022, 36, 110–115. [Google Scholar]
- Huang, J.; Lu, X.; Guo, Z.; Wang, J.; Zang, R. Ecosystem service function assessment of natural forests in Burqin County, Xinjiang. J. Beijing For. Univ. 2015, 37, 62–69. [Google Scholar]
- Guan, F.; Liang, Z.; Wang, Z.; Guan, Z. Comparison of square grid method and digital image method for determining vegetation cover in salinized grassland. J. Northeast Agric. Univ. 2022, 30, 120–196. [Google Scholar]
- Li, X.; Yu, H.; Liu, Y.; Chang, S. Biomass and diversity of different grassland types in Xilingol. J. Grassl. Sci. 2022, 30, 120–196. [Google Scholar]
- Wang, C.; Long, R.; Wang, Q.; Jing, Z.; Ding, L. Importance of species characteristics and evenness in different types of alpine grassland communities. J. Grassl. Sci. 2005, 35, 320–332. [Google Scholar]
- Shen, R.; Zhang, J.; He, B.; Li, F.; Zhang, Z. Structural characteristics and similarity analysis of grassland plant communities in the dry and hot river valley of Yuanjiang basin. J. Ecol. Environ. 2010, 19, 2821–2825. [Google Scholar]
- He, Z.; Wang, Y.; Su, Z.; Yang, H.; Zhou, T. Influence of gully head activity on plant community structure in a dry and hot river valley gully. J. Grass Ind. 2020, 29, 28–37. [Google Scholar]
- Mark, P.; Liu, Y. Measurement methods of biome diversity I Measurement methods of alpha diversity (below). Biodiversity 1994, 32, 231–239. [Google Scholar]
- Mark, P. Measurement methods of biological community diversity. Measurement methods of alpha diversity (top). Biodiversity 1994, 32, 162–168. [Google Scholar]
- Sun, Y.; Zhang, D.; Zhang, Z. Study on the relationship between soil moisture content and topography-vegetation factors in different types of sand dunes in Tengger Desert. Arid Zone Geogr. 2022, 45, 1570–1578. [Google Scholar]
- Li, S.; Wang, X.; Liu, H.; Sun, M.; Lei, Y. Desert plant diversity and its response to environmental factors in the Hexi Corridor. J. Ecol. Environ. 2023, 32, 429–438. [Google Scholar]
- Yang, C.; Wang, W.; Zhou, H.; Mao, X.; Ma, H. Coupling relationship between plant diversity and soil factors in alpine grassland in Sanjiangyuan area. J. Gansu Agric. Univ. 2022, 57, 125–136. [Google Scholar]
- Liu, X.; Wei, G.; Kao, D. Grey correlation analysis between grassland productivity and climatic factors in Wutianzhao beachland. Grassl. J. 2010, 18, 302–307. [Google Scholar]
- Yao, M.; Guo, C.; He, F.; Zhang, Q.; Ren, G. Soil stoichiometry and its relationship with plant diversity in saline grassland in northern Jinbei. J. Grassl. Sci. 2021, 29, 2800–2807. [Google Scholar]
- Colwell, R.K.; Hurtt, G.C. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 1994, 144, 570–595. [Google Scholar] [CrossRef]
- Colwell, R.K.; Lees, D.C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 2000, 15, 70–76. [Google Scholar] [CrossRef]
- Wang, G. Vertical distribution pattern of plant community diversity in the middle part of the northern slope of Qilian Mountains. Biodiversity 2002, 56, 7–14. [Google Scholar]
- Liang, H.; Liu, L.; Gao, H.; Fu, T.; Zhu, J. Vertical distribution pattern of plant diversity and its driving factors in the middle part of the east slope of Taihang Mountains. Chin. J. Ecol. Agric. 2022, 30, 1091–1100. [Google Scholar]
- Wu, H.; Shui, H.; Hu, G.; Wang, X.; Ganzhu, Z. Effects of elevation on species diversity and biomass of alpine grassland in northern Tibet. J. Ecol. Environ. 2019, 28, 1071–1079. [Google Scholar]
- Zhang, X.; Li, J.; Yuan, X.; Zhu, J. Biomass allocation strategies for biotype population components of pasture grasses at different altitudinal gradients. Grassl. Turf 2021, 41, 1–8. [Google Scholar]
- Yu, G.; Ma, Z.; Lu, Z.; Liu, B. Elevation and plant communities jointly regulate soil stoichiometry in natural grassland in the Baluntai area on the south slope of the middle Tianshan Mountains. J. Grass Ind. 2023, 32, 68–78. [Google Scholar]
- Pan, X.; Ye, M.; Cao, P.; He, Q.; Zhang, K. Species and productivity relationships of different grassland types and the characteristics of changes with elevation in the Burqin forest area of Altai Mountains. Grassl. Sci. 2023, 40, 627–637. [Google Scholar]
- Jiang, X.; Zhang, W.; Yang, Z.; Wang, G. Effects of different disturbance types on community structure and plant diversity in alpine meadows. Northwest J. Bot. 2003, 58, 1479–1485. [Google Scholar]
- Yang, D.; Kang, G.; Hu, Y.; Wu, Y. Effects of grazing on plant diversity and productivity of Baikal needlegrass grassland communities. J. Ecol. 2006, 36, 1470–1475. [Google Scholar]
- Wang, R.Z. Effects of disturbance on biodiversity in grassland ecosystems. J. Northeast Norm. Univ. 1996, 36, 112–116. [Google Scholar]
- Lu, Y.; Yan, C.; Song, C.; Li, Y.; Lai, H. Response of plant community distribution in premontane desert grassland on the southern slope of Tianshan Mountain to environmental factors—A case study in Baicheng County. Arid Zone Res. 2023, 40, 1346–1357. [Google Scholar]
- Chen, X. Evolutionary ecology of seed size variation on the eastern margin of the Tibetan Plateau. Lanzhou Univ. 2010, 14, 139–171. [Google Scholar]
- Zhang, H.; Wang, M.; Li, J.; Wang, Q.; He, Y.; Zhong, X.; Wu, Y.; Hao, J. Effects of different elevations on plant species diversity and biomass in the herbaceous layer of Jiajin Mountain. J. Appl. Environ. Biol. 2023, 14, 41–55. [Google Scholar]
- Du, F.; Li, J.; Wu, J.; Gao, Y.; Wang, G.; Zhang, T.; Luo, Z. Characterization of understory herbaceous plant diversity along an altitudinal gradient in the lower Yarlung Tsangpo River alpine valley. Environ. Ecol. 2022, 4, 37–45+62. [Google Scholar]
- Mao, Y.; Xie, Z.; Xu, H.; Meng, Q.; Guo, J.; Dai, D.; Wang, X.; Sun, Z.; Zhou, X. Botanical diversity of yellow-green curly-headed mushroom communities at different elevation gradients. J. Qinghai Univ. 2022, 40, 1–9. [Google Scholar]
- Chen, S.; Xu, H.; Lin, W.; Zheng, X.; Xu, X.; Liu, W.; Ding, H.; Chen, S. Analysis of species diversity of plant communities along the altitudinal gradient in Wuyi Mountain National Park. J. Plant Resour. Environ. 2023, 32, 1–9. [Google Scholar]
- Zhu, X.; Zhang, H.; Zhu, Y.; Liu, J.; Zhu, Y.; Lv, R.; Wang, Y.; Ma, M. Species diversity of forest communities and its influencing factors in the ice-margined landscape of the Old Bald Rock River. J. Plant Sci. 2016, 34, 67–77. [Google Scholar]
- Chen, L.; Wang, Y. Characteristics of species diversity and structural similarity of grassland plant communities in Maiji Mountain. Arid Zone Resour. Environ. 2014, 28, 148–152. [Google Scholar]
- Gao, J.; Han, J.; Zhang, H.; Lin, G.; Zhang, Y.; Ai, Z.; Liu, J. Changes in elevation gradient and similarity of community diversity in Sophora japonica. For. Eng. 2022, 38, 53–60. [Google Scholar]
- Zhu, Y.; Kang, M.; Jiang, Y.; Liu, Q. Altitudinal pattern of species diversity of woody plant communities in Helan Mountain. J. Plant Ecol. 2008, 15, 574–581. [Google Scholar]
- Yu, C.; Li, Z.; Liu, S.; Huang, Y.; Li, P.; Wang, L.; Wang, T.; Liu, X. Elevation gradient patterns of woody plant diversity and soil nutrients in Baotianman National Nature Reserve. J. Northeast For. Univ. 2023, 51, 101–106+119. [Google Scholar]
- Liu, Z.; Li, Q.; Chen, Z.; Zhai, W.; Zhao, L.; Xu, S.; Zhao, X. Altitudinal gradient distribution pattern of species diversity in alpine meadows of the Qinghai-Tibetan Plateau and its effect on aboveground biomass. Biodiversity 2015, 23, 451–462. [Google Scholar]
- Li, M.; He, Z.; Jiang, L.; Gu, X.; Jin, M.; Chen, B.; Liu, J. Distribution pattern and driving factors of altitudinal gradient of species diversity and phylogenetic diversity in Daiyun Mountain. J. Ecol. 2021, 41, 1148–1157. [Google Scholar]
- Wen, J.; Zhang, S.; Yang, X.; Qin, R.; Xu, M. Elevation gradient pattern of species diversity in alpine grassland on the Tibetan Plateau and its response to simulated warming. J. Agron. 2019, 9, 66–73. [Google Scholar]
- Dong, Q.; Zhao, X.; Ma, Y.; Shi, J.; Wang, Y.; Li, S. Effects of grazing on biomass and growth rate of different plant taxa and compensation effect in small tarragon meadow. J. Ecol. 2012, 32, 2640–2650. [Google Scholar]
- Evans, R. Curtailing grazing-induced erosion in a small catchment and its environs, the Peak District, Central England. Appl. Geogr. 2004, 25, 26–69. [Google Scholar] [CrossRef]
- Sun, D.S.; Wesche, K. Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environ. 2011, 57, 271–278. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, C.; Fang, Q.; Liu, F. Effects of white yak grazing intensity on the species diversity of alpine grassland plant communities. J. Gansu Agric. Univ. 2006, 5, 71–75. [Google Scholar]
- Bullock, J.M.; Hill, B.C.; Dale, M.P.; Silvertown, J. An Experimental Study of the Effects of Sheep Grazing on Vegetation Change in a Species-Poor Grassland and the Role of Seedling Recruitment Into Gaps. J. Appl. Ecol. 1994, 31, 265–281. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Lu, Z. Disentangling the effects of topography and space on the distributions of dominant species in a subtropical forest. Sci. Bull. 2014, 59, 5113–5122. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, K.; Li, J.; Xie, Y.; Liu, W.; Huang, Y. Relationship between vertical distribution characteristics of typical plant community diversity and soil factors on the eastern slope of Helan Mountain. J. Ecol. 2023, 43, 4995–5004. [Google Scholar]
- Liu, Z. Current status and outlook of China’s grass industry. Grass Sci. 2002, 6, 6–8. [Google Scholar]
- Lomolino, V.M. Elevation Gradients of Species-Density: Historical and Prospective Views. Glob. Ecol. Biogeogr. 2001, 10, 165–187. [Google Scholar] [CrossRef]
- Tan, S.; Ye, Z.; Yuan, L.; Zhou, R.; Hu, G.; Jin, X.; Yu, M. Beta diversity of plant communities in Bashanzu Nature Reserve. J. Ecol. 2013, 33, 6944–6956. [Google Scholar]
- Xue, O.; Wei, T.; Zhu, J. Effects of environmental factors on species composition and richness of understory vegetation in low-efficiency forests in the low mountains of Beijing. J. Ecol. 2016, 35, 2321–2328. [Google Scholar]
- He, M.; Wang, Y.; Peng, Z.; Chang, S.; Bowatte, S.; Liu, Y.; Hou, F. Spatial patterns of aboveground biomass and species richness in Qilian Mountain grasslands. Grassl. Sci. 2020, 37, 2012–2021. [Google Scholar]
- Wang, J.; Cui, P.; Zhong, Y.; Li, J.; Chu, J. Regional species richness pattern of plants in the Alashan Plateau and its environmental interpretation. J. Beijing For. Univ. 2019, 41, 14–23. [Google Scholar]
Elevation Zone | Elevation Range | Grassland Types | Coverage (%) | Rh (%) | Aap (mm) | Aat (°C) | Aae (mm) |
---|---|---|---|---|---|---|---|
I | 1000~1100 m | Desert steppe in the mountains | 82 | 67.4 | 238.8 | 1.8 | 717.4 |
II | 1100~1200 m | Desert steppe in the mountains | 80 | 68.3 | 241.6 | 1.9 | 712.2 |
III | 1200~1300 m | Desert steppe in the mountains | 82 | 64.3 | 229.0 | −0.3 | 712.0 |
IV | 1300~1400 m | Desert steppe in the mountains | 86 | 67.7 | 234.0 | −0.1 | 662.0 |
V | 1400~1500 m | Mountain steppe | 89 | 66.1 | 278.0 | 0.0 | 639.8 |
VI | 1500~1600 m | Mountain steppe | 95 | 67.8 | 276.0 | −0.1 | 636.0 |
VII | 1600~1700 m | Mountain meadow steppe | 84 | 71.0 | 285.2 | −0.3 | 639.6 |
VIII | 1700~1800 m | Mountain meadow steppe | 49 | 71.3 | 291.8 | −0.6 | 627.6 |
IX | 1800~1900 m | Mountain meadow | 74 | 69.9 | 320.2 | −2.4 | 600.2 |
X | 1900~2000 m | Mountain meadow | 72 | 70.4 | 300.8 | −1.8 | 566.2 |
XI | 2000~2100 m | Mountain meadow | 72 | 71.3 | 318.8 | −1.4 | 588.0 |
XII | 2100~2200 m | Mountain meadow | 59 | 70.7 | 328.0 | −2.4 | 547.4 |
XIII | 2200~2300 m | Mountain meadow | 39 | 70.7 | 337.2 | −2.4 | 551.8 |
Correlation Degree | 0 < rGi ≤ 0.35 | 0.35 < rGi ≤ 0.65 | 0.65 < rGi ≤ 0.85 | 0.85 < rGi ≤ 1.00 |
---|---|---|---|---|
Relevance evaluation | Low | Middle | Strong | Extremely strong |
Elevation Zone | Number of Families | Number of Genera | Number of Special | |||
---|---|---|---|---|---|---|
Quantity | Percentage in Total Families (%) | Quantity | Percentage in Total Genus (%) | Quantity | Percentage in Total Special (%) | |
I | 7 | 20.59 | 8 | 11.76 | 8 | 11.11 |
II | 10 | 29.41 | 14 | 20.59 | 14 | 19.44 |
III | 13 | 38.24 | 16 | 23.53 | 16 | 22.22 |
IV | 15 | 44.12 | 26 | 38.24 | 26 | 36.11 |
V | 14 | 41.18 | 16 | 23.53 | 24 | 33.33 |
VI | 11 | 32.35 | 15 | 22.06 | 21 | 29.17 |
VII | 11 | 32.35 | 17 | 25.00 | 19 | 26.39 |
VIII | 8 | 23.53 | 9 | 13.24 | 9 | 12.50 |
IX | 7 | 20.59 | 7 | 10.29 | 14 | 19.44 |
X | 14 | 41.18 | 18 | 26.47 | 18 | 25.00 |
XI | 8 | 23.53 | 10 | 14.71 | 13 | 18.06 |
XII | 11 | 32.35 | 13 | 19.12 | 13 | 18.06 |
XIII | 7 | 20.59 | 10 | 14.71 | 10 | 13.89 |
Elevation Zone | Species Name | Life Form | Importance Value (Dominance)/% |
---|---|---|---|
I | Imperata cylindrica | P | 52.2 (84.6) |
Fragaria ananassa | P | 50.4 (67.2) | |
Polygonum aviculare | A | 46.7 (71.5) | |
II | Polygonum aviculare | A | 43.3 (77.1) |
Medicago sativa | P | 42.4 (66.3) | |
Eleusine indica | A | 40.4 (69.6) | |
III | Eleusine indica | A | 53.5 (76.4) |
Gunnera perpensa | P | 44.1 (42.6) | |
Plantago asiatica | P | 43.2 (80.3) | |
IV | Imperata cylindrica | P | 54.2 (90.6) |
Polygonum aviculare | A | 54.1 (81.5) | |
Eleusine indica | A | 54.2 (87.6) | |
V | Eleusine indica | A | 52.1 (98.5) |
Rumex acetosa | P | 45.5 (77.3) | |
Geranium wilfordii | P | 45.2 (56.1) | |
VI | Imperata cylindrica | P | 53.2 (92.1) |
Eleusine indica | A | 50.2 (83.3) | |
Alchemilla japonica | P | 48.2 (82.4) | |
VII | Equisetum arvense | P | 47.5 (91.1) |
Ranunculus japonicus | P | 46.3 (91.5) | |
Leibnitzia anandria | A | 44.6 (79.2) | |
VIII | Imperata cylindrica | P | 45.2 (96.7) |
Eleusine indica | A | 49.6 (93.5) | |
Niphotrichum canescens | P | 43.2 (50.7) | |
IX | Imperata cylindrica | P | 47.9 (79.8) |
Polygonum aviculare | A | 45.6 (85.4) | |
Convallaria keiskei | P | 45.2 (80.3) | |
X | Imperata cylindrica | P | 43.1 (75.8) |
Eleusine indica | A | 45.7 (79.8) | |
Adoxa moschatellina | P | 47.1 (81.6) | |
XI | Imperata cylindrica | P | 60.5 (99.1) |
Gagea nakaiana | P | 49.2 (96.4) | |
Hydrocotyle nepalensis | P | 48.4 (81.2) | |
XII | Gagea nakaiana | P | 51.3 (87.6) |
Hydrocotyle nepalensis | P | 43.6 (71.5) | |
Achillea millefolium | P | 46.1 (75.6) | |
XIII | Geranium wilfordii | P | 42.6 (80.8) |
Ranunculus japonicus | P | 48.7 (91.2) | |
Gagea nakaiana | P | 45.6 (66.3) |
Elevation Zone | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | — | 4 | 3 | 5 | 3 | 3 | 4 | 1 | 3 | 2 | 1 | 2 | 1 |
II | 0.36 | — | 9 | 10 | 5 | 6 | 5 | 5 | 4 | 4 | 3 | 3 | 2 |
III | 0.28 | 0.60 | — | 8 | 5 | 5 | 5 | 5 | 5 | 3 | 2 | 3 | 2 |
IV | 0.29 | 0.50 | 0.38 | — | 9 | 9 | 8 | 7 | 8 | 8 | 4 | 6 | 4 |
V | 0.35 | 0.33 | 0.31 | 0.48 | — | 8 | 7 | 6 | 5 | 8 | 3 | 2 | 3 |
VI | 0.25 | 0.40 | 0.31 | 0.48 | 0.48 | — | 9 | 6 | 7 | 6 | 4 | 3 | 2 |
VII | 0.32 | 0.32 | 0.30 | 0.37 | 0.38 | 0.55 | — | 8 | 7 | 8 | 4 | 3 | 3 |
VIII | 0.10 | 0.37 | 0.34 | 0.46 | 0.36 | 0.41 | 0.53 | — | 6 | 4 | 5 | 3 | 5 |
IX | 0.29 | 0.24 | 0.34 | 0.41 | 0.34 | 0.48 | 0.47 | 0.62 | — | 7 | 6 | 7 | 4 |
X | 0.15 | 0.25 | 0.17 | 0.36 | 0.46 | 0.34 | 0.44 | 0.50 | 0.58 | — | 7 | 5 | 4 |
XI | 0.06 | 0.25 | 0.15 | 0.22 | 0.23 | 0.31 | 0.30 | 0.52 | 0.52 | 0.48 | — | 5 | 4 |
XII | 0.19 | 0.18 | 0.21 | 0.31 | 0.24 | 0.25 | 0.27 | 0.46 | 0.54 | 0.44 | 0.43 | — | 7 |
XIII | 0.11 | 0.15 | 0.18 | 0.22 | 0.18 | 0.21 | 0.24 | 0.52 | 0.43 | 0.31 | 0.40 | 0.61 | — |
Environmental Factors | Agb | S | H | D | Ea |
---|---|---|---|---|---|
Correlation Degree | Correlation Degree | Correlation Degree | Correlation Degree | Correlation Degree | |
Asl | 0.496 (5) | 0.591 (5) | 0.569 (4) | 0.595 (5) | 0.585 (4) |
Cov | 0.507 (4) | 0.638 (3) | 0.547 (5) | 0.620 (4) | 0.626 (3) |
Aap | 0.701 (2) | 0.721 (1) | 0.753 (1) | 0.736 (2) | 0.794 (1) |
Aat | 0.816 (1) | 0.664 (2) | 0.716 (2) | 0.737 (1) | 0.782 (2) |
Aae | 0.688 (3) | 0.638 (4) | 0.699 (3) | 0.688 (3) | 0.584 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ye, M.; Pan, X.; He, Q.; Chen, W.; Zeng, G.; Li, M. Characteristics of Grassland Plant Community Change with Elevation and Its Relationship with Environmental Factors in the Burqin Forest Region of the Altai Mountains. Diversity 2023, 15, 1098. https://doi.org/10.3390/d15101098
Zhang X, Ye M, Pan X, He Q, Chen W, Zeng G, Li M. Characteristics of Grassland Plant Community Change with Elevation and Its Relationship with Environmental Factors in the Burqin Forest Region of the Altai Mountains. Diversity. 2023; 15(10):1098. https://doi.org/10.3390/d15101098
Chicago/Turabian StyleZhang, Xi, Mao Ye, Xiaoting Pan, Qingzhi He, Weilong Chen, Guoyan Zeng, and Miaomiao Li. 2023. "Characteristics of Grassland Plant Community Change with Elevation and Its Relationship with Environmental Factors in the Burqin Forest Region of the Altai Mountains" Diversity 15, no. 10: 1098. https://doi.org/10.3390/d15101098
APA StyleZhang, X., Ye, M., Pan, X., He, Q., Chen, W., Zeng, G., & Li, M. (2023). Characteristics of Grassland Plant Community Change with Elevation and Its Relationship with Environmental Factors in the Burqin Forest Region of the Altai Mountains. Diversity, 15(10), 1098. https://doi.org/10.3390/d15101098