The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change
Abstract
:1. Introduction
2. The Increase in Ticks and Tick-Borne Diseases in the Era of Climate Change
3. The Impact of Ticks of the Genus Hyalomma on Human and Animal Health
4. Delving into the Microbiome of Ticks
5. What We Know about Francisella-like Endosymbionts
6. The Ecological Importance of Francisella-like Endosymbionts in Ticks as Zoonotic Vectors
7. The Role of Francisella-like Endosymbionts in the Ecology of Ticks of the Genus Hyalomma
8. Discrimination between Francisella tularensis and Francisella-like Endosymbionts in Clinical Practice
9. Endosymbiont-Directed Strategies for the Control of Ticks and Tick-Borne Diseases
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Perveen, N.; Hussain, A.; Song, B.; Aziz, M.U.; Zeb, J.; Li, J.; George, D.; Cabezas-Cruz, A.; Sparagano, O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front. Microbiol. 2022, 13, 854803. [Google Scholar] [CrossRef]
- Estrada-Peña, A. Ticks as vectors: Taxonomy, biology and ecology. Rev. Sci. Tech. 2015, 34, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Boyer, P.; Talagrand-Reboul, E.; Hansmann, Y. Ticks and tick-bourne diseases. Med. Mal. Infect. 2019, 49, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Duscher, G.G.; Kienberger, S.; Haslinger, K.; Holzer, B.; Zimpernik, I.; Fuchs, R.; Schwarz, M.; Hufnagl, P.; Schiefer, P.; Schmoll, F. Hyalomma spp. in Austria-The Tick, the Climate, the Diseases and the Risk for Humans and Animals. Microorganisms 2022, 10, 1761. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Swei, A.; Abouneameh, S.; Pal, U.; Pedra, J.H.F.; Fikrig, E. Grappling with the tick microbiome. Trends Parasitol. 2021, 37, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Medialdea-Carrera, R.; Melillo, T.; Micaleff, C.; Borg, M.L. Detection of Hyalomma rufipes in a recently arrived asylum seeker to the EU. Ticks Tick Borne Dis. 2021, 12, 101571. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, N.; Estrada-Peña, A. Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens 2021, 10, 95. [Google Scholar] [CrossRef]
- Buczek, A.M.; Buczek, W.; Buczek, A.; Bartosik, K. The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. Int. J. Environ. Res. Public Health 2020, 17, 2117. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, T.; Carra, L.G.; Öhagen, P.; Fransson, T.; Barboutis, C.; Piacentini, D.; Figuerola, J.; Kiat, Y.; Onrubia, A.; Jaenson, T.G.; et al. Association between guilds of birds in the African-Western Palaearctic region and the tick species Hyalomma rufipes, one of the main vectors of Crimean-Congo hemorrhagic fever virus. One Health 2021, 13, 100349. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Horváth, G. First report of adult Hyalomma marginatum rufipes (vector of Crimean-Congo haemorrhagic fever virus) on cattle under a continental climate in Hungary. Parasites Vectors 2012, 5, 170. [Google Scholar] [CrossRef]
- Földvári, G.; Szabó, É.; Tóth, G.E.; Lanszki, Z.; Zana, B.; Varga, Z.; Kemenesi, G. Emergence of Hyalomma marginatum and Hyalomma rufipes adults revealed by citizen science tick monitoring in Hungary. Transbound. Emerg. Dis. 2022, 69, e2240–e2248. [Google Scholar] [CrossRef] [PubMed]
- Uiterwijk, M.; Ibáñez-Justicia, A.; van de Vossenberg, B.; Jacobs, F.; Overgaauw, P.; Nijsse, R.; Dabekaussen, C.; Stroo, A.; Sprong, H. Imported Hyalomma ticks in the Netherlands 2018–2020. Parasites Vectors 2021, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Rubel, F.; Dautel, H.; Nijhof, A.M.; Kahl, O. Ticks in the metropolitan area of Berlin, Germany. Ticks Tick Borne Dis. 2022, 13, 102029. [Google Scholar] [CrossRef]
- Grech-Angelini, S.; Stachurski, F.; Lancelot, R.; Boissier, J.; Allienne, J.F.; Gharbi, M.; Uilenberg, G. First report of the tick Hyalomma scupense (natural vector of bovine tropical theileriosis) on the French Mediterranean island of Corsica. Vet. Parasitol. 2016, 216, 33–37. [Google Scholar] [CrossRef]
- Hansford, K.M.; Carter, D.; Gillingham, E.L.; Hernandez-Triana, L.M.; Chamberlain, J.; Cull, B.; McGinley, L.; Paul Phipps, L.; Medlock, J.M. Hyalomma rufipes on an untraveled horse: Is this the first evidence of Hyalomma nymphs successfully moulting in the United Kingdom? Ticks Tick Borne Dis. 2019, 10, 704–708. [Google Scholar] [CrossRef]
- McGinley, L.; Hansford, K.M.; Cull, B.; Gillingham, E.L.; Carter, D.P.; Chamberlain, J.F.; Hernandez-Triana, L.M.; Phipps, L.P.; Medlock, J.M. First report of human exposure to Hyalomma marginatum in England: Further evidence of a Hyalomma moulting event in north-western Europe? Ticks Tick Borne Dis. 2021, 12, 101541. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Morillas, F.; Gil-Mosquera, M.; García-Lamberechts, E.J. INFURG-SEMES tropical diseases department. Fever in travellers returning from the tropics. Med. Clin. 2019, 153, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Palomar, A.M.; Portillo, A.; Santibáñez, S.; García-Álvarez, L.; Muñoz-Sanz, A.; Márquez, F.J.; Romero, L.; Eiros, J.M.; Oteo, J.A. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013–2015. Enferm. Infecc. Y Microbiol. Clin. 2017, 35, 344–347. [Google Scholar] [CrossRef]
- Kumar, B.; Manjunathachar, H.V.; Ghosh, S. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 2020, 6, e05675. [Google Scholar] [CrossRef]
- Sajid, M.S.; Kausar, A.; Iqbal, A.; Abbas, H.; Iqbal, Z.; Jones, M.K. An insight into the ecobiology, vector significance and control of Hyalomma ticks (Acari: Ixodidae): A review. Acta Trop. 2018, 187, 229–239. [Google Scholar] [CrossRef]
- Kar, S.; Rodriguez, S.E.; Akyildiz, G.; Cajimat, M.N.B.; Bircan, R.; Mears, M.C.; Bente, D.A.; Keles, A.G. Crimean-Congo hemorrhagic fever virus in tortoises and Hyalomma aegyptium ticks in East Thrace, Turkey: Potential of a cryptic transmission cycle. Parasit Vectors 2020, 13, 201. [Google Scholar] [CrossRef]
- Barradas, P.F.; Lima, C.; Cardoso, L.; Amorim, I.; Gärtner, F.; Mesquita, J.R. Molecular Evidence of Hemolivia mauritanica, Ehrlichia spp. and the Endosymbiont Candidatus Midichloria Mitochondrii in Hyalomma aegyptium Infesting Testudo graeca Tortoises from Doha, Qatar. Animals 2020, 11, 30. [Google Scholar] [CrossRef]
- Apanaskevich, D.A.; Santos-Silva, M.M.; Horak, I.G.B. The genus Hyalomma Koch, 1844. IV. Redescription of all parasitic stages of H. (Euhyalomma) lusitanicum Koch, 1844 and the adults of H. (E.) franchinii Tonelli Rondelli, 1932 (acari: Ixodidae) with a first description of its immature stages. Folia Parasitol. 2008, 55, 61–74. [Google Scholar] [CrossRef]
- Tomassone, L.; Camicas, J.L.; De Meneghi, D.; Di Giulio, A.; Uilenberg, G. A note on Hyalomma nitidum, its distribution and its hosts. Exp. Appl. Acarol. 2005, 35, 341–355. [Google Scholar] [CrossRef]
- Miranpuri, G.S. Ticks parasitising the Indian buffalo (Bubalus bubalis) and their possible role in disease transmission. Vet. Parasitol. 1988, 27, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Perveen, N.; Muzaffar, S.B.; Vijayan, R.; Al-Deeb, M.A. Microbial composition in Hyalomma anatolicum collected from livestock in the United Arab Emirates using next-generation sequencing. Parasites Vectors 2022, 15, 30. [Google Scholar] [CrossRef]
- Al-Khalifa, M.S.; Al-Asgah, N.A.; Diab, F.M. Hyalomma (Hyalommina) arabica, the Arabian goat and sheep tick) distribution and abundance in Saudi Arabia. J. Med. Entomol. 1986, 23, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Flach, E.J.; Ouhelli, H.; Waddington, D.; el Hasnaoui, M. Prevalence of Theileria in the tick Hyalomma detritum detritum in the Doukkala region, Morocco. Med. Vet. Entomol. 1993, 7, 343–350. [Google Scholar] [CrossRef]
- Abdullah, H.H.A.M.; El-Shanawany, E.E.; Abdel-Shafy, S.; Abou-Zeina, H.A.A.; Abdel-Rahman, E.H. Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet. World 2018, 11, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Apanaskevich, D.A.; Horak, I.G. The genus Hyalomma Koch, 1844. IX. Redescription of all parasitic stages of H. (Euhyalomma) impeltatum Schulze & Schlottke, 1930 and H. (E.) somalicum Tonelli Rondelli, 1935 (Acari: Ixodidae). Syst. Parasitol. 2009, 73, 199–218. [Google Scholar] [CrossRef]
- El-Azazy, O.M.; El-Metenawy, T.M.; Wassef, H.Y. Hyalomma impeltatum (Acari: Ixodidae) as a potential vector of malignant theileriosis in sheep in Saudi Arabia. Vet. Parasitol. 2001, 99, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Pegram, R.G.; Hoogstraal, H.; Wassef, H.Y. Hyalomma (Hyalommina) arabica sp. n. parasitizing goats and sheep in the Yemen Arab Republic and Saudi Arabia. J. Parasitol. 1982, 68, 150–156. [Google Scholar] [CrossRef]
- Vieira Lista, M.C.; Belhassen-García, M.; Vicente Santiago, M.B.; Sánchez-Montejo, J.; Pedroza Pérez, C.; Monsalve Arteaga, L.C.; Herrador, Z.; Del Álamo-Sanz, R.; Benito, A.; Soto López, J.D.; et al. Identification and Distribution of Human-Biting Ticks in Northwestern Spain. Insects 2022, 13, 469. [Google Scholar] [CrossRef]
- Díaz-Sánchez, S.; Fernández, A.M.; Habela, M.A.; Calero-Bernal, R.; de Mera, I.G.F.; de la Fuente, J. Microbial community of Hyalomma lusitanicum is dominated by Francisella-like endosymbiont. Ticks Tick Borne Dis. 2021, 12, 101624. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Chitimia-Dobler, L.; Choklikitumnuey, P.; Strube, C.; Springer, A.; Albihn, A.; Jaenson, T.G.T.; Omazic, A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020, 11, 101403. [Google Scholar] [CrossRef]
- Lesiczka, P.M.; Daněk, O.; Modrý, D.; Hrazdilová, K.; Votýpka, J.; Zurek, L. A new report of adult Hyalomma marginatum and Hyalomma rufipes in the Czech Republic. Ticks Tick Borne Dis. 2022, 13, 101894. [Google Scholar] [CrossRef]
- Diab, F.M.; Hoogstraal, H.; Wassef, H.Y.; Al Khalifa, M.S.; Al Asgah, N.A. Hyalomma (Hyalommina) arabica: Nymphal and larval identity and spiny mouse hosts in Saudi Arabia (Acarina: Ixodoidea: Ixodidae). J. Parasitol. 1985, 71, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Dipeolu, O.O.; Amoo, A. The presence of kinetes of a Babesia species in the haemolymph smears of engorged Hyalomma ticks in Nigeria. Vet. Parasitol. 1984, 17, 41–46. [Google Scholar] [CrossRef]
- Choubdar, N.; Karimian, F.; Koosha, M.; Nejati, J.; Oshaghi, M.A. Hyalomma spp. ticks and associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan border. Parasit Vectors 2021, 14, 469. [Google Scholar] [CrossRef]
- Gharbi, M.; Darghouth, M.A. A review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb region: From biology to control. Parasite 2014, 21, 2. [Google Scholar] [CrossRef]
- Gharbi, M.; Darghouth, M.A.; Elati, K.; Al-Hosary, A.A.T.; Ayadi, O.; Salih, D.A.; El Hussein, A.M.; Mhadhbi, M.; Khamassi Khbou, M.; Hassan, S.M.; et al. Current status of tropical theileriosis in Northern Africa: A review of recent epidemiological investigations and implications for control. Transbound. Emerg. Dis. 2020, 67, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.P.; Camicas, J.L.; Cornet, J.P.; Faye, O.; Wilson, M.L. Sexual and transovarian transmission of Crimean-Congo haemorrhagic fever virus in Hyalomma truncatum ticks. Res. Virol. 1992, 143, 23–28. [Google Scholar] [CrossRef]
- Morrison, W.I. The aetiology, pathogenesis and control of theileriosis in domestic animals. Rev. Sci. Tech. 2015, 34, 599–611. [Google Scholar] [CrossRef]
- Galaï, Y.; Canales, M.; Ben Saïd, M.; Gharbi, M.; Mhadhbi, M.; Jedidi, M.; de La Fuente, J.; Darghouth, M.A. Efficacy of Hyalomma scupense (Hd86) antigen against Hyalomma excavatum and H. scupense tick infestations in cattle. Vaccine 2012, 30, 7084–7089. [Google Scholar] [CrossRef]
- Yin, H.; Luo, J.; Lu, W. Control of tropical theileriosis with attenuated schizont vaccine in China. Vaccine 2008, 26, G11–G13. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Fikrig, E. Tick microbiome: The force within. Trends Parasitol. 2015, 31, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, R.; Pérez de León, A.A.; Dowd, S.E.; Guerrero, F.D.; Bendele, K.G.; Scoles, G.A. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 2011, 11, 6. [Google Scholar] [CrossRef]
- Wu-Chuang, A.; Hodžić, A.; Mateos-Hernández, L.; Estrada-Peña, A.; Obregon, D.; Cabezas-Cruz, A. Current debates and advances in tick microbiome research. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100036. [Google Scholar] [CrossRef]
- Dennison, N.J.; Jupatanakul, N.; Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect. Sci. 2014, 3, 6–13. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Pollet, T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol. 2021, 43, e12813. [Google Scholar] [CrossRef]
- Bright, M.; Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 2010, 8, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Bazzocchi, C.; Mariconti, M.; Sassera, D.; Rinaldi, L.; Martin, E.; Cringoli, G.; Urbanelli, S.; Genchi, C.; Bandi, C.; Epis, S. Molecular and serological evidence for the circulation of the tick symbiont Midichloria (Rickettsiales: Midichloriaceae) in different mammalian species. Parasit Vectors. 2013, 6, 350. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chatanga, E.; Qiu, Y.; Simuunza, M.; Kajihara, M.; Hang’ombe, B.M.; Eto, Y.; Saasa, N.; Mori-Kajihara, A.; Simulundu, E.; et al. Molecular Detection and Genotyping of Coxiella-like Endosymbionts in Ticks Collected from Animals and Vegetation in Zambia. Pathogens 2021, 10, 779. [Google Scholar] [CrossRef]
- Edouard, S.; Subramanian, G.; Lefevre, B.; Dos Santos, A.; Pouedras, P.; Poinsignon, Y.; Mediannikov, O.; Raoult, D. Co-infection with Arsenophonus nasoniae and Orientia tsutsugamushi in a traveler. Vector Borne Zoonotic Dis. 2013, 13, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Obregón, D.; Bard, E.; Abrial, D.; Estrada-Peña, A.; Cabezas-Cruz, A. Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes. Front. Cell Infect. Microbiol. 2019, 9, 298. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Symbiotic microorganisms: Untapped resources for insect pest control. Trends Biotechnol. 2007, 25, 338–342. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhong, T.; Peng, Y.; Zhou, X.; Wang, Z.; Tang, H.; Wang, J. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe. 2021, 29, 1545–1557.e4. [Google Scholar] [CrossRef]
- Zhong, J.; Jasinskas, A.; Barbour, A.G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2007, 2, e405. [Google Scholar] [CrossRef]
- Duron, O.; Morel, O.; Noël, V.; Buysse, M.; Binetruy, F.; Lancelot, R.; Loire, E.; Ménard, C.; Bouchez, O.; Vavre, F.; et al. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Curr. Biol. 2018, 28, 1896–1902.e5. [Google Scholar] [CrossRef]
- Sazama, E.J.; Ouellette, S.P.; Wesner, J.S. Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species. Environ. Entomol. 2019, 48, 127–133. [Google Scholar] [CrossRef]
- Olivieri, E.; Epis, S.; Castelli, M.; Varotto Boccazzi, I.; Romeo, C.; Desirò, A.; Bazzocchi, C.; Bandi, C.; Sassera, D. Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus. Ticks Tick Borne Dis. 2019, 10, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Azagi, T.; Klement, E.; Perlman, G.; Lustig, Y.; Mumcuoglu, K.Y.; Apanaskevich, D.A.; Gottlieb, Y. Francisella-like Endosymbionts and Rickettsia Species in Local and Imported Hyalomma Ticks. Appl. Environ. Microbiol. 2017, 83, e01302–e01317. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.A.; Sayood, K.; Bartling, A.M.; Meyer, J.R.; Starr, C.; Baldwin, J.; Dempsey, M.P. Differentiation of Francisella tularensis Subspecies and Subtypes. J. Clin. Microbiol. 2020, 58, e01495-19. [Google Scholar] [CrossRef]
- Calhoun, E.L.; Alford, H.I. Incidence of tularemia and Rocky Mountain spotted fever among common ticks of Arkansas. Am. J. Trop. Med. Hyg. 1955, 4, 310–317. [Google Scholar] [CrossRef]
- Niebylski, M.L.; Peacock, M.G.; Fischer, E.R.; Porcella, S.F.; Schwan, T.G. Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl. Environ. Microbiol. 1997, 63, 3933–3940. [Google Scholar] [CrossRef] [PubMed]
- Yeni, D.K.; Büyük, F.; Ashraf, A.; Shah, M.S.U.D. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021, 66, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goethert, H.K.; Telford, S.R., 3rd. A new Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis say (Acari: Ixodidae). J. Med. Entomol. 2005, 42, 502–505. [Google Scholar] [CrossRef]
- Petersen, J.M.; Mead, P.S.; Schriefer, M.E. Francisella tularensis: An arthropod-borne pathogen. Vet. Res. 2009, 40, 7. [Google Scholar] [CrossRef]
- Keim, P.; Johansson, A.; Wagner, D.M. Molecular epidemiology, evolution, and ecology of Francisella. Ann. NY Acad. Sci. 2007, 1105, 30–66. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Binetruy, F.; Hernández-Jarguín, A.M.; Duron, O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front. Cell Infect. Microbiol. 2017, 7, 236. [Google Scholar] [CrossRef]
- Guizzo, M.G.; Parizi, L.F.; Nunes, R.D.; Schama, R.; Albano, R.M.; Tirloni, L.; Oldiges, D.P.; Vieira, R.P.; Oliveira, W.H.C.; Leite, M.S.; et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. 2017, 7, 17554. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Degnan, P.H.; Burke, G.R.; Moran, N.A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 2010, 55, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Špitalská, E.; Sparagano, O.; Stanko, M.; Schwarzová, K.; Špitalský, Z.; Škultéty, Ľ.; Havlíková, S.F. Diversity of Coxiella-like and Francisella-like endosymbionts, and Rickettsia spp., Coxiella burnetii as pathogens in the tick populations of Slovakia, Central Europe. Ticks Tick Borne Dis. 2018, 9, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Chisu, V.; Foxi, C.; Masala, G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp. Appl. Acarol. 2019, 79, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Gerhart, J.G.; Moses, A.S.; Raghavan, R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 2016, 6, 33670. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Auguste Dutcher, H.; Brenner, A.E.; Moses, A.S.; Grubhoffer, L.; Raghavan, R. Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks. Genome Biol. Evol. 2018, 10, 607–615. [Google Scholar] [CrossRef]
- Rakthong, P.; Ruang-Areerate, T.; Baimai, V.; Trinachartvanit, W.; Ahantarig, A. Francisella-like endosymbiont in a tick collected from a chicken in southern Thailand. Southeast Asian J. Trop. Med. Public Health 2016, 47, 245–249. [Google Scholar]
- Ivanov, I.N.; Mitkova, N.; Reye, A.L.; Hübschen, J.M.; Vatcheva-Dobrevska, R.S.; Dobreva, E.G.; Kantardjiev, T.V.; Muller, C.P. Detection of new Francisella-like tick endosymbionts in Hyalomma spp. and Rhipicephalus spp. (Acari: Ixodidae) from Bulgaria. Appl. Environ. Microbiol. 2011, 77, 5562–5565. [Google Scholar] [CrossRef]
- Hensley, J.R.; Zambrano, M.L.; Williams-Newkirk, A.J.; Dasch, G.A. Detection of Rickettsia Species, and Coxiella-like and Francisella-like Endosymbionts in Amblyomma americanum and Amblyomma maculatum from a Shared Field Site in Georgia, United States of America. Vector Borne Zoonotic Dis. 2021, 21, 509–516. [Google Scholar] [CrossRef]
- Kreizinger, Z.; Hornok, S.; Dán, A.; Hresko, S.; Makrai, L.; Magyar, T.; Bhide, M.; Erdélyi, K.; Hofmann-Lehmann, R.; Gyuranecz, M. Prevalence of Francisella tularensis and Francisella-like endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents. Vector Borne Zoonotic Dis. 2013, 13, 160–163. [Google Scholar] [CrossRef]
- Elbir, H.; Almathen, F.; Elnahas, A. Low genetic diversity among Francisella-like endosymbionts within different genotypes of Hyalomma dromedarii ticks infesting camels in Saudi Arabia. Vet. World 2020, 13, 1462–1472. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, L.; Sun, Y.; Wang, Z.; Zhang, J.; Zhang, J.; Peng, Y.; Xia, L. A Novel Francisella-like Endosymbiont in Haemaphysalis longicornis and Hyalomma asiaticum, China. Vector Borne Zoonotic Dis. 2018, 18, 669–676. [Google Scholar] [CrossRef]
- Scoles, G.A. Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J. Med. Entomol. 2004, 41, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, E.L.; Stone, N.E.; Scoles, G.A.; Hepp, C.M.; Busch, J.D.; Wagner, D.M. Range-wide genetic analysis of Dermacentor variabilis and its Francisella-like endosymbionts demonstrates phylogeographic concordance between both taxa. Parasit Vectors 2018, 11, 306. [Google Scholar] [CrossRef] [PubMed]
- Michelet, L.; Bonnet, S.; Madani, N.; Moutailler, S. Discriminating Francisella tularensis and Francisella-like endosymbionts in Dermacentor reticulatus ticks: Evaluation of current molecular techniques. Vet. Microbiol. 2013, 163, 399–403. [Google Scholar] [CrossRef]
- Szigeti, A.; Kreizinger, Z.; Hornok, S.; Abichu, G.; Gyuranecz, M. Detection of Francisella-like endosymbiont in Hyalomma rufipes from Ethiopia. Ticks Tick Borne Dis. 2014, 5, 818–820. [Google Scholar] [CrossRef]
- De Carvalho, I.L.; Santos, N.; Soares, T.; Zé-Zé, L.; Núncio, M.S. Francisella-like endosymbiont in Dermacentor reticulatus collected in Portugal. Vector Borne Zoonotic Dis. 2011, 11, 185–188. [Google Scholar] [CrossRef]
- Sumrandee, C.; Hirunkanokpun, S.; Grubhoffer, L.; Baimai, V.; Trinachartvanit, W.; Ahantarig, A. Phylogenetic relationships of Francisella-like endosymbionts detected in two species of Amblyomma from snakes in Thailand. Ticks Tick Borne Dis. 2014, 5, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Machado-Ferreira, E.; Piesman, J.; Zeidner, N.S.; Soares, C.A. Francisella-like endosymbiont DNA and Francisella tularensis virulence-related genes in Brazilian ticks (Acari: Ixodidae). J. Med. Entomol. 2009, 46, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Dergousoff, S.J.; Chilton, N.B. Association of different genetic types of Francisella-like organisms with the rocky mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor variabilis) in localities near their northern distributional limits. Appl. Environ. Microbiol. 2012, 78, 965–971. [Google Scholar] [CrossRef]
- Takhampunya, R.; Kim, H.C.; Chong, S.T.; Korkusol, A.; Tippayachai, B.; Davidson, S.A.; Petersen, J.M.; Klein, T.A. Francisella-like Endosymbiont Detected in Haemaphysalis Ticks (Acari: Ixodidae) From the Republic of Korea. J. Med. Entomol. 2017, 54, 1735–1742. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, S.R.; Adegoke, A.; Kennedy, A.; Tuten, H.C.; Li, A.Y.; Karim, S. Recently Evolved Francisella-like Endosymbiont Outcompetes an Ancient and Evolutionarily Associated Coxiella-like Endosymbiont in the Lone Star Tick (Amblyomma americanum) Linked to the Alpha-Gal Syndrome. Front. Cell Infect. Microbiol. 2022, 12, 787209. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vozmediano, A.; Giglio, G.; Ramassa, E.; Nobili, F.; Rossi, L.; Tomassone, L. Dermacentor marginatus and Dermacentor reticulatus, and Their Infection by SFG Rickettsiae and Francisella-like Endosymbionts, in Mountain and Periurban Habitats of Northwestern Italy. Vet Sci. 2020, 7, 157. [Google Scholar] [CrossRef]
- Liu, J.N.; Yu, Z.J.; Liu, L.M.; Li, N.X.; Wang, R.R.; Zhang, C.M.; Liu, J.Z. Identification, Distribution and Population Dynamics of Francisella-like Endosymbiont in Haemaphysalis doenitzi (Acari: Ixodidae). Sci. Rep. 2016, 6, 35178. [Google Scholar] [CrossRef] [PubMed]
- Baldridge, G.D.; Scoles, G.A.; Burkhardt, N.Y.; Schloeder, B.; Kurtti, T.J.; Munderloh, U.G. Transovarial transmission of Francisella-like endosymbionts and Anaplasma phagocytophilum variants in Dermacentor albipictus (Acari: Ixodidae). J. Med. Entomol. 2009, 46, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Lopes de Carvalho, I.; Toledo, A.; Carvalho, C.L.; Barandika, J.F.; Respicio-Kingry, L.B.; Garcia-Amil, C.; García-Pérez, A.L.; Olmeda, A.S.; Zé-Zé, L.; Petersen, J.M.; et al. Francisella species in ticks and animals, Iberian Peninsula. Ticks Tick Borne Dis. 2016, 7, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, A.; Cabezas-Cruz, A.; Galon, C.; Obregon, D.; Gasser, R.B.; Moutailler, S.; Jabbar, A. Bovine ticks harbour a diverse array of microorganisms in Pakistan. Parasit Vectors 2020, 13, 1. [Google Scholar] [CrossRef]
- Sperling, J.; MacDonald, Z.; Normandeau, J.; Merrill, E.; Sperling, F.; Magor, K. Within-population diversity of bacterial microbiomes in winter ticks (Dermacentor albipictus). Ticks Tick Borne Dis. 2020, 11, 101535. [Google Scholar] [CrossRef]
- Ghoneim, N.H.; Abdel-Moein, K.A.; Zaher, H.M. Molecular Detection of Francisella spp. Among Ticks Attached to Camels in Egypt. Vector Borne Zoonotic Dis. 2017, 17, 384–387. [Google Scholar] [CrossRef]
- Hoffman, T.; Sjödin, A.; Öhrman, C.; Karlsson, L.; McDonough, R.F.; Sahl, J.W.; Birdsell, D.; Wagner, D.M.; Carra, L.G.; Wilhelmsson, P.; et al. Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes. Microorganisms 2022, 10, 1393. [Google Scholar] [CrossRef]
- Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.J.; Moutailler, S. High-Throughput Microfluidic Real-Time PCR for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021, 10, 362. [Google Scholar] [CrossRef]
- Gioia, G.V.; Vinueza, R.L.; Marsot, M.; Devillers, E.; Cruz, M.; Petit, E.; Boulouis, H.J.; Moutailler, S.; Monroy, F.; Coello, M.A.; et al. Bovine anaplasmosis and tick-borne pathogens in cattle of the Galapagos Islands. Transbound. Emerg. Dis. 2018, 65, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Rollins, R.E.; Schaper, S.; Kahlhofer, C.; Frangoulidis, D.; Strauß, A.F.T.; Cardinale, M.; Springer, A.; Strube, C.; Bakkes, D.K.; Becker, N.S.; et al. Ticks (Acari: Ixodidae) on birds migrating to the island of Ponza, Italy, and the tick-borne pathogens they carry. Ticks Tick Borne Dis. 2021, 12, 101590. [Google Scholar] [CrossRef] [PubMed]
- Michelet, L.; Joncour, G.; Devillers, E.; Torina, A.; Vayssier-Taussat, M.; Bonnet, S.I.; Moutailler, S. Tick species, tick-borne pathogens and symbionts in an insular environment off the coast of Western France. Ticks Tick Borne Dis. 2016, 7, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Varela-Stokes, A.S.; Park, S.H.; Stokes, J.V.; Gavron, N.A.; Lee, S.I.; Moraru, G.M.; Ricke, S.C. Tick microbial communities within enriched extracts of Amblyomma maculatum. Ticks Tick Borne Dis. 2018, 9, 798–805. [Google Scholar] [CrossRef]
- Ravi, A.; Ereqat, S.; Al-Jawabreh, A.; Abdeen, Z.; Abu Shamma, O.; Hall, H.; Pallen, M.J.; Nasereddin, A. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLOS Negl. Trop. Dis. 2019, 13, e0006805. [Google Scholar] [CrossRef]
- Brinkmann, A.; Hekimoğlu, O.; Dinçer, E.; Hagedorn, P.; Nitsche, A.; Ergünay, K. A cross-sectional screening by next-generation sequencing reveals Rickettsia, Coxiella, Francisella, Borrelia, Babesia, Theileria and Hemolivia species in ticks from Anatolia. Parasit Vectors 2019, 12, 26. [Google Scholar] [CrossRef]
- Budachetri, K.; Kumar, D.; Crispell, G.; Beck, C.; Dasch, G.; Karim, S. The tick endosymbiont Candidatus Midichloria mitochondrii and selenoproteins are essential for the growth of Rickettsia parkeri in the Gulf Coast tick vector. Microbiome 2018, 6, 141. [Google Scholar] [CrossRef]
- Banović, P.; Díaz-Sánchez, A.A.; Galon, C.; Simin, V.; Mijatović, D.; Obregón, D.; Moutailler, S.; Cabezas-Cruz, A. Humans infested with Ixodes ricinus are exposed to a diverse array of tick-borne pathogens in Serbia. Ticks Tick Borne Dis. 2021, 12, 101609. [Google Scholar] [CrossRef]
- Tomanović, S.; Chochlakis, D.; Radulović, Z.; Milutinović, M.; Cakić, S.; Mihaljica, D.; Tselentis, Y.; Psaroulaki, A. Analysis of pathogen co-occurrence in host-seeking adult hard ticks from Serbia. Exp. Appl. Acarol. 2013, 59, 367–376. [Google Scholar] [CrossRef]
- Sprong, H.; Fonville, M.; Docters van Leeuwen, A.; Devillers, E.; Ibañez-Justicia, A.; Stroo, A.; Hansford, K.; Cull, B.; Medlock, J.; Heyman, P.; et al. Detection of pathogens in Dermacentor reticulatus in northwestern Europe: Evaluation of a high-throughput array. Heliyon 2019, 5, e01270. [Google Scholar] [CrossRef]
- Mofokeng, L.S.; Smit, N.J.; Cook, C.A. Molecular Detection of Tick-Borne Bacteria from Amblyomma (Acari: Ixodidae) Ticks Collected from Reptiles in South Africa. Microorganisms 2022, 10, 1923. [Google Scholar] [CrossRef] [PubMed]
- Budachetri, K.; Gaillard, D.; Williams, J.; Mukherjee, N.; Karim, S. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species. Ticks Tick Borne Dis. 2016, 7, 1225–1229. [Google Scholar] [CrossRef]
- Gehringer, H.; Schacht, E.; Maylaender, N.; Zeman, E.; Kaysser, P.; Oehme, R.; Pluta, S.; Splettstoesser, W.D. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis. 2013, 4, 93–100. [Google Scholar] [CrossRef]
- Dergousoff, S.J.; Anstead, C.A.; Chilton, N.B. Identification of bacteria in the Rocky Mountain wood tick, Dermacentor andersoni, using single-strand conformation polymorphism (SSCP) and DNA sequencing. Exp. Appl. Acarol. 2020, 80, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Gurfield, N.; Grewal, S.; Cua, L.S.; Torres, P.J.; Kelley, S.T. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California. PeerJ 2017, 5, e3202. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, A.; Svensson, K.; Ohrman, C.; Ahlinder, J.; Lindgren, P.; Duodu, S.; Johansson, A.; Colquhoun, D.J.; Larsson, P.; Forsman, M. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genom. 2012, 13, 268. [Google Scholar] [CrossRef]
- Duzlu, O.; Yildirim, A.; Inci, A.; Gumussoy, K.S.; Ciloglu, A.; Onder, Z. Molecular Investigation of Francisella-like Endosymbiont in Ticks and Francisella tularensis in Ixodid Ticks and Mosquitoes in Turkey. Vector Borne Zoonotic Dis. 2016, 16, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Buysse, M.; Floriano, A.M.; Gottlieb, Y.; Nardi, T.; Comandatore, F.; Olivieri, E.; Giannetto, A.; Palomar, A.M.; Makepeace, B.L.; Bazzocchi, C.; et al. A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. eLife 2021, 10, e72747. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Working Group on Civilian Biodefense. Tularemia as a biological weapon: Medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
- Rotz, L.D.; Khan, A.S.; Lillibridge, S.R.; Ostroff, S.M.; Hughes, J.M. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 2002, 8, 225–230. [Google Scholar] [CrossRef]
- De La Fuente, J.; Kocan, K.M.; Contreras, M. Prevention and control strategies for ticks and pathogen transmission. Rev. Sci. Tech. 2015, 34, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Pound, J.M.; George, J.E.; Kammlah, D.M.; Lohmeyer, K.H.; Davey, R.B. Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in south Texas: A review and update. J. Econ. Entomol. 2010, 103, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Almazán, C.; Canales, M.; Villar, M.; Moreno-Cid, J.A.; Estrada-Peña, A.; Kocan, K.M.; de la Fuente, J. Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine 2011, 29, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.; Norman, R.A.; Gilbert, L. An alternative to killing? Treatment of reservoir hosts to control a vector and pathogen in a susceptible species. Parasitology 2013, 140, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Aželytė, J.; Wu-Chuang, A.; Žiegytė, R.; Platonova, E.; Mateos-Hernandez, L.; Maye, J.; Obregon, D.; Palinauskas, V.; Cabezas-Cruz, A. Anti-Microbiota Vaccine Reduces Avian Malaria Infection Within Mosquito Vectors. Front. Immunol. 2022, 13, 841835. [Google Scholar] [CrossRef]
- Carreón, D.; de la Lastra, J.M.; Almazán, C.; Canales, M.; Ruiz-Fons, F.; Boadella, M.; Moreno-Cid, J.A.; Villar, M.; Gortázar, C.; Reglero, M.; et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine 2012, 30, 273–279. [Google Scholar] [CrossRef]
- Mateos-Hernández, L.; Obregón, D.; Maye, J.; Borneres, J.; Versille, N.; de la Fuente, J.; Estrada-Peña, A.; Hodžić, A.; Šimo, L.; Cabezas-Cruz, A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines 2020, 8, 702. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Hernández, L.; Obregón, D.; Wu-Chuang, A.; Maye, J.; Bornères, J.; Versillé, N.; de la Fuente, J.; Díaz-Sánchez, S.; Bermúdez-Humarán, L.G.; Torres-Maravilla, E.; et al. Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Front. Immunol. 2021, 12, 704621. [Google Scholar] [CrossRef]
- Wan Sulaiman, W.A.; Kamtchum-Tatuene, J.; Mohamed, M.H.; Ramachandran, V.; Ching, S.M.; Sazlly Lim, S.M.; Hashim, H.Z.; Inche Mat, L.N.; Hoo, F.K.; Basri, H. Anti-Wolbachia therapy for onchocerciasis & lymphatic filariasis: Current perspectives. Indian J. Med. Res. 2019, 149, 706–714. [Google Scholar] [CrossRef]
- Maitre, A.; Wu-Chuang, A.; Aželytė, J.; Palinauskas, V.; Mateos-Hernández, L.; Obregon, D.; Hodžić, A.; Valiente Moro, C.; Estrada-Peña, A.; Paoli, J.C.; et al. Vector microbiota manipulation by host antibodies: The forgotten strategy to develop transmission-blocking vaccines. Parasit Vectors 2022, 15, 4. [Google Scholar] [CrossRef]
- Noden, B.H.; Vaughan, J.A.; Pumpuni, C.B.; Beier, J.C. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Parasitol. Int. 2011, 60, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Díaz, H.; Quiroz-Castañeda, R.E.; Cobaxin-Cárdenas, M.; Salinas-Estrella, E.; Amaro-Estrada, I. Advances in the Study of the Tick Cattle Microbiota and the Influence on Vectorial Capacity. Front. Vet. Sci. 2021, 8, 710352. [Google Scholar] [CrossRef]
- Wade, D.M.; Hankins, M.; Smyth, D.A.; Rhone, E.E.; Mythen, M.G.; Howell, D.C.; Weinman, J.A. Detecting acute distress and risk of future psychological morbidity in critically ill patients: Validation of the intensive care psychological assessment tool. Crit. Care 2014, 18, 519. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.P.; Shyma, K.P.; Ranjan, S.; Gaur, G.K.; Bhushan, B. Genetic manipulation of endosymbionts to control vector and vector borne diseases. Vet. World 2012, 5, 571–576. [Google Scholar] [CrossRef]
- Durvasula, R.V.; Gumbs, A.; Panackal, A.; Kruglov, O.; Aksoy, S.; Merrifield, R.B.; Richards, F.F.; Beard, C.B. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proc. Natl. Acad. Sci. USA 1997, 94, 3274–3278. [Google Scholar] [CrossRef]
Hyalomma Species | Human Pathogens | Animal Pathogens | Continent | Reference |
---|---|---|---|---|
H. aegyptium |
|
| Africa Europe | [21,22] |
H. albiparmatum |
| Africa | [23,24] | |
H. anatolicum |
|
| Africa Asia Europe | [25,26] |
H. arabica | Asia | [27] | ||
H. brevipunctata |
| Asia | [25] | |
H. detritum |
| Africa Europe | [28] | |
H. dromedarii |
|
| África Asia Europa | [29] |
H. erythraeum o H. somaliticum | Africa Asia Europe | [30] | ||
H. excavatum |
|
| Africa Europe | [19] |
H. franchinii | Europe | [23] | ||
H. husainii | Asia | [25] | ||
H. impeltatum |
|
| Africa Asia Europe | [30,31] |
H. impressum |
| Africa | [25] | |
H. kumari | [32] | |||
H. lussitanicum |
| Europe | [33,34] | |
H. marginatum |
|
| Africa Asia Europe | [16,35,36] |
H. nitidum |
| Africa | [24] | |
H. punctata | Africa Asia | [37] | ||
H. rhipicephaloides | Africa Asia | [37] | ||
H. rufipes |
|
| Africa Asia Europe | [6,38] |
H. schulzei |
|
| Asia | [39] |
H. scupense |
|
| Africa Asia Europe | [40,41] |
H. truncatum |
|
| Africa Asia Europe | [24,42] |
H. turanicum |
|
| Africa Asia Europe | [38] |
Species of Tick | Region | Host or Environment | Reference |
---|---|---|---|
Ixodes ricinus and Dermacentor reticulatus | Slovakia | Environment | [73] |
Rhipicephalus sanguineus, Hyalomma marginatum, Hyalomma, and Rhipicephalus bursa | Sardinia | Environment | [74] |
Hyalomma marginatum, Hyalomma rufipes, Hyalomma dromedarii, Hyalomma aegyptium, and Hyalomma excavatum | Israel | Environment, camels, horses, tortoises, and migratory birds | [62] |
Amblyomma maculatum | Oklahoma, USA | Oklahoma State University Tick Rearing Facility (OSUTRF) | [75] |
Ornithodoros moubata and Argus arboreus | Czech Republic | Laboratory colony | [76] |
Rhipicephalus sanguineus | Southern Thailand | Chicken | [77] |
Hyalomma marginatum, Hyalomma aegyptium, Rhipicephalus sanguineus, and Dermacentor reticulatus | Bulgaria | Human and animal hosts (not specified) | [78] |
Amblyomma americanum, Amblyomma maculatum | Georgia, USA | Environment, human, and dogs | [79] |
Ixodes ricinus, Ixodes acuminatus, Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis inermis, Haemaphysalis concinna, and Haemaphysalis punctata | Hungary | Environment, common hamsters, and dogs | [80] |
Hyalomma lusitanicum | Spain | Environment | [34] |
Hyalomma dromedarii | Saudi Arabia | Camels | [81] |
Haemaphysalis longicornis and Hyalomma asiaticum | China | Environment | [82] |
Dermacentor anderson, Dermacentor variabilis, Dermacentor albipictus, Dermacentor occidentalis, Dermacentor hunteri Dermacentor nitens, Amblyomma maculatum, and Ornithodoros porcinus | Various origins | Several collections: environment, horses, coyote, sheep, and humans | [83] |
Dermacentor variabilis | USA and Canada | Several collections: environment, dogs, humans, raccoons, and cats | [84] |
Dermacentor reticulatus | France | Environment | [85] |
Hyalomma rufipes | Ethiopia | Environment | [86] |
Dermacentor reticulatus | Portugal | Environment, wolves, and dogs | [87] |
Amblyomma varanense, Amblyomma helvolum | Thailand | Snakes | [88] |
Amblyomma dubitatum, Dermacentor nitens, and Rhipicephalus microplus | Brazil | Horses, cattle, and dogs | [89] |
Dermacentor andersoni and Dermacentor variabilis | Canada | Environment, humans, dogs, horses, skunks, raccoons, deers, mice, and voles | [90] |
Haemaphysalis flava and Haemaphysalis phasiana | Korea | Environment | [91] |
Amblyomma americanum | USA | Laboratory from OSUTRF and environment | [92] |
Dermacentor marginatus and Dermacentor reticulatus | Italy | Environment | [93] |
Haemaphysalis doenitzi | China | Environment and rabbit | [94] |
Dermacentor albipictus | Minnesota (USA) | White-tailed deer | [95] |
Hyalomma lusitanicum, Dermacentor reticulatus, and Ixodes hexagonus | Spain and Portugal | Environment | [96] |
Hyalomma anatolicum, Hyalomma hussaini, Hyalomma scupense, Rhipicephalus microplus, and Rhipicephalus annulatus | Pakistan | Buffalo and cattle | [97] |
Dermacentor albipictus | Alberta and Canada | Environment | [98] |
Hyalomma dromedarii | Egypt | Camels | [99] |
Hyalomma rufipes | Spain, Greece, and Israel | Migratory birds | [100] |
Dermacentor reticulatus and Ixodes ricinus | Poland | Environment | [101] |
Rhipicephalus bursa, Rhipicephalus sanguineus, Hyalomma detritum, Hyalomma marginatum, Hyalomma lusitanicum, and Ixodes ricinus | Algeria | Environment and cattle | |
Rhipicephalus microplus | Galapagos Islands | Cattle | [102] |
Hyalomma rufipes | Italy | Migratory birds | [103] |
Dermacentor reticulatus and Haemaphysalis punctata | France | Environment | [104] |
Amblyomma maculatum | Mississippi, USA | Environment | [105] |
Hyalomma dromedarii | Palestine | Camels | [106] |
Hyalomma marginatum, Hyalomma rufipes, Hyalomma aegyptium, Rhipicephalus sanguineus, Dermacentor occidentalis, and Dermacentor variabilis | Anatolia | Environment, dogs, cattle, and goats | [107] |
Amblyomma maculatum | Mississippi, USA | Environment | [108] |
Ixodes ricinus | Serbia | Humans | [109] |
Dermacentor reticulatus | Serbia | Environment | [110] |
Dermacentor reticulatus | England, Wales, Belgium, Germany, Netherlands | Environment | [111] |
Amblyomma latum | South Africa | Spitting cobra | [112] |
Amblyomma tuberculatum | Mississippi, USA | Gopher tortoise | [113] |
Dermacentor marginatu and Dermacentor reticulatus | Germany | Environment | [114] |
Dermacentor andersoni | Canada | Environment and squirrels | [115] |
Dermacentor occidentalis | California, USA | Environment | [116] |
Dermacentor albipictus | Alberta, Canada | Whitetail and mule deers |
Region | Reference | Total Number of Collected Ticks | Hyalomma Ticks | FLE Prevalence |
---|---|---|---|---|
Anatolia (Turkey) | [107] | 280 | H. aegyptum H. marginatum H. excavatum | 25% of the total |
Israel | [62] | 310 | H.marginatum H. excavatum H. dromedarii, H. aegyptium H. rufipes | 90.66% of the total 84.6% H. marginatum 90.5% H. excavatum 89.8% H. dromedarii, 100% H. aegyptium, 90.4% H. rufipes |
Argelia | [101] | 235 | 41 H. detritum 15 H. marginatum 4 H. lusitanicum | 88.5% of the total 90.2% H. detritum 80% H. marginatum 100% H. lusitanicum |
Bulgaria | [78] | 472 | H. marginatum marginatum (5.9%; n = 28) H. aegyptium (0.2%; n = 1). | 2.5% of the total |
China | [82] | 671 | H. asiaticum (n 88, 13%) | 13% of the total |
Italy | [74] | 236 | H. marginatum (8, 3%) H. lusitanicum (1, 1%) | 1.7% of the total |
Turkey | [118] | 1115 | 245 H. marginatum marginatum 106 H. anatolicum anatolicum 53 H. anatolicum excavatum 68 H. detritum detritum, | 0% |
Pakistan | [97] | 234 | 212 Hyalomma anatolicum 2 H. hussaini 1 H. scupense | 91.5% of the total 96.2% H. anatolicum 0.45% H. hussaini 0% H. scupense |
Occidental Paleartic region | [100] | 575 | H. rufipes H. marginatum | 77% of the total H. rufipes: 76.7% H. marginatum: 75% |
Ethiopia | [86] | 296 | H. rufipes (1/296) | 0,34% of the total H. rufipes 0.34% |
Egypt | [99] | 319 | H. dromedarii (249/319) | 6% of the total 14.94% H. dromedarii |
Saudi Arabia | [81] | 151 | H. dromedari (148/151) H. impeltatum (2/151) Hyalomma spp. (1/151) | 98.01% of the total H. dromedari 100% |
Cáceres (Spain) | [34] | 48 | H. lusitanicum (48/48) | 52–99% of the total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sesmero-García, C.; Cabanero-Navalon, M.D.; Garcia-Bustos, V. The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change. Diversity 2023, 15, 562. https://doi.org/10.3390/d15040562
Sesmero-García C, Cabanero-Navalon MD, Garcia-Bustos V. The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change. Diversity. 2023; 15(4):562. https://doi.org/10.3390/d15040562
Chicago/Turabian StyleSesmero-García, Celia, Marta Dafne Cabanero-Navalon, and Victor Garcia-Bustos. 2023. "The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change" Diversity 15, no. 4: 562. https://doi.org/10.3390/d15040562
APA StyleSesmero-García, C., Cabanero-Navalon, M. D., & Garcia-Bustos, V. (2023). The Importance and Impact of Francisella-like Endosymbionts in Hyalomma Ticks in the Era of Climate Change. Diversity, 15(4), 562. https://doi.org/10.3390/d15040562