Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Physical and Chemical Variables
2.4. Zooplankton Identification and Quantification
2.5. Geometric Morphometrics
2.6. Indices
- H′ = Shannon species diversity index (bits/individual).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Lanza, E.G.; García-Calderón, J.L. Lagos y Presas de México; AGT Editor S.A.: Mexico City, Mexico, 2002; p. 680. [Google Scholar]
- Cervantes-Martínez, A.; Durán-Ramírez, C.A.; Elías-Gutiérrez, M.; García-Morales, A.E.; Gutiérrez-Aguirre, M.; Jaime, S.; Macek, M.; Maeda-Martínez, A.M.; Martínez-Jerónimo, F.; Mayén-Estrada, R.; et al. Freshwater Diversity of Zooplankton from Mexico: Historical Review of Some of the Main Groups. Water 2023, 15, 858. [Google Scholar] [CrossRef]
- Dorak, Z.; Gaygusuz, Ö.; Tarkan, A.S.; Aydin, H. Diurnal vertical distribution of zooplankton in a newly formed reservoir (Tahtali Reservoir, Kocaeli): The role of abiotic factors and chlorophyll a. Turk. J. Zool. 2013, 37, 218–227. [Google Scholar] [CrossRef]
- Fussmann, G.F. Rotifers: Excellent subjects for the study of macro and microevolutionary change. Hydrobiologia 2011, 662, 11–18. [Google Scholar] [CrossRef]
- Gabaldón, C.; Fontaneto, D.; Carmona, M.J.; Montero-Pau, J.; Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 2016, 796, 7–18. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, Y. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Lair, N. Abiotic vs. biotic factors: Lessons drawn from rotifers in the Middle Loire, a Meandering River monitored from 1995 to 2002, during low flow periods. Hydrobiologia 2005, 546, 457–472. [Google Scholar] [CrossRef]
- Gutkowska, A.; Paturej, E.; Kowalska, E. Rotifer trophic state indices as ecosystem indicators in brackish coastal Waters. Oceanologia 2013, 55, 887–899. [Google Scholar] [CrossRef]
- González-Gutiérrez, S.; Sarma, S.S.S.; Nandini, S. Seasonal variations of rotifers from a high altitude urban shallow water body, La Cantera Oriente (Mexico City, Mexico). Chin. J. Oceanol. Limnol. 2017, 35, 1387–1397. [Google Scholar] [CrossRef]
- Guerrero-Jiménez, G.; Ramos-Rodríguez, E.; Silva-Briano, M.; Adabache-Ortíz, A.; Conde-Porcuna, J.M. Analysis of the morphological structure of diapausing propagules as a potential tool for the identification of rotifer and cladoceran species. Hydrobiologia 2020, 847, 243–266. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. Response of zooplankton indices to anthropogenic pressure in the catchment of field ponds. Water 2020, 12, 758. [Google Scholar] [CrossRef]
- Stelzer, C.P. Obligate asex in a rotifer and the role of sexual signals. J. Evol. Biol. 2008, 21, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 2002, 287, 3–10. [Google Scholar] [CrossRef]
- Klingenberg, C.P.; Monteiro, L.R. Distances and Directions in Multidimensional Shape Spaces: Implications for Morphometric Applications. Syst. Biol. 2005, 54, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix Ital. J. Mammal. 2013, 24, 15–24. [Google Scholar]
- Klingenberg, C.P. MORPHOJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Shui, W.; Profico, A.; O’Higgins, P. A comparison of semilandmarking approaches in the analysis of size and shape. Animals 2023, 13, 1179. [Google Scholar] [CrossRef]
- Nogueira, C.S.; Camargo, N.F.; Pantaleao, J.A.F.; Costa, R.C. Elucidating taxonomic problems of two closely related freshwater prawn lineages of the genus Macrobrachium (Caridea: Palaemonidae): A geometric morphometrics approach. Zool. Anz. 2023, 304, 73–83. [Google Scholar] [CrossRef]
- Nandini, S.; Ramírez García, P.; Sarma, S.S.S. Water quality indicators in Lake Xochimilco, Mexico: Zooplankton and Vibrio cholera. J. Limnol. 2016, 75, 91–100. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, R.M.; Sarma, S.S.S.; Sobrino-Figueroa, A.S.; Nandini, S. Population growth potential of rotifers from a high altitude eutrophic water body, Madín reservoir (State of Mexico, Mexico): The importance of seasonal sampling. J. Limnol. 2018, 77, 441–451. [Google Scholar]
- Tundisi, J.G.; Tundisi, T.M. Limnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011; p. 888. [Google Scholar]
- Muñoz-Colmenares, M.E.; Sarma, S.S.S.; Nandini, S. Seasonal variations of rotifers from the high altitude Llano reservoir (State of Mexico, Mexico). J. Environ. Biol. 2017, 38, 1171–1181. [Google Scholar] [CrossRef]
- Alcocer, J.; Delgado, C.N.; Sommaruga, R. Photoprotective compounds in zooplankton of two adjacent tropical high mountain lakes with contrasting underwater light climate and fish occurrence. J. Plankton Res. 2020, 42, 105–118. [Google Scholar] [CrossRef]
- Lot, A.; Olvera, M.; Flores, C.; Díaz, A. Plantas Indicadoras de Humedales. Guía Ilustrada de Campo, 1st ed.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2015; p. 238. [Google Scholar]
- Kirkwood, D.S. SanPlus Segmented Flow Analyzer and Its Applications. Seawater Analysis; Skalar: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Strickland, J.H.D.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Bul. 167; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972; p. 310. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; p. 541. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Koste, W. Rotatoria. In Die Rädertiere Mitteleuropas. Ein Bestimmungswerk Begründet von Max Voigt; Bornträger: Stuttgart, Germany, 1978; Volume 1–2, pp. 234, 673. [Google Scholar]
- Segers, H. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6; Dumont, H.J., Nogrady, T., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 1995; p. 226. [Google Scholar]
- Wallace, R.L.; Snell, T.W.; Walsh, E.J.; Sarma, S.S.S.; Segers, H. Phylum Rotifera. In Keys to Nearctic Fauna. Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 131–167. [Google Scholar]
- Sarma, S.S.S.; Nandini, S. Rotíferos Mexicanos (Rotifera). Estado de México. Manual de Enseñanza; Universidad Nacional Autónoma de México, Mexico City/Facultad de Estudios Superiores Iztacala: Tlalnepantla, Mexico, 2017; p. 148. ISBN 978-607-02-8916-3. [Google Scholar]
- Gotelli, N.J.; Entsminger, G.L. Ecosim: Null Models Software for Ecology, 7th ed.; Acquired Intelligence Inc. and Kesey–Bear: Jericho, VT, USA, 2004; Available online: http://garyentsminger.com/ecosim/index.htm (accessed on 31 May 2023).
- Krebs, J.R. Ecological Methodology; Harper Collins Publ.: New York, NY, USA, 1993; p. 654. [Google Scholar]
- Pantle, R.; Buck, H. Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. GWF-Wasser/Abwasser 1955, 96, 604–620. [Google Scholar]
- Sládeček, V. Rotifers as indicators of water quality. Hydrobiologia 1983, 100, 169–201. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, Y. Rotifer occurrence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia 1995, 313, 21–28. [Google Scholar] [CrossRef]
- May, L.; O’Hare, M. Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 2005, 546, 397–404. [Google Scholar] [CrossRef]
- Löffler, H. The limnology of tropical high-mountain lakes. Verhandlungen Int. Ver. der Limnol. 1964, 15, 176–193. [Google Scholar] [CrossRef]
- Figueroa-Sánchez, M.A.; Nandini, S.; Sarma, S.S.S. Zooplankton community structure in the presence of low levels of cyanotoxins: A case study in a high altitude tropical reservoir (Valle de Bravo, Mexico). J. Limnol. 2014, 73, 157–166. [Google Scholar] [CrossRef]
- Enríquez-García, C.; Nandini, S.; Sarma, S.S.S. Seasonal dynamics of zooplankton in Lake Huetzalin, Xochimilco (Mexico City, Mexico). Limnologica 2009, 39, 283–291. [Google Scholar] [CrossRef]
- Jiménez-Contreras, J.; Nandini, S.; Sarma, S.S.S. Diversity of Rotifera (Monogononta) and egg ratio of selected taxa in the canals of Xochimilco (Mexico City). Wetlands 2018, 38, 1033–1044. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Osnaya-Espinosa, L.R.; Aguilar-Acosta, C.R.; Nandini, S. Seasonal variations in zooplankton abundances in the Iturbide reservoir (Isidro Fabela, State of Mexico, Mexico). J. Environ. Biol. 2011, 32, 473–480. [Google Scholar] [PubMed]
- Espinosa-Rodríguez, C.A.; Sarma, S.S.S.; Nandini, S. Zooplankton community changes in relation to different macrophyte species: Effects of Egeria densa removal. Ecohydrol. Hydrobiol. 2021, 21, 153–163. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Jiménez-Santos, M.A.; Sarma, S.S.S.; Nandini, S.; Wallace, R.L. Sessile rotifers (Rotifera) exhibit strong seasonality in a shallow, eutrophic Ramsar site in Mexico. Invertebr. Biol. 2019, 138, e12270. [Google Scholar] [CrossRef]
- Merino-Ibarra, M.; Ramírez-Zierold, J.A.; Valdespino-Castillo, P.M.; Castillo-Sandoval, F.S.; Guzmán-Arias, A.P.; Barjau-Aguilar, M.; Monroy-Ríos, E.; López-Gómez, L.M.; Sacristán-Ramírez, A.; Quintanilla-Terminel, J.G.; et al. Vertical boundary mixing events during stratification govern heat and nutrient dynamics in a windy tropical reservoir lake with important water-level fluctuations: A long-term (2001–2021) Study. Water 2021, 13, 3011. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Elías-Gutiérrez, M.; Serranía Soto, C. Rotifers from high altitude crater lakes at Nevado de Toluca, State of Mexico (Mexico). Hidrobiologica 1996, 6, 33–38. [Google Scholar]
- Devetter, M. Seasonal development of planktonic rotifers in Slapy Reservoir (Czech Republic). Biologia 2011, 66, 662–668. [Google Scholar] [CrossRef]
- Rosińska, J.; Romanowicz-Brzozowska, W.; Kozak, A.; Gołdyn, R. Zooplankton changes during bottom-up and top-down control due to sustainable restoration in a shallow urban lake. Environ. Sci. Pollut. Res. 2019, 26, 19575–19587. [Google Scholar] [CrossRef]
- Hamil, S.; Bouchelouche, D.; Arab, S.; Alili, M.; Baha, M.; Arab, A. The relationship between zooplankton community and environmental factors of Ghrib Dam in Algeria. Environ. Sci. Pollut. Res. 2021, 28, 46592–46602. [Google Scholar] [CrossRef]
- Picapedra, P.H.; Fernandes, C.; Baumgartner, G.; Vanderlei-Sanchez, P. Drivers of zooplankton spatial dynamics in a small neotropical river. Acta Limnol. Bras. 2022, 34, e13. [Google Scholar] [CrossRef]
- Perviche-Neves, G.; Fileto, C.; Laco-Portinho, J.; Troguer, A.; Serafim-Júnior, M. Relations among planktonic rotifers, cyclopoid copepods, and water quality in two Brazilian reservoirs. Lat. Am. J. Aquat. Res. 2013, 41, 138–149. [Google Scholar] [CrossRef]
- Dodson, S.I. Adaptive change in plankton morphology in response to size-selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanogr. 1974, 19, 721–729. [Google Scholar] [CrossRef]
- Walczyńska, A.; Sobczyk, M. Experimental evolution shows body size decrease in response to hypoxia, with a complex effect on plastic size response to temperature. Biol. Bull. 2022, 243, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Michaloudi, E.; Papakostas, S.; Stamou, G.; Neděla, V.; Tihlaříková, E.; Zhang, W.; Declerck, S.A.J. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re) description of four species. PLoS ONE 2018, 13, e0203168. [Google Scholar] [CrossRef] [PubMed]
Taxa | S | O | N | D | J | F | M | A | M | J | J | A |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family: Asplanchnidae | ||||||||||||
Asplanchna brightwellii Gosse, 1850 | x | - | - | - | - | x | x | x | x | - | x | x |
Asplanchna girodi Guerne, 1888 | x | - | - | - | - | x | - | x | x | x | - | x |
Asplanchna priodonta Gosse, 1850 | x | - | - | - | - | x | - | - | x | - | - | x |
Family: Brachionidae | ||||||||||||
Keratella cochlearis (Gosse, 1851) | x | - | x | x | x | x | x | x | x | x | x | x |
Platyias quadricornis (Ehrenberg, 1832) | - | - | - | - | - | - | - | - | x | x | - | - |
Family: Collothecidae | ||||||||||||
Collotheca campanulata (Dobie, 1849) | - | - | - | - | x | - | - | - | - | - | - | - |
Family: Dicranophoridae | ||||||||||||
Dicranophorus grandis (Ehrenberg, 1832) | x | x | - | - | x | - | - | - | - | - | - | x |
Family: Euchlanidae | ||||||||||||
Euchlanis dilatata Ehrenberg, 1830 | - | - | - | - | - | - | - | - | - | x | - | - |
Euchlanis mikropous Koch-Althaus, 1962 | - | - | - | - | - | x | - | - | - | - | - | - |
Euchlanis oropha Gosse, 1887 | - | - | - | - | - | - | x | - | - | - | - | - |
Family: Gastropodidae | ||||||||||||
Ascomorpha ovalis (Bergendal, 1892) | x | - | - | - | - | - | - | - | - | - | - | x |
Gastropus hyptopus (Ehrenberg, 1838) | - | - | - | - | - | x | - | - | - | - | - | - |
Family: Hexarthridae | ||||||||||||
Hexarthra intermedia (Wiszniewski, 1929) | - | - | - | - | - | - | - | - | - | x | x | x |
Family: Lecanidae | ||||||||||||
Lecane closterocerca (Schmarda, 1859) | x | x | x | x | x | x | x | x | x | x | x | x |
Lecane decipiens (Murray, 1913) | - | x | - | - | - | - | - | x | - | - | x | - |
Lecane flexilis (Gosse, 1886) | x | - | - | x | - | - | x | - | - | - | x | - |
Lecane hamata (Stokes, 1896) | x | x | x | x | x | x | x | x | x | x | x | x |
Lecane hastata (Murray, 1913) | - | - | x | x | - | - | - | - | - | - | - | - |
Lecane inermis (Bryce, 1892) | - | x | - | - | - | - | - | - | - | - | x | - |
Lecane luna (Müller, 1776) | - | - | x | - | - | - | - | x | - | - | - | - |
Lecane lunaris (Ehrenberg, 1832) | x | - | x | - | - | - | - | - | - | - | - | - |
Family: Lepadellidae | ||||||||||||
Colurella obtusa (Goose, 1886) | x | x | x | x | x | - | - | x | - | - | - | x |
Colurella uncinata (Müller, 1773) | - | x | x | - | - | - | x | - | - | - | - | - |
Lepadella acuminata (Ehrenberg, 1834) | x | x | - | - | - | - | - | - | - | - | - | - |
Lepadella ovalis (Müller, 1786) | x | x | x | x | x | - | x | x | x | x | x | x |
Lepadella patella (Müller, 1773) | x | x | x | x | x | x | x | x | x | x | x | x |
Lepadella triptera (Ehrenberg, 1830) | - | - | - | - | - | - | x | - | - | - | - | - |
Squatinella lamellaris (Müller, 1786) | x | x | x | x | x | x | x | x | - | - | x | x |
Family: Mytilinidae | ||||||||||||
Lophocharis oxysternon (Gosse, 1851) | x | x | x | - | x | - | - | - | x | - | - | - |
Mytilina ventralis (Ehrenberg, 1830) | x | x | x | x | x | x | - | x | x | x | x | x |
Family: Notommatidae | ||||||||||||
Cephalodella physalis Myers, 1924 | - | - | x | x | - | x | x | - | x | - | - | - |
Cephalodella gibba (Ehrenberg, 1830) | x | x | x | x | x | x | x | x | x | x | x | x |
Cephalodella ventripes (Dixon-Nuttall, 1901) | x | x | x | x | x | x | x | - | x | - | x | x |
Notommata tripus Ehrenberg, 1838 | x | x | x | x | - | - | x | x | - | x | x | - |
Monommata arndti Remane, 1933 | x | x | x | x | x | x | x | x | x | x | x | x |
Family: Proalidae | ||||||||||||
Proales decipiens (Ehrenberg, 1830) | - | x | x | - | - | x | - | x | - | - | - | - |
Family: Scaridiidae | ||||||||||||
Scaridium longicaudum (Müller, 1786) | x | x | x | x | x | x | x | x | x | x | - | x |
Family: Synchaetidae | ||||||||||||
Polyarthra vulgaris Carlin, 1943 | x | x | x | x | x | x | x | x | x | x | x | x |
Synchaeta pectinata Ehrenberg, 1832 | - | - | x | - | - | - | - | - | - | x | - | - |
Family: Testudinellidae | ||||||||||||
Testudinella patina (Hermann, 1783) | x | x | x | x | x | x | x | x | - | - | - | x |
Testudinella emarginula (Stenroos, 1898) | x | x | x | - | x | x | x | x | - | - | - | x |
Family: Trichotriidae | ||||||||||||
Macrochaetus subquadratus Perty, 1850 | x | - | - | - | - | - | - | - | - | - | - | - |
Trichotria pocillum (Müller, 1776) | x | x | x | x | x | x | x | x | x | x | x | x |
Trichotria tetractis (Ehrenberg, 1830) | x | x | x | x | x | x | x | x | - | - | - | x |
Family: Trichoceridae | ||||||||||||
Trichocerca bicristata (Gosse, 1887) | - | - | - | - | - | - | - | - | - | x | - | - |
Trichocerca bidens (Lucks, 1912) | x | - | - | - | - | - | x | - | - | - | - | x |
Trichocerca cylindrica (Imhof, 1891) | - | x | x | x | x | x | x | x | x | x | - | - |
Trichocerca elongata (Gosse, 1886) | x | x | x | x | x | x | x | x | - | x | x | x |
Trichocerca longiseta (Schrank, 1802) | - | - | - | - | - | x | x | x | - | - | - | - |
Trichocerca porcellus (Gosse, 1851) | x | x | x | x | x | x | x | x | x | x | x | x |
Trichocerca ruttneri Donner, 1953 | - | x | - | - | - | - | - | - | - | - | - | - |
Trichocerca similis (Wierzejski, 1893) | x | x | x | x | - | - | x | x | x | x | x | x |
Trichocerca tigris (Müller, 1786) | - | - | x | - | - | - | - | x | - | x | - | - |
Trichocerca weberi (Jennings, 1903) | - | x | - | - | - | x | x | - | - | - | x | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gutiérrez, S.; Sarma, S.S.S.; Nandini, S. Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico. Diversity 2023, 15, 942. https://doi.org/10.3390/d15080942
González-Gutiérrez S, Sarma SSS, Nandini S. Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico. Diversity. 2023; 15(8):942. https://doi.org/10.3390/d15080942
Chicago/Turabian StyleGonzález-Gutiérrez, Sergio, S. S. S. Sarma, and S. Nandini. 2023. "Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico" Diversity 15, no. 8: 942. https://doi.org/10.3390/d15080942
APA StyleGonzález-Gutiérrez, S., Sarma, S. S. S., & Nandini, S. (2023). Seasonal Diversity and Morphometric Variations of Rotifers in Relation to Selected Environmental Variables from a Tropical High-Altitude Lake in Mexico. Diversity, 15(8), 942. https://doi.org/10.3390/d15080942