Mitogenomics of Three Ziczacella Leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) from Karst Area, Southwest China, and Their Phylogenetic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. DNA Sequencing and Assembly
2.3. Sequence Annotation and Analyses
2.4. Phylogenetic Analyses
3. Results and Discussion
3.1. Organization and Composition of the Genome
3.2. Protein-Coding Genes and Codon Usage
3.3. Transfer and Ribosomal RNA Genes
3.4. Control Region
3.5. Phylogenetic Relationships
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dietrich, C.H.; Dmitriev, D.A. Review of the New World genera of the leafhopper tribe Erythroneurini (Hemiptera: Cicadellidae: Typhlocycbinae). Ill. Nat. Hist. Surv. Bull. 2006, 37, 118–190. [Google Scholar] [CrossRef]
- Morris, M.G. Differences between the invertebrate faunas of grazed and ungrazed chalk grassland, IV. Abundance and diversity of Homoptera-Auchenorrhyncha. J. Appl. Ecol. 1971, 8, 37–52. [Google Scholar] [CrossRef]
- Roddee, J.; Kobori, Y.; Hanboonsong, Y. Multiplication and distribution of sugarcane white leaf phytoplasma transmitted by the leafhopper, Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae), in infected sugarcane. Sugar Tech 2018, 20, 445–453. [Google Scholar] [CrossRef]
- Guo, H.F. Major tea pests-advances in research on pseudo-eye leafhopper. Jiangsu Agric. Sci. 2011, 1, 132–134. [Google Scholar]
- Anufriev, G.A. Ziczacella, new subgenus of Erythroneura Fitch (Homoptera, Auchenorrhyncha, Cicadellidae). Bull. L’académie Pol. Sci. Série Sci. Biol. 1969, 17, 697–700. [Google Scholar]
- Song, Y.H.; Li, Z.Z. Erythroneurini and Zyginellini from China (Hemiptera: Cicadellidae: Typhlocybinae); Science and Technology Publishing House: Guiyang, China, 2014; pp. 12–209. [Google Scholar]
- Hamilton, K.G.A. New World species of Chlorita, Notus, and Forcipata (Rhynchota: Homoptera: Cicadellidae: Typhlocybinae) with a new tribe Forcipatini. Can. Entomol. 1998, 130, 491–507. [Google Scholar] [CrossRef]
- Balme, G.R. Phylogeny and Systematics of the Leafhopper Subfamily Typhlocybinae (Insecta: Hemiptera: Typhlocybinae). Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2007. [Google Scholar]
- Dietrich, C.H. South American leafhoppers of the tribe Typhlocybini (Hemiptera: Cicadellidae: Typhlocybinae). Zoologia 2013, 30, 519–568. [Google Scholar] [CrossRef]
- Hamilton, K.G.A. Classification, morphology and phylogeny of the family Cicadellidae (Rhynchota: Homoptera). In Proceedings of the 1st International Workshop on Biotaxonomy, Classification and Biology of Leafhoppers and Planthoppers of Economic Importance, London, UK, 4–7 October 1982; Commonwealth Institute of Entomology: London, UK, 1983; pp. 15–37. [Google Scholar]
- Zahniser, J.N.; Dietrich, C.H. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). Eur. J. Taxon. 2013, 45, 1–211. [Google Scholar] [CrossRef]
- Krishnankutty, S.M.; Dietrich, C.H.; Dai, W.; Siddappaji, M.H. Phylogeny and historical biogeography of leafhopper subfamily Iassinae (Hemiptera: Cicadellidae) with a revised tribal classification based on morphological and molecular data. Syst. Entomol. 2016, 41, 580–595. [Google Scholar] [CrossRef]
- Nardi, F.; Spinsanti, G.; Boore, J.L.; Carapelli, A.; Dallai, R.; Frati, F. Hexapod origins: Monophyletic or paraphyletic? Science 2016, 299, 1887–1889. [Google Scholar] [CrossRef]
- Cook, C.E.; Yue, Q.Y.; Akam, M. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc. R. Soc. B Biol. Sci. 2005, 272, 1295–1304. [Google Scholar] [CrossRef]
- Li, H.; Leavengood, J.M.; Chapman, E.G.; Burkhandt, D.; Song, F.; Liu, J.P.; Zhou, X.G.; Cai, W.Z. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. Biol. Sci. 2017, 284, 20171223. [Google Scholar] [CrossRef] [PubMed]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Jiang, L.Y.; Qiao, G.X. Hemipteran mitochondrial genomes: Features, structures and implications for phylogeny. Int. J. Mol. Sci. 2015, 16, 12382–12404. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Wilson, A.C.; Cann, R.L.; Carr, S.M.; George, M.; Gyllensten, U.B.; Helmbychowski, K.M.; Stoneking, M. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 2008, 26, 375–400. [Google Scholar] [CrossRef]
- Ross, H.H. The phylogeny of the leafhopper genus Erythroneura (Hemiptera, Cicadellidae). Zool. Beitr. 1965, 11, 247–270. [Google Scholar]
- Anufriev, G.A. New and little known leaf-hoppers of the subfamily Typhlocybinae from the Soviet Maritime Territory (Homopt., Auchenorrhyncha). Acta Faun. Entomol. Musei Natl. Pragae 1969, 13, 163–190. [Google Scholar]
- Lin, S.; Huang, M.; Zhang, Y. Structural Features and Phylogenetic Implications of 11 New Mitogenomes of Typhlocybinae (Hemiptera: Cicadellidae). Insects 2021, 12, 678. [Google Scholar] [CrossRef]
- Song, N.; Zhang, H.; Zhao, T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Mol. Phylogenetics Evol. 2019, 137, 236–249. [Google Scholar] [CrossRef]
- Shi, R.; Yu, X.F.; Yang, M.F. Complete mitochondrial genome of Ghauriana sinensis (Hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA Part B 2020, 5, 1367–1368. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, Z.; Li, C.; Dietrich, C.H.; Song, Y. Structural features and phylogenetic implications of cicadellidae subfamily and two new mitogenomes leafhoppers. PLoS ONE 2021, 16, e0251207. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Chen, X.; Li, C.; Song, Y. The complete mitochondrial genome of Empoascanara sipra (hemiptera: Cicadellidae: Typhlocybinae) with phylogenetic consideration. Mitochondrial DNA Part B 2020, 5, 260–261. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, C.; Song, Y. The complete mitochondrial genomes of two erythroneurine leafhoppers (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini) with assessment of the phylogenetic status and relationships of tribes of Typhlocybinae. ZooKeys 2021, 1037, 137–159. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiong, K.; Zhang, N.; Li, C.; Song, Y. Characterization of the morphology and complete mitochondrial genomes of Eupteryx minusula and Eupteryx gracilirama (Hemiptera: Cicadellidae: Typhlocybinae) from Karst area, Southwest China. PeerJ 2021, 9, e12501. [Google Scholar] [CrossRef]
- Yuan, X.; Xiong, K.; Li, C.; Song, Y. The complete mitochondrial genome of Limassolla lingchuanensis (hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA Part B 2020, 5, 229–230. [Google Scholar] [CrossRef]
- Zhou, X.; Dietrich, C.H.; Huang, M. Characterization of the complete mitochondrial genomes of two species with preliminary investigation on phylogenetic status of Zyginellini (Hemiptera: Cicadellidae: Typhlocybinae). Insects 2020, 11, 684. [Google Scholar] [CrossRef]
- Han, C.; Yan, B.; Yu, X.F.; Yang, M.F. Complete mitochondrial genome of Zyginella minuta (cicadellidae: Typhlocybinae: Zyginellini) from china, with its phylogenetic analysis. Mitochondrial DNA Part B 2020, 5, 2795–2796. [Google Scholar] [CrossRef]
- Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Burland, T.G. DNASTAR’s Lasergene sequence analysis software. Methods Mol. Biol. 2000, 132, 71–91. [Google Scholar]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Phylogenetics Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Stones, D.S.; Xie, Q.; Wang, G. MrBayes on a graphics processing unit. Bioinformatics 2011, 27, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.M.; Dai, W.; Dietrich, C.H. Mitochondrial Genomic Variation and Phylogenetic Relationships of Three Groups in the Genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae). Sci. Rep. 2017, 7, 16908. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von, H.A.; Minh, B.Q. IQ-TREE: A fast and efective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Y.; Chen, H.M.; Wang, L.X.; Feng, H.L.; Yang, X.; Mughal, M.N.; Fang, R. Complete mitochondrial genome analysis of Clinostomum complanatum and its comparison with selected digeneans. Parasitol. Res. 2016, 115, 3249–3256. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yuan, X.W.; Yuan, Z.W.; Song, Y.H. The complete mitochondrial genome of Parathailocyba orla (Hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA Part B 2020, 5, 1981–1982. [Google Scholar] [CrossRef]
- Conrado, A.C.; Arruda, H.; Stanton, D.; James, S.W.; Cunha, L. The complete mitochondrial dna sequence of the pantropical earthworm pontoscolex corethrurus (rhinodrilidae, clitellata): Mitogenome characterization and phylogenetic positioning. ZooKeys 2017, 688, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Wang, J.J.; Fan, Z.H.; Dai, R.H. Complete mitogenome of Olidiana ritcheriina (hemiptera: Cicadellidae) and phylogeny of cicadellidae. PeerJ 2019, 7, e8072. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Zhao, Q.; Wang, A.N.; Zhu, L.; Zhou, K.; Sun, H. Two new decapod (Crustacea, Malacostraca) complete mitochondrial genomes: Bearings on the phylogenetic relationships within the Decapoda. Zool. J. Linn. Soc. 2011, 162, 471–481. [Google Scholar] [CrossRef]
- Yong, H.S.; Chua, K.O.; Song, S.L.; Liew, J.M.; Eamsobhana, P.; Chan, K.G. Complete mitochondrial genome of Dacus vijaysegarani and phylogenetic relationships with congeners and other tephritid fruit flies (Insecta: Diptera). Mol. Biol. Rep. 2021, 48, 6047–6056. [Google Scholar] [CrossRef]
- Dworakowska, I. On the leafhopper tribe Zyginellini (Homoptera: Auchenorrhyncha, Cicadellidae, Typhlocybinae). Rev. Zool. Afr. 1979, 93, 288–331. [Google Scholar]
Tribe | Species | Length (bp) | GenBank No. | Reference |
---|---|---|---|---|
Alebrini | Shaddai sp. | 17,575 bp | MZ014457.1 | [22] |
Sobrala sp. | 16,732 bp | MZ014458.1 | [22] | |
Dikraneurini | Dikraneura zlata | 15,330 bp | MZ014450.1 | [22] |
Dikraneurini sp. | 15,306 bp | MZ014451.1 | [22] | |
Michalowskiya breviprocessa | 15,591 bp | MW264489.1 | Unpublished | |
Uniformus sp. | 14,440 bp | MW272457.1 | Unpublished | |
Uzeldikra longiprocessa | 14,752 bp | NC_069160.1 | Unpublished | |
Empoascini | Empoasca onukii | 15,167 bp | NC_037210.1 | [23] |
Ghauriana sinensis | 15,491 bp | MN699874.1 | [24] | |
Empoasca serrata | 15,131 bp | MZ014453.1 | [22] | |
Alebroides salicis | 15,890 bp | MZ014449.1 | [22] | |
Erythroneurini | Empoascanara dwalata | 15,271 bp | MT350235.1 | [25] |
Empoascanara sipra | 14,827 bp | NC_048516.1 | [26] | |
Empoascanara wengangensis | 14,830 bp | MT445764.1 | [25] | |
Mitjaevia dworakowskae | 16,399 bp | MT981880.1 | [27] | |
Mitjaevia shibingensis | 15,788 bp | MT981879.1 | [27] | |
Ziczacella steggerdai | 15,231 bp | OQ657302 | This study | |
Ziczacella dworakowskae | 15,137 bp | OQ657303 | This study | |
Ziczacella heptapotamica | 15,334 bp | NC064506.1 | This study | |
Typhlocybini | Eupteryx gracilirama | 17,173 bp | MT594485.1 | [28] |
Eupteryx minuscula | 16,944 bp | MN910279.1 | [28] | |
Eurhadina acapitata | 15,419 bp | MZ457331.1 | Unpublished | |
Eurhadina dongwolensis | 15,708 bp | MZ457332.1 | Unpublished | |
Eurhadina jarrayi | 15,332 bp | MZ014455.1 | [22] | |
Zyginellini | Limassolla emmrichi | 14,677 bp | MW272458.1 | Unpublished |
Limassolla lingchuanensis | 15,716 bp | NC_046037.1 | [29] | |
Parazyginella tiani | 17,562 bp | NC_053918.1 | [30] | |
Zyginella minuta | 15,544 bp | NC_052876.1 | [31] | |
outgroup | Atkinsoniella thalia | 15,034 bp | NC_062847.1 | Unpublished |
Scaphoideus maculatus | 15,486 bp | NC_060770.1 | Unpublished |
Gene | Position | Size (bp) | Intergenic | Start Codon | Stop Codon | Strand | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ||
tRNA-Ile | 1–64 | 1–64 | 1–64 | 64 | 64 | 64 | 0 | 0 | 0 | H | ||||||
tRNA-Gln | 62–130 | 62–130 | 63–129 | 69 | 69 | 67 | −3 | −3 | −2 | L | ||||||
tRNA-Met | 134–202 | 134–202 | 134–202 | 69 | 69 | 69 | 3 | 3 | 4 | H | ||||||
nad2 | 203–1174 | 203–1174 | 203–1174 | 972 | 972 | 972 | 0 | 0 | 0 | ATA | ATA | ATA | TAA | TAA | TAA | H |
tRNA-Trp | 1174–1237 | 1174–1237 | 1174–1237 | 64 | 64 | 64 | −1 | −1 | −1 | H | ||||||
tRNA-Cys | 1230–1292 | 1230–1292 | 1230–1292 | 63 | 63 | 63 | −8 | −8 | −8 | L | ||||||
tRNA-Tyr | 1296–1357 | 1296–1357 | 1296–1356 | 62 | 62 | 61 | 3 | 3 | 3 | L | ||||||
cox1 | 1360–2901 | 1360–2901 | 1359–2900 | 1542 | 1542 | 1542 | 2 | 2 | 2 | ATA | ATA | ATA | TAA | TAA | TAA | H |
tRNA-Leu2 | 2907–2971 | 2907–2971 | 2906–2970 | 65 | 65 | 65 | 5 | 5 | 5 | H | ||||||
cox2 | 2972–3650 | 2972–3650 | 2971–3649 | 679 | 679 | 679 | 0 | 0 | 0 | ATT | ATT | ATT | T | T | T | H |
tRNA-Lys | 3651–3720 | 3651–3720 | 3650–3719 | 70 | 70 | 70 | 0 | 0 | 0 | H | ||||||
tRNA-Asp | 3721–3785 | 3721–3785 | 3720–3784 | 65 | 65 | 65 | 0 | 0 | 0 | H | ||||||
atp8 | 3784–3936 | 3784–3936 | 3783–3935 | 153 | 153 | 153 | −2 | −2 | −2 | TTG | TTG | TTG | TAA | TAA | TAA | H |
atp6 | 3933–4583 | 3933–4583 | 3932–4582 | 651 | 651 | 651 | −4 | −4 | −4 | ATA | ATA | ATA | TAA | TAA | TAA | H |
cox3 | 4584–5363 | 4584–5363 | 4583–5362 | 780 | 780 | 780 | 0 | 0 | 0 | ATG | ATG | ATG | TAA | TAA | TAA | H |
tRNA-Gly | 5370–5431 | 5370–5431 | 5369–5430 | 62 | 62 | 62 | 6 | 6 | 6 | H | ||||||
nad3 | 5432–5785 | 5432–5785 | 5431–5784 | 354 | 354 | 354 | 0 | 0 | 0 | ATT | ATT | ATT | TAA | TAA | TAA | H |
tRNA-Ala | 5787–5847 | 5787–5847 | 5786–5846 | 61 | 61 | 61 | 1 | 1 | 1 | H | ||||||
tRNA-Arg | 5847–5907 | 5847–5907 | 5846–5906 | 61 | 61 | 61 | −1 | −1 | −1 | H | ||||||
tRNA-Asn | 5907–5972 | 5907–5972 | 5906–5971 | 66 | 66 | 66 | −1 | −1 | −1 | H | ||||||
tRNA-Ser1 | 5972–6038 | 5972–6038 | 5971–6037 | 67 | 67 | 67 | −1 | −1 | −1 | H | ||||||
tRNA-Glu | 6040–6103 | 6040–6102 | 6039–6102 | 64 | 63 | 64 | 1 | 1 | 1 | H | ||||||
tRNA-Phe | 6105–6169 | 6104–6168 | 6104–6168 | 65 | 65 | 65 | 1 | 1 | 1 | L | ||||||
nad5 | 6170–7826 | 6169–7804 | 6169–7843 | 1657 | 1636 | 1675 | 0 | 0 | 0 | ATT | ATT | ATT | T | T | T | L |
tRNA-His | 7824–7887 | 7802–7865 | 7841–7904 | 64 | 64 | 64 | −3 | −3 | −3 | L | ||||||
nad4 | 7887–9209 | 7865–9202 | 7904–9226 | 1323 | 1338 | 1323 | −1 | −1 | −1 | ATA | ATT | ATA | TAA | TAA | TAA | L |
nad4L | 9209–9487 | 9187–9465 | 9226–9504 | 279 | 279 | 279 | −1 | −16 | −1 | ATG | ATG | ATG | TAA | TAA | TAA | L |
tRNA-Thr | 9490–9552 | 9468–9530 | 9507–9569 | 63 | 63 | 63 | 2 | 2 | 2 | H | ||||||
tRNA-Pro | 9553–9618 | 9531–9596 | 9570–9635 | 66 | 66 | 66 | 0 | 0 | 0 | L | ||||||
nad6 | 9621–10,106 | 9599–10,084 | 9638–10,123 | 486 | 486 | 486 | 2 | 2 | 2 | ATT | ATT | ATT | TAA | TAA | TAA | H |
cytb | 10,107–11,243 | 10,085–11,221 | 10,124–11,260 | 1137 | 1137 | 1137 | 0 | 0 | 0 | ATG | ATG | ATG | TAA | TAA | TAA | H |
tRNA-Ser2 | 11,247–11,310 | 11,225–11,288 | 11,264–11,327 | 64 | 64 | 64 | 3 | 3 | 3 | H | ||||||
Nad1 | 11,304–12,245 | 11,282–12,223 | 11,321–12,259 | 942 | 942 | 939 | −7 | −7 | −7 | ATA | ATA | ATT | TAA | TAA | TAA | L |
tRNA-Leu1 | 12,243–12,307 | 12,221–12,285 | 12,260–12,324 | 65 | 65 | 65 | −3 | −3 | 0 | L | ||||||
16S | 12,308–13,483 | 12,286–13,461 | 12,325–13,503 | 1176 | 1176 | 1179 | 0 | 0 | 0 | L | ||||||
tRNA-Val | 13,484–13,553 | 13,462–13,531 | 13,504–13,569 | 70 | 70 | 66 | 0 | 0 | 0 | L | ||||||
12S | 13,554–14,278 | 13,532–14,254 | 13,570–14,294 | 725 | 723 | 725 | 0 | 0 | 0 | L | ||||||
D-loop | 14,279–15,231 | 14,255–15,137 | 14,295–15,334 | 953 | 883 | 1040 | 0 | 0 | 0 | H |
Region | C% | A% | G% | T% | A + T% | AT Skew | GC Skew | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | ZS | ZD | ZH | |
whole | 11.7 | 11.8 | 11.8 | 42.2 | 42.4 | 42.4 | 8.9 | 8.9 | 9.0 | 37.2 | 36.9 | 36.8 | 79.4 | 79.3 | 79.2 | 0.064 | 0.070 | 0.071 | −0.134 | −0.136 | −0.135 |
PCGs | 12.7 | 12.8 | 12.8 | 41.7 | 41.6 | 41.6 | 10.0 | 10.0 | 10.1 | 35.6 | 35.6 | 35.5 | 77.3 | 77.2 | 77.1 | 0.077 | 0.078 | 0.079 | −0.119 | −0.123 | −0.118 |
tRNA | 12.0 | 12.0 | 12.0 | 40.5 | 40.4 | 40.3 | 9.6 | 9.7 | 9.8 | 37.9 | 37.9 | 37.9 | 78.4 | 78.3 | 78.2 | 0.033 | 0.032 | 0.031 | −0.110 | −0.110 | −0.101 |
rRNA | 11.0 | 11.1 | 11.0 | 49.3 | 49.4 | 49.6 | 6.4 | 6.3 | 6.3 | 33.3 | 33.2 | 33.1 | 82.6 | 82.6 | 82.7 | 0.195 | 0.197 | 0.199 | −0.269 | −0.273 | −0.272 |
CR | 0.8 | 0.5 | 2.1 | 36.8 | 39.9 | 41.0 | 0.5 | 0.3 | 1.6 | 61.9 | 59.3 | 55.3 | 98.6 | 99.2 | 96.3 | −0.255 | −0.196 | −0.148 | −0.231 | −0.143 | −0.135 |
Amino Acid | Codon | Z. steggerdai | Z. dworakowskae | Z. heptapotamica | Amino Acid | Codon | Z. steggerdai | Z. dworakowskae | Z. heptapotamica | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Count | RSCU | Count | RSCU | Count | RSCU | Count | RSCU | Count | RSCU | Count | RSCU | ||||
Phe | UUU | 315 | 1.55 | 289 | 1.43 | 294 | 1.47 | Tyr | UAU | 253 | 1.56 | 321 | 1.63 | 305 | 1.56 |
UUC | 91 | 0.45 | 114 | 0.57 | 106 | 0.53 | UAC | 72 | 0.44 | 72 | 0.37 | 85 | 0.44 | ||
Leu2 | UUA | 317 | 3.07 | 312 | 3.08 | 309 | 3.03 | His | CAU | 75 | 1.46 | 72 | 1.37 | 68 | 1.27 |
UUG | 49 | 0.47 | 58 | 0.57 | 81 | 0.79 | CAC | 28 | 0.54 | 33 | 0.63 | 39 | 0.73 | ||
Leu1 | CUU | 106 | 1.03 | 83 | 0.82 | 76 | 0.75 | Gln | CAA | 114 | 1.56 | 85 | 1.43 | 94 | 1.36 |
CUC | 19 | 0.18 | 33 | 0.33 | 33 | 0.32 | CAG | 32 | 0.44 | 34 | 0.57 | 44 | 0.64 | ||
CUA | 101 | 0.98 | 90 | 0.89 | 82 | 0.8 | Asn | AAU | 377 | 1.67 | 420 | 1.51 | 428 | 1.49 | |
CUG | 27 | 0.26 | 31 | 0.31 | 31 | 0.3 | AAC | 75 | 0.33 | 135 | 0.49 | 147 | 0.51 | ||
Ile | AUU | 347 | 1.71 | 276 | 1.58 | 302 | 1.55 | Lys | AAA | 436 | 1.75 | 390 | 1.54 | 392 | 1.55 |
AUC | 58 | 0.29 | 74 | 0.42 | 88 | 0.45 | AAG | 61 | 0.25 | 118 | 0.46 | 114 | 0.45 | ||
Met | AUA | 334 | 1.7 | 310 | 1.68 | 286 | 1.68 | Asp | GAU | 64 | 1.44 | 47 | 1.42 | 58 | 1.73 |
AUG | 59 | 0.3 | 60 | 0.32 | 54 | 0.32 | GAC | 25 | 0.56 | 19 | 0.58 | 9 | 0.27 | ||
Val | GUU | 56 | 1.87 | 50 | 1.68 | 44 | 1.44 | Glu | GAA | 130 | 1.68 | 72 | 1.53 | 79 | 1.55 |
GUC | 11 | 0.37 | 13 | 0.44 | 13 | 0.43 | GAG | 25 | 0.32 | 22 | 0.47 | 23 | 0.45 | ||
GUA | 47 | 1.57 | 49 | 1.65 | 50 | 1.64 | Cys | UGU | 32 | 1.28 | 33 | 1.27 | 42 | 1.29 | |
GUG | 6 | 0.2 | 7 | 0.24 | 15 | 0.49 | UGC | 18 | 0.72 | 19 | 0.73 | 23 | 0.71 | ||
Ser2 | UCU | 59 | 1.6 | 57 | 1.43 | 54 | 1.24 | Trp | UGA | 63 | 1.59 | 58 | 1.36 | 50 | 1.23 |
UCC | 18 | 0.49 | 19 | 0.48 | 23 | 0.53 | UGG | 16 | 0.41 | 27 | 0.64 | 31 | 0.77 | ||
UCA | 78 | 2.12 | 72 | 1.81 | 66 | 1.52 | Arg | CGU | 11 | 1.16 | 8 | 0.84 | 11 | 1.29 | |
UCG | 15 | 0.41 | 7 | 0.18 | 11 | 0.25 | CGC | 2 | 0.21 | 7 | 0.74 | 6 | 0.71 | ||
Pro | CCU | 51 | 1.47 | 27 | 1.08 | 25 | 1.01 | CGA | 22 | 2.32 | 16 | 1.68 | 14 | 1.65 | |
CCC | 27 | 0.78 | 35 | 1.4 | 32 | 1.29 | CGG | 3 | 0.32 | 7 | 0.74 | 3 | 0.35 | ||
CCA | 53 | 1.53 | 32 | 1.28 | 34 | 1.37 | Ser1 | AGU | 38 | 1.03 | 41 | 1.03 | 48 | 1.11 | |
CCG | 8 | 0.23 | 6 | 0.24 | 8 | 0.32 | AGC | 14 | 0.38 | 27 | 0.68 | 33 | 0.76 | ||
Thr | ACU | 78 | 1.54 | 71 | 1.44 | 73 | 1.42 | AGA | 55 | 1.49 | 65 | 1.63 | 69 | 1.59 | |
ACC | 40 | 0.79 | 53 | 1.08 | 55 | 1.07 | AGG | 18 | 0.49 | 31 | 0.78 | 43 | 0.99 | ||
ACA | 73 | 1.45 | 57 | 1.16 | 61 | 1.19 | Gly | GGU | 44 | 1.69 | 31 | 1.57 | 16 | 1.21 | |
ACG | 11 | 0.22 | 16 | 0.32 | 16 | 0.31 | GGC | 7 | 0.27 | 8 | 0.41 | 11 | 0.83 | ||
Ala | GCU | 35 | 1.84 | 20 | 1.33 | 13 | 1.33 | GGA | 29 | 1.12 | 24 | 1.22 | 10 | 0.75 | |
GCC | 6 | 0.32 | 10 | 0.67 | 6 | 0.62 | GGG | 24 | 0.92 | 16 | 0.81 | 16 | 1.21 | ||
GCA | 32 | 1.68 | 27 | 1.8 | 14 | 1.44 | * | UAA | 324 | 1.69 | 351 | 1.65 | 365 | 1.66 | |
GCG | 3 | 0.16 | 3 | 0.2 | 6 | 0.62 | UAG | 59 | 0.31 | 75 | 0.35 | 74 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, N.; Pu, T.; Li, C.; Song, Y. Mitogenomics of Three Ziczacella Leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) from Karst Area, Southwest China, and Their Phylogenetic Implications. Diversity 2023, 15, 1002. https://doi.org/10.3390/d15091002
Wang J, Zhang N, Pu T, Li C, Song Y. Mitogenomics of Three Ziczacella Leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) from Karst Area, Southwest China, and Their Phylogenetic Implications. Diversity. 2023; 15(9):1002. https://doi.org/10.3390/d15091002
Chicago/Turabian StyleWang, Jinqiu, Ni Zhang, Tianyi Pu, Can Li, and Yuehua Song. 2023. "Mitogenomics of Three Ziczacella Leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) from Karst Area, Southwest China, and Their Phylogenetic Implications" Diversity 15, no. 9: 1002. https://doi.org/10.3390/d15091002
APA StyleWang, J., Zhang, N., Pu, T., Li, C., & Song, Y. (2023). Mitogenomics of Three Ziczacella Leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) from Karst Area, Southwest China, and Their Phylogenetic Implications. Diversity, 15(9), 1002. https://doi.org/10.3390/d15091002