Occurrence and Diversity of Yeast Associated with Fruits and Leaves of Two Native Plants from Brazilian Neotropical Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Processing
2.2. Isolation of Yeasts
2.3. Identification of Isolates
2.4. Relative Abundance and Diversity Metric
3. Results
3.1. Isolation and Population Density of Yeasts in Sabicea brasiliensis and Anacardium humile
3.2. Identification and Composition of Yeasts in the Two Hosts
3.3. Alpha and Beta Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whipps, J.M.; Hand, P.; Pink, D.; Bending, G.D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 2008, 105, 1744–1755. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef]
- Proença, D.N.; Grass, G.; Morais, P.V. Understanding pine wilt disease: Roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiol. Open 2016, 6, e00415. [Google Scholar] [CrossRef]
- Sivakumar, N.; Sathishkumar, R.; Selvakumar, G.; Shyamkumar, R.; Arjunekumar, K. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. In Plant Microbiomes for Sustainable Agriculture—Sustainable Development and Biodiversity; Yadav, A., Singh, J., Rastegari, A., Yadav, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 25, pp. 113–172. [Google Scholar] [CrossRef]
- Micci, A.; Zhang, Q.; Chang, X.; Kingsley, K.; Park, L.; Chiaranunt, P.; Strickland, R.; Velazquez, F.; Lindert, S.; Elmore, M.; et al. Histochemical Evidence for Nitrogen-Transfer Endosymbiosis in Non-Photosynthetic Cells of Leaves and Inflorescence Bracts of Angiosperms. Biology 2022, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- Vermote, L.; Verce, M.; Mozzi, F.; De Vuyst, L.; Weckx, S. Microbiomes Associated With the Surfaces of Northern Argentinian Fruits Show a Wide Species Diversity. Front. Microbiol. 2022, 13, 872281. [Google Scholar] [CrossRef] [PubMed]
- Nasanit, R.; Tangwong-O-Thai, A.; Tantirungkij, M.; Limtong, S. The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method. Fungal Biol. 2015, 119, 1145–1157. [Google Scholar] [CrossRef]
- Nasanit, R.; Jaibangyang, S.; Tantirungkij, M.; Limtong, S. Yeast diversity and novel yeast D1/D2 sequences from corn phylloplane obtained by a culture-independent approach. Antonie van Leeuwenhoek 2016, 109, 1615–1634. [Google Scholar] [CrossRef]
- Khunnamwong, P.; Jindamorakot, S.; Limtong, S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol. 2018, 122, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Into, P.; Pontes, A.; Sampaio, J.P.; Limtong, S. Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms 2020, 8, 80. [Google Scholar] [CrossRef]
- Boundy-Mills, K.L.; Glantschnig, E.; Roberts, I.N.; Yurkov, A.; Casaregola, S.; Daniel, H.M.; Groenewald, M.; Turchetti, B. Yeast culture collections in the twenty-first century: New opportunities and challenges. Yeast 2016, 33, 243–260. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, Y.F. Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS ONE 2015, 10, e0130051. [Google Scholar] [CrossRef] [PubMed]
- Sipiczki, M. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines. Front. Microbiol. 2016, 7, 212. [Google Scholar] [CrossRef] [PubMed]
- Vadkertiová, R.; Molnárová, J.; Vránová, D.; Sláviková, E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can. J. Microbiol. 2012, 58, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Dabassa Koricha, A.; Han, D.Y.; Bacha, K.; Bai, F.Y. Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia. Microorganisms 2019, 7, 633. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.; Ratter, J. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb. J. Bot. 1995, 52, 141–194. [Google Scholar] [CrossRef]
- Silva, J.M.C.; Bates, J.M. Biogeographic patterns and conservation in the South American Cerrado: A tropical savanna hotspot. BioScience 2002, 52, 225–233. [Google Scholar] [CrossRef]
- Coelho, L.G.F.; Moreira, G.A.M.; Bomfim, C.A.; Vale, H.M.M. Yeast Communities Structure in Fruits of Native plant species of Brazilian Cerrado. Rev. Biol. Neotrop. 2020, 17, 35–46. [Google Scholar] [CrossRef]
- Vale, H.M.M.; Reis, J.B.A.; Oliveira, M.; Moreira, G.A.M.; Bomfim, C.A. Yeasts in native fruits from Brazilian neotropical savannah: Occurrence, diversity and enzymatic potential. Biota Neotrop. 2021, 21. [Google Scholar] [CrossRef]
- Dos Reis, J.B.A.; do Vale, H.M.M.; Lorenzi, A.S. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: A review exploring an unique Brazilian biome and methodological limitations. World J. Microbiol. Biotechnol. 2022, 38, 202. [Google Scholar] [CrossRef]
- Ferreira, P.R.B.; Mendes, C.S.O.; Rodrigues, C.G.; Rocha, J.C.M.; Royo, V.D.A.; Valério, H.M.; Oliveira, D.A.D. Antibacterial activity tannin-rich fraction fromleaves of Anacardium humile. Ciência Rural 2012, 42, 1861–1864. [Google Scholar] [CrossRef]
- Batista, J.C.; Santin, S.M.d.O.; Schuquel, I.T.A.; de Arruda, L.L.M.; Bersani-Amado, C.A.; de Oliveira, C.M.A.; Kato, L.; Ferreira, H.D.; da Silva, C.C. Chemical constituents and evaluation of antioxidant and anti-inflammatory activities of roots of Sabicea brasiliensis wernh (Rubiaceae). Quim. Nova 2014, 37, 638–642. [Google Scholar] [CrossRef]
- Royo, V.A.; Mercadante-Simões, M.O.; Ribeiro, L.M.; Oliveira, D.A.; Aguiar, M.M.; Costa, E.R.; Ferreira, P.R. Anatomy, Histochemistry, and Antifungal Activity of Anacardium humile (Anacardiaceae) Leaf. Microsc. Microanal. 2015, 21, 1549–1561. [Google Scholar] [CrossRef]
- Costa, T.R.; Francisco, A.F.; Cardoso, F.F.; Moreira-Dill, L.S.; Fernandes, C.A.H.; Gomes, A.A.S.; Guimarães, C.L.S.; Marcussi, S.; Pereira, P.S.; Oliveira, H.C.; et al. Gallic acid anti-myotoxic activity and mechanism of action, a snake venom phospholipase A2 toxin inhibitor, isolated from the medicinal plant Anacardium humile. Int. J. Biol. Macromol. 2021, 185, 494–512. [Google Scholar] [CrossRef]
- Lima Júnior, J.P.; Franco, R.R.; Saraiva, A.L.; Moraes, I.B.; Espindola, F.S. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. J. Ethnopharmacol. 2021, 268, 113667. [Google Scholar] [CrossRef]
- Makimura, K.; Murayama, S.Y.; Yamaguchi, H. Detection of a wide range of medically important fungi by the polymerase chain reaction. J. Med. Microbiol. 1994, 40, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Yarrow, D. Methods for the isolation, maintenance and identification of yeasts. In The Yeasts—A Taxonomic Study; Kurtzman, C.P., Fell, J.W., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1998; pp. 77–100. [Google Scholar]
- Libkind, D.; Brizzio, S.; Ruffini, A.; Gadanho, M.; Van Broock, M.; Sampaio, J.P. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek 2003, 84, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Pielou, E.C. The Interpretation of Ecological Data: A Primer on Classification and Ordination; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, C.D.L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Sperandio, E.M.; do Vale, H.M.M.; Moreira, G.A.M. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould. Fungal Biol. 2015, 119, 984–993. [Google Scholar] [CrossRef]
- Landell, M.F.; Mautone, J.N.; Valente, P. Biodiversity of yeasts associated to bromeliads in Itapuã Park, Viamão—RS. Biociências 2006, 14, 144–149. [Google Scholar]
- Dik, A.J.; Fokkema, N.J.; van Pelt, J.A. Influence of climatic and nutritional factors on yeast population dynamics in the phyllosphere of wheat. Microb. Ecol. 1992, 23, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Noriler, S.A.; Savi, D.C.; Aluizio, R.; Palácio-Cortes, A.M.; Possiede, Y.M.; Glienke, C. Bioprospecting and Structure of Fungal Endophyte Communities Found in the Brazilian Biomes, Pantanal, and Cerrado. Front. Microbiol. 2018, 9, 1526. [Google Scholar] [CrossRef]
- Yurkov, A.M. Yeasts of the soil—Obscure but precious. Yeast 2018, 35, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lei, Y.; Wang, C.; Wei, Y.; Wang, C.; Sun, Y. Patterns of yeast diversity distribution and its drivers in rhizosphere soil of Hami melon orchards in different regions of Xinjiang. BMC Microbiol. 2021, 21, 170. [Google Scholar] [CrossRef]
- Grondin, E.; Sing, S.C.A.; Caro, Y.; Raherimandimby, M.; Randrianierenana, A.L.; James, S.; Nueno-Palop, C.; François, J.M.; Petit, T. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds. Int. J. Food Microbiol. 2015, 203, 101–108. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol. Mol. Biol. Rev. 2015, 80, 91–138. [Google Scholar] [CrossRef]
- Huang, Z.; Hou, D.; Zhou, R.; Zeng, S.; Xing, C.; Wei, D.; Deng, X.; Yu, L.; Wang, H.; Deng, Z.; et al. Environmental Water and Sediment Microbial Communities Shape Intestine Microbiota for Host Health: The Central Dogma in an Anthropogenic Aquaculture Ecosystem. Front. Microbiol. 2021, 12, 772149. [Google Scholar] [CrossRef]
- Singh, D.K.; Sharma, V.K.; Kumar, J.; Mishra, A.; Verma, S.K.; Sieber, T.N.; Kharwar, R.N. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn.f.: Spatiotemporal and tissue type effects. Sci. Rep. 2017, 7, 3745. [Google Scholar] [CrossRef]
- Zalar, P.; Gostincar, C.; de Hoog, G.S.; Ursic, V.; Sudhadham, M.; Gunde-Cimerman, N. Redefinition of Aureobasidium pullulans and its varieties. Stud. Mycol. 2008, 61, 21–38. [Google Scholar] [CrossRef]
- Di Francesco, A.; Zajc, J.; Gunde-Cimerman, N.; Aprea, E.; Gasperi, F.; Placì, N.; Caruso, F.; Baraldi, E. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World J. Microbiol. Biotechnol. 2020, 36, 171. [Google Scholar] [CrossRef]
- Bozoudi, D.; Tsaltas, D. The Multiple and Versatile Roles of Aureobasidium pullulans in the Vitivinicultural Sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef]
- Kucharska, K.; Wachowska, U.; Czaplicki, S. Wheat phyllosphere yeasts degrade propiconazole. BMC Microbiol. 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism action against postharvest fruit pathogens. Biol. Control 2015, 81, 8–14. [Google Scholar] [CrossRef]
- Morais, P.B.; Martins, M.B.; Klaczko, L.B.; Mendonça-Hagler, L.C.; Hagler, A.N. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 1995, 61, 4251–4257. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castrillón, M.; Usman, L.M.; Silva-Bedoya, L.M.; Osorio-Cadavid, E. Dominant yeasts associated to mango (Mangifera indica) and rose apple (Syzygium malaccense) fruit pulps investigated by culture-based methods. An. Acad. Bras. Cienc. 2019, 91, e20190052. [Google Scholar] [CrossRef]
- Vegas, C.; Zavaleta, A.I.; Canales, P.E.; Esteve-Zarzoso, B. Yeasts Associated with Various Amazonian Native Fruits. Pol. J. Microbiol. 2020, 69, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Oku, M.; Kawaguchi, K.; Uchida, D.; Yurimoto, H.; Sakai, Y. Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci. Rep. 2015, 5, 9719. [Google Scholar] [CrossRef]
- Limtong, S.; Into, P.; Attarat, P. Biocontrol of Rice Seedling Rot Disease Caused by Curvularia lunata and Helminthosporium oryzae by Epiphytic Yeasts from Plant Leaves. Microorganisms 2020, 8, 647. [Google Scholar] [CrossRef]
- Belisle, M.; Peay, K.G.; Fukami, T. Flowers as islands: Spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb. Ecol. 2012, 63, 711–718. [Google Scholar] [CrossRef]
- Mittelbach, M.; Yurkov, A.M.; Nocentini, D.; Nepi, M.; Weigend, M.; Begerow, D. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol. 2015, 15, 2. [Google Scholar] [CrossRef]
- Lachance, M.-A.; Vale, H.M.M.; Sperandio, E.M.; Carvalho, A.O.S.; Santos, A.R.O.; Grondin, C.; Jacques, N.; Casaregola, S.; Rosa, C.A. Wickerhamiella dianesei f.a., sp. nov. and Wickerhamiella kurtzmanii f.a., sp. nov., two yeast species isolated from plants and insects. Int. J. Syst. Evol. Microbiol. 2018, 68, 3351–3355. [Google Scholar] [CrossRef] [PubMed]
- Canto, A.; Herrera, C.M.; Rodriguez, R. Nectar-living yeasts of a tropical host plant community: Diversity and effects on community-wide floral nectar traits. PeerJ 2017, 5, e3517. [Google Scholar] [CrossRef] [PubMed]
- Ricks, K.D.; Koide, R.T. The role of inoculum dispersal and plant species identity in the assembly of leaf endophytic fungal communities. PLoS ONE 2019, 14, e0219832. [Google Scholar] [CrossRef]
- Ettinger, C.L.; Vann, L.E.; Eisen, J.A. Global Diversity and Biogeography of the Zostera marina Mycobiome. Appl. Environ. Microbiol. 2021, 87, e0279520. [Google Scholar] [CrossRef] [PubMed]
- Malassigné, S.; Minard, G.; Vallon, L.; Martin, E.; Valiente Moro, C.; Luis, P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021, 9, 1552. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Damasco, G.; Fontes, C.; Françoso, R.; Haidar, R. The Cerrado Biome: A Forgotten Biodiversity Hotspot. Front. Young Minds 2018, 6, 22. [Google Scholar] [CrossRef]
Host | Organ | No. of Isolates | Closest GenBank Match | Sequenced Isolate | Identity (%) | Query Cover (%) | Match | GenBank Access Number | Sequence Length (bp) |
---|---|---|---|---|---|---|---|---|---|
S. brasiliensis | Fruit | 5 | Candida sp. | 92 | 95.00 | 100 | NG_055230.1 | OP912408 | 497 |
S. brasiliensis | Fruit | 2 | Candida sp. | 97 | 94.00 | 98 | NG_060824.1 | OP912409 | 497 |
S. brasiliensis | Leaves | 2 | Wickerhamiella | 98 | 88.34 | 82 | AF313369.2 | OP912410 | 517 |
S. brasiliensis | Fruit | 3 | Rhodotorula nothofagi | 101 | 99.84 | 99 | NG_069005.1 | OP912411 | 565 |
S. brasiliensis | Fruit | 1 | Rhodotorula nothofagi | 103 | 99.82 | 99 | NG_069005.1 | OP912412 | 568 |
S. brasiliensis | Leaves | 2 | Candida sp. | 106 | 89.73 | 93 | NG_060824.1 | OP912413 | 506 |
S. brasiliensis | Leaves | 2 | Wickerhamiella | 107 | 87.34 | 99 | AF313369.2 | OP912414 | 543 |
S. brasiliensis | Leaves | 1 | Aureobasidium sp. | 108 | 96.93 | 98 | NG_055734.1 | OP912415 | 558 |
S. brasiliensis | Leaves | 1 | Aureobasidium leucospermi | 109 | 99.08 | 98 | NG_058566.1 | OP912416 | 550 |
S. brasiliensis | Fruit | 1 | Rhodotorula nothofagi | 110 | 98.94 | 99 | NG_069005.1 | OP912417 | 570 |
S. brasiliensis | Fruit | 1 | Rhodotorula nothofagi | 111 | 99.47 | 100 | NG_069005.1 | OP912418 | 568 |
S. brasiliensis | Fruit | 1 | Candida sp. | 112 | 88.36 | 100 | NG_055230.1 | OP912419 | 523 |
S. brasiliensis | Fruit | 1 | Candida sp. | 113 | 95.37 | 100 | NG_060824.1 | OP912420 | 493 |
S. brasiliensis | Fruit | 1 | Candida sp. | 122 | 95.56 | 99 | NG_055230.1 | OP912422 | 497 |
S. brasiliensis | Leaves | 2 | Wickerhamiella | 126 | 87.92 | 98 | AF313369.2 | OP912423 | 541 |
S. brasiliensis | Leaves | 2 | Aureobasidium leucospermi | 127 | 99.82 | 100 | NG_058566.1 | OP912424 | 550 |
S. brasiliensis | Leaves | 1 | Aureobasidium pullulans | 128 | 97.12 | 100 | NG_055734.1 | OP912425 | 554 |
S. brasiliensis | Fruit | 1 | Candida sp. | 129 | 96.17 | 100 | NG_055230.1 | OP912426 | 495 |
S. brasiliensis | Fruit | 1 | Candida sp. | 131 | 94.12 | 96 | NG_055230.1 | OP912427 | 511 |
S. brasiliensis | Leaves | 1 | Aureobasidium leucospermi | 134 | 97.07 | 98 | NG_058566.1 | OP912428 | 551 |
S. brasiliensis | Leaves | 2 | Candida dosseyi | 135 | 99.60 | 99 | NG_055374.1 | OP912429 | 504 |
S. brasiliensis | Fruit | 5 | Candida sp. | 137 | 91.37 | 96 | NG_060824.1 | OP912430 | 519 |
S. brasiliensis | Fruit | 1 | Candida sp. | 138 | 95.61 | 100 | NG_055230.1 | OP912431 | 500 |
S. brasiliensis | Fruit | 1 | Candida sp. | 144 | 94.59 | 99 | NG_060824.1 | OP912432 | 497 |
S. brasiliensis | Leaves | 1 | Aureobasidium sp. | 145 | 95.71 | 99 | NG_058566.1 | OP912433 | 561 |
S. brasiliensis | Leaves | 1 | Candida parapsilosis | 146 | 99.27 | 99 | NG_054833.1 | OP912434 | 550 |
S. brasiliensis | Leaves | 1 | Candida akabanensis | 147 | 99.80 | 100 | NG_055374.1 | OP912435 | 475 |
S. brasiliensis | Fruit | 1 | Candida sp. | 150 | 95.13 | 98 | NG_060824.1 | OP912438 | 494 |
S. brasiliensis | Fruit | 2 | Candida sp. | 152 | 95.40 | 99 | NG_055230.1 | OP912439 | 499 |
S. brasiliensis | Fruit | 1 | Rhodotorula nothofagi | 157 | 97 | 88 | NG_069005.1 | OP912440 | 404 |
S. brasiliensis | Fruit | 1 | Rhodotorula nothofagi | 158 | 97 | 99 | NG_069005.1 | OP912441 | 574 |
S. brasiliensis | Fruit | 1 | Wickerhamiella | 164 | 85.79 | 100 | AF313369.2 | OP912442 | 547 |
S. brasiliensis | Fruit | 3 | Aureobasidium leucospermi | 168 | 97.15 | 99 | NG_058566.1 | OP912443 | 567 |
S. brasiliensis | Fruit | 1 | Candida sp. | 172 | 96.14 | 96 | NG_055230.1 | OP912444 | 493 |
S. brasiliensis | Fruit | 1 | Candida melibiosica | 176 | 97.75 | 99 | NG_055230.1 | OP912445 | 496 |
S. brasiliensis | Fruit | 1 | Hannaella zeae | 393 | 100.00 | 99 | NG_058304.1 | OP912456 | 576 |
S. brasiliensis | Fruit | 1 | Candida sp. | 178 | 93.56 | 99 | NG_060824.1 | OP912446 | 494 |
S. brasiliensis | Leaves | 1 | Aureobasidium sp. | 182 | 94.86 | 99 | NG_055734.1 | OP912448 | 559 |
S. brasiliensis | Fruit | 1 | Pseudozyma sp. | 186 | 96.94 | 99 | NG_058380.1 | OP912449 | 558 |
A. humile | Fruit | 4 | Aureobasidium leucospermi | 380 | 98.98 | 100 | NG_058566.1 | OP912451 | 490 |
A. humile | Fruit | 1 | Papiliotrema sp. (Cryptococcus sp.) | 381 | 92.60 | 99 | NG_060062.1 | OP912452 | 612 |
A. humile | Fruit | 4 | Aureobasidium leucospermi | 382 | 99.28 | 99 | NG_058566.1 | OP912453 | 553 |
A. humile | Fruit | 1 | Aureobasidium leucospermi | 386 | 98.81 | 97 | NG_058566.1 | OP912454 | 554 |
A. humile | Fruit | 3 | Aureobasidium leucospermi | 388 | 99.64 | 100 | NG_058566.1 | OP912455 | 551 |
A. humile | Fruit | 1 | Hannaella zeae | 393 | 100.00 | 99 | NG_058304.1 | OP912456 | 576 |
A. humile | Leaves | 1 | Aureobasidium pullulans | 397 | 97.64 | 100 | NG_055734.1 | OP912457 | 551 |
A. humile | Leaves | 8 | Aureobasidium leucospermi | 399 | 99.63 | 99 | NG_058566.1 | OP912459 | 549 |
A. humile | Leaves | 1 | Papiliotrema siamensis (Cryptococcus siamensis) | 405 | 99.14 | 99 | NG_060062.1 | OP912460 | 581 |
Plant Host | Density of Yeasts | Total of Isolates | |||
---|---|---|---|---|---|
Yeasts in Leaves | Yeasts in Fruits | ||||
UFC.g Leaves−1 | Number of Isolates | UFC.g Fruits−1 | Number of Isolates | ||
Sabicea brasiliensis | 1.7 × 101 | 19 | 2.2 × 102 | 40 | 59 |
Anacardium humile | 6.0 × 101 | 10 | 3.1 × 101 | 14 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperandio, E.M.; Reis, J.B.A.d.; Coelho, L.G.F.; Vale, H.M.M.d. Occurrence and Diversity of Yeast Associated with Fruits and Leaves of Two Native Plants from Brazilian Neotropical Savanna. Diversity 2023, 15, 1010. https://doi.org/10.3390/d15091010
Sperandio EM, Reis JBAd, Coelho LGF, Vale HMMd. Occurrence and Diversity of Yeast Associated with Fruits and Leaves of Two Native Plants from Brazilian Neotropical Savanna. Diversity. 2023; 15(9):1010. https://doi.org/10.3390/d15091010
Chicago/Turabian StyleSperandio, Eugenio Miranda, Jefferson Brendon Almeida dos Reis, Lucas Gabriel Ferreira Coelho, and Helson Mario Martins do Vale. 2023. "Occurrence and Diversity of Yeast Associated with Fruits and Leaves of Two Native Plants from Brazilian Neotropical Savanna" Diversity 15, no. 9: 1010. https://doi.org/10.3390/d15091010
APA StyleSperandio, E. M., Reis, J. B. A. d., Coelho, L. G. F., & Vale, H. M. M. d. (2023). Occurrence and Diversity of Yeast Associated with Fruits and Leaves of Two Native Plants from Brazilian Neotropical Savanna. Diversity, 15(9), 1010. https://doi.org/10.3390/d15091010