Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Invasive Alien Species of European Union Concern: Selection and Collection
2.2. Spontaneous Plant Collection
2.3. Primer Pair Design
2.4. DNA Barcoding Analysis
2.5. Creation of Mixes and Testing of Primer Pairs
2.6. Limit of Detection and Multiplex PCR
3. Results
3.1. DNA Barcoding
3.2. Primer Pair Design and Test on Invasive Species
3.3. Species-Specific Primer Testing on Mixes and Limit of Detection
3.4. Multiplex PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Code | Marker | Declared Species | Obtained Species | Sample DNA Concentration (ng/μL) | Accession Number |
---|---|---|---|---|---|
SI_IG01 | ITS2 | Impatiens glandulifera | Impatiens glandulifera | 29.7 | PQ435191 |
SI_HM02 | ITS2 | Heracleum mantegazzianum | Heracleum mantegazzianum | 45.1 | PQ435192 |
SI_PM03 | ITS2 | Pueraria montana | Pueraria montana | 28.7 | IASIT001-24 |
SI_AA04 | ITS2 | Ailanthus altissima | Ailanthus altissima | 60.35 | PQ435193 |
SI_EN05 | ITS2 | Elodea nuttallii | Elodea nuttallii | 60.5 | PQ435194 |
SI_LG06 | ITS2 | Ludwigia grandiflora | Ludwigia grandiflora | 15.6 | IASIT002-24 |
SI_PC07 | ITS2 | Pontederia crassipes | Pontederia crassipes | 17.2 | IASIT003-24 |
SI_MA08 | ITS2 | Myriophyllum aquaticum | Myriophyllum aquaticum | 31.8 | PQ435195 |
Mix Code | Species Contained | Obtained Species | Sample DNA Concentration (ng/μL) |
---|---|---|---|
MIX 1 | Ludwigia grandiflora | Ludwigia grandiflora | 10.1 |
MIX 2 | Elodea nuttallii | Elodea nuttallii | 5.86 |
MIX 3 | Myriophyllum aquaticum | Myriophyllum aquaticum | 15.5 |
MIX 4 | Pontederia crassipes | Pontederia crassipes | 10.2 |
MIX 5 | Ailanthus altissima | Ailanthus altissima | 6.8 |
MIX 6 | Heracleum mantegazzianum | Heracleum mantegazzianum | 5.9 |
MIX 7 | Impatiens glandulifera | Impatiens glandulifera | 34.8 |
MIX 8 | Pueraria montana | Pueraria montana | 2.32 |
References
- de Barros Ruas, R.; Costa, L.M.S.; Bered, F. Urbanization driving changes in plant species and communities—A global view. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar] [CrossRef]
- Roy, H.E.; Pauchard, A.; Stoett, P.; Renard Truong, T.; Bacher, S.; Galil, B.S.; Hulme, P.E.; Ikeda, T.; Sankaran, K.; McGeoch, M.A.; et al. IPBES Invasive Alien Species Assessment: Summary for Policymakers (Version 3) Zenodo; University of Rhode Island: South Kingstown, RI, USA, 2024. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. 2014, 317, 35–55. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Rai, K.P.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- Colautti, R.I.; Bailey, S.A.; Van Overdijk, C.D.; Amundsen, K.; MacIsaac, H.J. Characterised and projected costs of nonindigenous species in Canada. Biol. Invasions 2006, 8, 45–59. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; van Kleunen, M.; Winter, M.; et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 2018, 115, E2264–E2273. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Turbelin, A.J.; Cuthbert, R.N.; Novoa, A.; Taylor, N.G.; Angulo, E.; Ballesteros-Mejia, L.; Bodey, T.W.; Capinha, C.; Diagne, C.; et al. Economic costs of invasive alien species across Europe. NeoBiota 2021, 67, 153–190. [Google Scholar] [CrossRef]
- Zenni, R.D.; Essl, F.; García-Berthou, E.; McDermott, S.M. The economic costs of biological invasions around the world. NeoBiota 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; Bortel, W.V. A review of the invasive mosquitoes in Europe: Ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Wilson, J.; Richardson, D.M.; Hui, C.; Davies, S.J.; Kumschick, S.; Le Roux, J.J.; Measey, J.; Saul, W.C.; Pulliam, J. Emerging infectious diseases and biological invasions: A call for a One Health collaboration in science and management. R. Soc. Open Sci. 2019, 6, e181577. [Google Scholar] [CrossRef] [PubMed]
- Kowarik, I. On the role of alien species in urban flora and vegetation. In Urban Ecology; Marzloff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 321–338. [Google Scholar] [CrossRef]
- Padayachee, A.L.; Irlich, U.M.; Faulkner, K.T.; Gaertner, M.; Procheş, Ş.; Wilson, J.R.; Rouget, M. How do invasive species travel to and through urban environments? Biol. Invasions 2017, 19, 3557–3570. [Google Scholar] [CrossRef]
- Mayer, K.; Haeuser, E.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, J.; Pyšek, P.; Weigelt, P.; Winter, M.; Lenzner, B.; et al. Naturalization of ornamental plant species in public green spaces and private gardens. Biol. Invasions 2017, 19, 3613–3627. [Google Scholar] [CrossRef]
- Maxwell, B.D.; Lehnhoff, E.; Rew, L.J. The rationale for monitoring invasive plant populations as a crucial step for management. Invasive Plant Sci. Manag. 2009, 2, 1–9. [Google Scholar] [CrossRef]
- Xu, S.Z.; Li, Z.Y.; Jin, X.H. DNA barcoding of invasive plants in China: A resource for identifying invasive plants. Mol. Ecol. Resour. 2018, 18, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; VanSlambrouck, J.T.; Yao, J.W.; Gullapalli, A.; Razi, F.; Lu, Y. DNA barcoding of terrestrial invasive plant species in Southwest Michigan. Plant Direct 2024, 8, e615. [Google Scholar] [CrossRef]
- Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; van Valkenburg, J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; van de Wiel, C.C.M. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. Mol. Ecol. Resour. 2013, 13, 21–31. [Google Scholar] [CrossRef]
- de Vere, N.; Rich, T.C.; Trinder, S.A.; Long, C. DNA Barcoding for Plants; Humana Press: New York, NY, USA, 2015; pp. 101–118. [Google Scholar] [CrossRef]
- Hollingsworth, P.M.; Graham, S.W.; Little, D.P. Choosing and using a plant DNA barcode. PLoS ONE 2011, 6, e19254. [Google Scholar] [CrossRef]
- Gorini, T.; Mezzasalma, V.; Deligia, M.; De Mattia, F.; Campone, L.; Labra, M.; Frigerio, J. Check your shopping cart: DNA barcoding and mini-barcoding for food authentication. Foods 2023, 12, 2392. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zheng, S.H.; Liu, Y.; Han, J.P. ITS2, a Better DNA Barcode than ITS in Identification of Species in Artemisia L. Chin. Herb. Med. 2016, 8, 352–358. [Google Scholar] [CrossRef]
- Chen, S.L.; Yao, H.; Han, J.P.; Liu, C.; Song, J.Y.; Shi, L.C.; Zhu, Y.J.; Ma, X.Y.; Gao, T.; Pang, X.H.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, J.; Gorini, T.; Galimberti, A.; Bruni, I.; Tommasi, N.; Mezzasalma, V.; Labra, M. DNA barcoding to trace Medicinal Aromatic Plants from the field to the food supplement. J. Appl. Bot. Food Qual. 2019, 92, 33–38. [Google Scholar] [CrossRef]
- Reaser, J.K.; Burgiel, S.W.; Kirkey, J.; Brantley, K.A.; Veatch, S.D.; Burgos-Rodríguez, J. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invasions 2020, 22, 1–19. [Google Scholar] [CrossRef]
- Venette, R.C.; Gordon, D.R.; Juzwik, J.; Koch, F.H.; Liebhold, A.M.; Peterson, R.K.; Yemshanov, D. Early intervention strategies for invasive species management: Connections between risk assessment, prevention efforts, eradication, and other rapid responses. In Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States; Springer: Cham, Switzerland, 2021; pp. 111–131. [Google Scholar] [CrossRef]
- Lozano, V.; Marzialetti, F.; Acosta, A.T.R.; Arduini, I.; Bacchetta, G.; Domina, G.; Laface, V.L.A.; Lazzeri, V.; Montagnani, C.; Musarella, C.M.; et al. Prioritizing management actions for invasive non-native plants through expert-based knowledge and species distribution models. Ecol. Indic. 2024, 166, 112279. [Google Scholar] [CrossRef]
- Gaertner, M.; Wilson, J.R.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef]
- Heringer, G.; Fernandez, R.D.; Bang, A.; Cordonnier, M.; Novoa, A.; Lenzner, B.; Capinha, C.; Renault, D.; Roiz, D.; Moodley, D.; et al. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. Sci. Total Environ. 2024, 917, 170336. [Google Scholar] [CrossRef]
- Frigerio, J.; Campone, L.; Giustra, M.D.; Buzzelli, M.; Piccoli, F.; Galimberti, A.; Cannavacciuolo, C.; Ouled Larbi, M.; Co-lombo, M.; Ciocca, G.; et al. Convergent technologies to tackle challenges of modern food authentication. Heliyon 2024, 10, e32297. [Google Scholar] [CrossRef]
- Layne, T.; Jackson, K.; Scott, A.; Tanner, N.A.; Piland, A.; Haverstick, D.M.; Landers, J.P. Optimization of novel loop-mediated isothermal amplification with colorimetric image analysis for forensic body fluid identification. J. Forensic Sci. 2021, 66, 1033–1041. [Google Scholar] [CrossRef]
- Deliveyne, N.; Young, J.M.; Austin, J.J.; Cassey, P. Shining a LAMP on the applications of isothermal amplification for monitoring environmental biosecurity. NeoBiota 2023, 82, 119–144. [Google Scholar] [CrossRef]
- Deliveyne, N.; Austin, J.J.; Cassey, P. Developing Loop Mediated Isothermal Amplification (LAMP) assays for rapid, presumptive DNA detection of an invasive reptile (Boa constrictor). Wildl. Res. 2023, 51, WR23053. [Google Scholar] [CrossRef]
- Yang, Q.; Domesle, K.J.; Ge, B. Loop-mediated isothermal amplification for Salmonella detection in food and feed: Current applications and future directions. Foodborne Pathog. Dis. 2018, 15, 309–331. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, B.A.; Kim, S. Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. In Recent Developments in Applied Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 2021; pp. 291–297. [Google Scholar]
- Frigerio, J.; Gorini, T.; Palumbo, C.; De Mattia, F.; Labra, M.; Mezzasalma, V. A fast and simple DNA mini-barcoding and RPA assay coupled with lateral flow assay for fresh and canned mackerel authentication. Food Anal. Methods 2023, 16, 426–435. [Google Scholar] [CrossRef]
Sample ID | Botanical Name | Family | Origin | Habitus |
---|---|---|---|---|
SI_IG01 | Impatiens glandulifera Royle | Balsaminaceae | Asia | Annual herbaceous |
SI_HM02 | Heracleum mantegazzianum Sommier & Levier | Apiaceae | Caucasus | Perennial herbaceous |
SI_PM03 | Pueraria montana (Lour.) Merr. | Fabaceae | East Asia | Herbaceous perennial vine |
SI_AA04 | Ailanthus altissima (Mill.) Swingle | SimaroubaceaeAmaranthaceae | Northern and central China | Shrub/Tree |
SI_EN05 | Elodea nuttallii (Planch.) H.St.John | Hydrocharitaceae | North America | Perennial aquatic |
SI_LG06 | Ludwigia grandiflora (Michx.) Greuter & Burdet | Onagraceae | South America | Perennial aquatic |
SI_PC07 | Pontederia crassipes (Mart.) | Pontederiaceae | South America | Perennial aquatic |
SI_MA08 | Myriophyllum aquaticum (Vell.) Verdc. | Haloragaceae | South America | Perennial aquatic |
Aquatic | Terrestrial | ||||||
---|---|---|---|---|---|---|---|
MIX 1 | MIX 2 | MIX 3 | MIX 4 | MIX 5 | MIX 6 | MIX 7 | MIX 8 |
Ludwigia grandiflora (Michx.) Greuter & Burdet | Elodea nuttallii (Planch.) H.St.John | Myriophyllum aquaticum (Vell.) Verdc. | Pontederia crassipes (Mart.) | Ailanthus altissima (Mill.) Swingle | Heracleum mantegazzianum Sommier & Levier | Impatiens glandulifera Royle | Pueraria montana (Lour.) Merr. |
Phragmites australis (Cav.) Trin. ex Steud. Typha latifolia L. Helosciadium nodiflorum L. W.D.J.Koch Callitriche stagnalis (Scop.) Myriophyllum spicatum L. Groenlandia densa (L.) Fourr Stuckenia pectinata (L.) Börner Elodea canadensis Michx. | Acer negundo L. Achillea nobilis L. Artemisia verlotiorum Lamotte Buddleja davidii Franch. Chelidonium majus L. Erigeron annuus (L.) Desf. Erigeron canadensis L. Galinsoga quadriradiata Ruiz & Pav. Geranium molle L. Juncus effusus L. Lolium perenne L. Malva sylvestris L. Oxalis dillenii Jacq. Phytolacca americana L. Plantago lanceolata L. Plantago major L. Rumex acetosella L. Rumex pulcher L. Setaria pumila (Poir.) Roem. & Schult. Silene vulgaris (Moench) Garcke Solidago gigantea Aiton Taraxacum officinale F.H.Wigg. Trifolium pratense L. Trifolium repens L. |
Primer Name | Primer Region | Primer Specificity | Amplicon Length | Annealing Temperature | Sequence (5′-3′) |
---|---|---|---|---|---|
SI_IG01_F | ITS2 | Impatiens glandulifera | 273 bp | 60 °C | TATGGAGCAGTTGGCCGAAA |
SI_IG01_R | AACGACGAAGCCGTTCGATT | ||||
SI_HM02_F | ITS2 | Heracleum mantegazzianum | 225 bp | 60 °C | CCCACAACCACACACTCCTT |
SI_HM02_R | CTGGGGTCACAGTCGAAGC | ||||
SI_PM03_F | psbA-trnH | Pueraria montana var. lobata | 322 bp | 59 °C | TCCGTCCATCAAAATTCCAGG |
SI_PM03_R | GAGGGACTTGAACCCTCACG | ||||
SI_AA04_F | ITS2 | Ailanthus altissima | 218 bp | 60 °C | ATCGGTGGCGGAAATTCCAT |
SI_AA04_R | CGATTCTCAAGCTGGGCTCT | ||||
SI_EN05_F | ITS2 | Elodea nuttallii | 320 bp | 60 °C | TGCCTGGGAGTCTTTTCGAC |
SI_EN05_F | TAAACTCAGCGGGTGACCAT | ||||
SI_LG06_F | psbA-trnH | Ludwigia grandiflora | 494 bp | 59 °C | CATCCGCCCCTTAACTCTCAT |
SI_LG06_R | AAGACTTCCGTCTTAGTGTAAGTG | ||||
SI_PC07_F | ITS2 | Pontederia crassipes | 325 bp | 59 °C | ACGGATTGTTGAGGTAAATTGGC |
SI_PC07_R | GGAGTAATCCACTGTGACACG | ||||
SI_MA08_F | ITS2 | Myriophyllum aquaticum | 249 bp | 60 °C | TCGCGAGAAGTCCACTGAA |
SI_MA08_R | GTTATTGTAGCCGAGGGCGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigerio, J.; Ouled Larbi, M.; Guidi Nissim, W.; Grassi, F.; Cortis, P.; Labra, M. Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas. Diversity 2024, 16, 647. https://doi.org/10.3390/d16100647
Frigerio J, Ouled Larbi M, Guidi Nissim W, Grassi F, Cortis P, Labra M. Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas. Diversity. 2024; 16(10):647. https://doi.org/10.3390/d16100647
Chicago/Turabian StyleFrigerio, Jessica, Malika Ouled Larbi, Werther Guidi Nissim, Fabrizio Grassi, Pierluigi Cortis, and Massimo Labra. 2024. "Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas" Diversity 16, no. 10: 647. https://doi.org/10.3390/d16100647
APA StyleFrigerio, J., Ouled Larbi, M., Guidi Nissim, W., Grassi, F., Cortis, P., & Labra, M. (2024). Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas. Diversity, 16(10), 647. https://doi.org/10.3390/d16100647