Opportunities for Biodiversity Conservation via Urban Ecosystem Regeneration
Abstract
:1. Introduction
2. Urban Environments as Ecosystems
3. Conservation Efforts Should Incorporate Urban Ecosystem Regeneration
3.1. Naturalistic Arguments: Benefits to Non-Human Organisms
3.1.1. Protecting Local Biodiversity
3.1.2. Creating More Continuous Opportunity for Native Species Movement
3.1.3. Understanding Environmental Change
3.1.4. Convincing People to Protect Nature
3.2. Anthropocentric Arguments: Benefits to Humans
3.2.1. Improving Human Well-Being
3.2.2. Providing Ecosystem Services
3.2.3. Fulfilling Ethical Responsibilities
3.2.4. Other Reasons
4. Developing New Approaches for Conservation and Restoration in Degraded Urban Ecosystems
5. Urban Ecosystem Regeneration and Its Implementation in the Face of Invasiveness and Other Problems
6. Improving the Biodiversity and Other Contributions of Cities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Population. Available online: https://www.un.org/en/global-issues/population (accessed on 30 January 2024).
- Davis, K. The origin and growth of urbanization in the world. Am. J. Sociol 1955, 60, 429–437. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2018_wup_report.pdf (accessed on 30 January 2024).
- McKinney, M.L. Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.L.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Land Use. Available online: https://ourworldindata.org/land-use (accessed on 7 February 2023).
- Ivanovich, C.; Sun, T.; Gordon, D.; Ocko, I. Future Warming from Global Food Consumption. Nat. Clim. Chang. 2023, 13, 297–302. [Google Scholar] [CrossRef]
- Greenspoon, L.; Krieger, E.; Sender, R.; Rosenberg, Y.; Bar-On, Y.M.; Moran, U.; Antman, T.; Meiri, S.; Roll, U.; Noor, E.; et al. The global biomass of wild mammals. Proc. Natl. Acad. Sci. USA 2023, 120, e2204892120. [Google Scholar] [CrossRef] [PubMed]
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Win-Win Ecology: How the Earth’s Species Can Survive in the Midst of Human Enterprise; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Poll 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Otero, I.; Farrell, K.N.; Pueyo, S.; Kallis, G.; Kehoe, L.; Haberl, H.; Plutzar, C.; Hobson, P.; García-Márquez, J.; Rodríguez-Labajos, B.; et al. Biodiversity policy beyond economic growth. Conserv. Lett. 2020, 13, e12713. [Google Scholar] [CrossRef]
- Segar, J.; Callaghan, C.T.; Ladouceur, E.; Meya, J.N.; Pereira, H.M.; Perino, A.; Staude, I.R. Urban conservation gardening in the decade of restoration. Nat. Sustain. 2022, 5, 649–656. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience 2003, 53, 1169–1179. [Google Scholar] [CrossRef]
- Miller, J.R.; Hobbs, R.J. Conservation where people live and work. Conserv. Biol. 2002, 16, 330–337. [Google Scholar] [CrossRef]
- Elmqvist, T.; Redman, C.L.; Barthel, S.; Costanza, R. History of urbanization and the missing ecology. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Redman, C.L., Barthel, S., Costanza, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 13–30. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Harris, J.A. Novel ecosystems: Implications for conservation and restoration. TREE 2009, 24, 599–605. [Google Scholar] [CrossRef]
- Teixeira, C.P.; Fernandes, C.O. Novel ecosystems: A review of the concept in non-urban and urban contexts. Land Ecol. 2020, 35, 23–39. [Google Scholar] [CrossRef]
- Kattan, G.H.; Aronson, J.; Murcia, C. Does the novel ecosystem concept provide a framework for practical applications and a path forward? A reply to Miller and Bestelmeyer. Restor. Ecol. 2016, 24, 714–716. [Google Scholar] [CrossRef]
- McNellie, M.J.; Oliver, I.; Dorrough, J.; Ferrier, S.; Newell, G.; Gibbons, P. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Chang. Biol. 2020, 26, 6702–6714. [Google Scholar] [CrossRef] [PubMed]
- Klaus, V.H.; Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic. Appl. Ecol. 2021, 52, 82–94. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. 2023. Synthesis Report of the IPCC Sixth Assessment Report (AR6). Summary for Policymakers. Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf (accessed on 30 January 2024).
- Blew, R.D. On the definition of ecosystem. Bul. Ecol. Soc. Am. 1996, 77, 171–173. [Google Scholar]
- Pickett, S.T.A.; McDonnell, M.J. Human as Components of Ecosystems: A Synthesis. In Humans as Components of Ecosystems; McDonnell, M.J., Pickett, S.T.A., Eds.; Springer: New York, NY, USA, 1993; pp. 310–316. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Ag Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- dos Santos, J.S.; Dodonov, P.; Oshima, J.E.F.; Martello, F.; de Jesus, A.S.; Ferreira, M.E.; Silva-Neto, C.M.; Ribeiro, M.C.; Collevatti, R.G. Landscape ecology in the Anthropocene: An overview for integrating agroecosystems and biodiversity conservation. Persp. Ecol. Conserv. 2021, 19, 21–32. [Google Scholar] [CrossRef]
- Müller, N.; Ignatieva, M.; Nilon, C.H.; Werner, P.; Zipperer, W.C. Patterns and Trends in Urban Biodiversity and Landscape Design; Elmqvist, T., Redman, C.L., Barthel, S., Costanza, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 123–174. [Google Scholar]
- Frey, D. Mealtime for manatees. Wildl. Prof. 2023, 17, 41–46. [Google Scholar]
- Wildlife Society. Florida Manatee Feeding Operation Wraps up for Winter. Available online: https://wildlife.org/florida-manatee-feeding-operation-wraps-up-for-winter/ (accessed on 30 January 2024).
- Paxton, A.B.; Shertzer, K.W.; Bacheler, N.M.; Kellison, G.T.; Riley, K.L.; Taylor, J.C. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. Mar. Sci. 2020, 7, 282. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.S.; Hall, C. (Eds.) Novel Ecosystems: Intervening in the New Ecological World Order; John Wiley & Sons: Oxford, UK, 2013. [Google Scholar]
- Backstrom, A.C.; Garrard, G.E.; Hobbs, R.J.; Bekessy, S.A. Grappling with the social dimensions of novel ecosystems. Front. Ecol. Environ. 2018, 16, 109–117. [Google Scholar] [CrossRef]
- Polis, G.A.; Hurd, S.D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 1996, 147, 396–423. [Google Scholar] [CrossRef]
- Fidino, M.; Gallo, T.; Lehrer, E.W.; Murray, M.H.; Kay, C.A.M.; Sander, H.A.; MacDougall, B.; Salsbury, C.M.; Ryan, T.J.; Angstmann, J.L.; et al. Landscape-scale differences among cities alter common species’ responses to urbanization. Ecol. Appl. 2021, 31, e02253. [Google Scholar] [CrossRef]
- Soulé, M.E. What is conservation biology? BioScience 1985, 35, 727–734. [Google Scholar]
- Thoreau, H.D. Walking. Atl. Mon. 1862, 9, 657–674. [Google Scholar]
- Gobster, P.H. Urban ecological restoration. Nat. Cult. 2010, 5, 227–230. [Google Scholar] [CrossRef]
- Standish, R.J.; Thompson, A.; Higgs, E.S.; Murphy, S.D. Concerns about novel ecosystems. In Novel Ecosystems: Intervening in the New Ecological World Order; Hobbs, R.J., Higgs, E.S., Hall, C., Eds.; John Wiley & Sons: Oxford, UK, 2013; pp. 296–309. [Google Scholar]
- Murcia, C.; Aronson, J.; Kattan, G.H.; Moreno-Mateos, D.; Dixon, K.; Simberloff, D. A critique of the ‘novel ecosystem’ concept. TREE 2014, 29, 548–553. [Google Scholar] [CrossRef]
- Simberloff, D. Non-native invasive species and novel ecosystems. F1000Prime Rep. 2015, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.P.; Kolasa, J.; Fung, P. Synthetic ecosystems: An emerging opportunity for science and society? Oikos 2023, 2023, e09816. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 2010, 24, 432–440. [Google Scholar] [CrossRef]
- Perry, G.; Gebresenbet, F.; DaPra, M.; Branco, P.; Whibesilassie, W.T.; Jelacic, M.; Eyob, A.E. Why Urban Ecology Matters in Ethiopia. Front. Ecol. Evol. 2022, 10, 843698. [Google Scholar] [CrossRef]
- Richardson, J.; Lees, A.C.; Miller, E.T.; Marsden, S.J. Avian diversity and function across the world’s most populous cities. Ecol. Lett. 2023, 26, 1301–1313. [Google Scholar] [CrossRef]
- Olive, A.; Minichiello, A. Wild things in urban places: America’s largest cities and multi-scales of governance for endangered species conservation. Appl. Geog. 2013, 43, 56–66. [Google Scholar] [CrossRef]
- Groom, C.J.; Mawson, P.R.; Roberts, J.D.; Mitchell, N.J. Meeting an expanding human population’s needs whilst conserving a threatened parrot species in an urban environment. WIT Trans. Ecol Environ. 2014, 191, 199–1212. [Google Scholar]
- Lewis, S.E.F.; Turpie, J.K.; Ryan, P.G. Are African penguins worth saving? The ecotourism value of the Boulders Beach colony. Afr. J. Mar. Sci. 2012, 34, 497–504. [Google Scholar] [CrossRef]
- Cypher, B.L.; Deatherage, N.A.; Westall, T.L.; Kelly, E.C.; Phillips, S.E. Potential habitat and carrying capacity of endangered San Joaquin kit foxes in an urban environment: Implications for conservation and recovery. Urban Ecosyst. 2023, 26, 173–183. [Google Scholar] [CrossRef]
- Frost, N. As temperatures rise, Melbourne’s bats get their own sprinkler system. New York Times. 4 April 2023. Available online: https://www.nytimes.com/2023/04/04/world/australia/melbourne-bat-showers.html (accessed on 30 January 2024).
- Gibson, L.; Yong, D.L. Saving two birds with one stone: Solving the quandary of introduced, threatened species. Front. Ecol. Environ. 2017, 15, 35–41. [Google Scholar] [CrossRef]
- Dexheimer, E.; Despland, E. Newly introduced butterfly species’ urban habitat use driven by shorter vegetation and exotic plants. Biol. Invasions 2023, 25, 1767–1777. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geog. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Cincotta, R.P.; Engelman, R. Nature’s Place: Human Population and the Future of Biological Diversity; Population Action International: Washington, DC, USA, 2000. [Google Scholar]
- Yang, L.; Zhao, S.; Liu, S. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. Glob. Chang. Biol 2023, 29, 4383–4396. [Google Scholar] [CrossRef] [PubMed]
- Dunn, R.R.; Gavin, M.C.; Sanchez, M.C.; Solomon, J.N. The pigeon paradox: Dependence of global conservation on urban nature. Conserv. Biol. 2006, 20, 1814–1816. [Google Scholar] [CrossRef] [PubMed]
- White, M.P.; Alcock, I.; Grellier, J.; Wheeler, B.W.; Hartig, T.; Warber, S.L.; Bone, A.; Depledge, M.H.; Fleming, L.E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 7730. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Egerer, M.; Bichier, P.; Cohen, H.; Liere, H.; Lin, B.; Lucatero, A.; Philpott, S.M. Multiple ecosystem service synergies and landscape mediation of biodiversity within urban agroecosystems. Ecol. Lett. 2023, 26, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gomez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed]
- Curzer, H.J.; Wallace, M.; Perry, G. Environmental research ethics. Environ. Ethics 2013, 35, 95–114. [Google Scholar] [CrossRef]
- Perry, G.; Curzer, H.; Farmer, M.; Gore, M.L.; Simberloff, D. Historical, ethical, and (extra) legal perspectives on culpability in accidental species introductions. BioScience 2020, 70, 60–70. [Google Scholar] [CrossRef]
- Farmer, M.C.; Wallace, M.; Shiroya, M. Bird diversity indicates ecological value in home prices. Urban Ecosyst. 2012, 16, 131–144. [Google Scholar] [CrossRef]
- Noss, R.F.; Cooperrider, A. Saving Nature’s Legacy: Protecting and Restoring Biodiversity; Island Press: Washington, DC, USA, 1994. [Google Scholar]
- Moore, J.W.; Schindler, D.E. Getting ahead of climate change for ecological adaptation and resilience. Science 2022, 376, 1421–1426. [Google Scholar] [CrossRef]
- Beard, K.H.; Vogt, K.A.; Vogt, D.J.; Scatena, F.N.; Covich, A.P.; Sigurdardottir, R.; Siccama, T.G.; Crowl, T.A. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol. Monog. 2005, 75, 345–361. [Google Scholar] [CrossRef]
- Altwegg, R.; Jenkins, A.; Abadi, F. Nestboxes and immigration drive the growth of an urban Peregrine Falcon Falco peregrinus population. Ibis 2014, 156, 107–115. [Google Scholar] [CrossRef]
- Andrade, R.; Franklin, J.; Larson, K.L.; Swan, C.M.; Lerman, S.B.; Bateman, H.L.; Warren, P.S.; York, A. Predicting the assembly of novel communities in urban ecosystems. Landsc. Ecol. 2021, 36, 1–15. [Google Scholar] [CrossRef]
- Cox, R.D.; Anderson, V.J. Increasing native diversity of cheatgrass-dominated rangeland through assisted succession. J. Range Mgmnt. 2004, 57, 203–210. [Google Scholar]
- Lak, A.; Hasankhan, F.; Garakani, S.A. Principles in practice: Toward a conceptual framework for resilient urban design. J. Environ. Plan. Manag. 2020, 63, 2194–2226. [Google Scholar] [CrossRef]
- Lak, A.; Sharifi, A.; Khazaei, M.; Aghamolaei, R. Towards a framework for driving sustainable urban regeneration with ecosystem services. Land Use Policy 2021, 111, 105736. [Google Scholar] [CrossRef]
- Tarsitano, E.; Rosa, A.G.; Posca, C.; Petruzzi, G.; Munto, M.; Colao, M. A sustainable urban regeneration project to protect biodiversity. Urban Ecosyst. 2021, 24, 827–844. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Simberloff, D.; Parker, I.M.; Windle, P.N. Introduced species policy, management, and future research needs. Front. Ecol. Environ. 2005, 3, 12–20. [Google Scholar] [CrossRef]
- Lodge, D.M.; Williams, S.; MacIsaac, H.J.; Hayes, K.R.; Leung, B.; Reichard, S.; Mack, R.N.; Moyle, P.B.; Smith, M.; Andow, D.A.; et al. Biological invasions: Recommendations for U.S. policy and management. Ecol. Appl. 2006, 16, 2035–2054. [Google Scholar] [CrossRef]
- Daly, E.Z.; Chabrerie, O.; Massol, F.; Facon, B.; Hess, M.C.; Tasiemski, A.; Grandjean, F.; Chauvat, M.; Viard, F.; Forey, E.; et al. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos 2023, 2023, e09645. [Google Scholar] [CrossRef]
- Göttert, T.; Perry, G. Going Wild in the City—Animal Feralization and Its Impacts on Biodiversity in Urban Environments. Animals 2023, 13, 747. [Google Scholar] [CrossRef] [PubMed]
- Gillman, L. Calling time on alien plantscapes. Glob. Chang. Biol. 2023, 29, 3539–3544. [Google Scholar] [CrossRef] [PubMed]
- Borden, J.B.; Flory, S.L. Urban evolution of invasive species. Front. Ecol. Environ. 2021, 19, 184–191. [Google Scholar] [CrossRef]
- Soulé, M.E. The onslaught of alien species, and other challenges in the coming decades. Conserv. Biol. 1990, 4, 233–240. [Google Scholar] [CrossRef]
- Woodward, S.A.; Vitousek, P.M.; Matson, K.; Hughes, F.; Benvenuto, K.; Matson, P.A. Use of the exotic tree Myrica faya by native and exotic birds in Hawai’i Volcanoes National Park. Pac. Sci. 1990, 44, 88–93. [Google Scholar]
- Norbury, G.; Wilson, D.J.; Clarke, D.; Hayman, E.; Smith, J.; Howard, S. Density-impact functions for invasive house mouse (Mus musculus) effects on indigenous lizards and invertebrates. Biol. Invasions 2022, 25, 801–815. [Google Scholar] [CrossRef]
- Perry, G.; Boal, C.; Verble, R.; Wallace, M. “Good” and “bad” urban wildlife. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions; Angelici, F.M., Rossi, L., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 141–170. [Google Scholar]
- Aronson, M.F.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.; Cilliers, S.; Clarkson, B.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- Dutta, W.; Basuthakur, P.; Ray, P. Gardening the menace! Environ. Sustain. Indic. 2021, 12, 100148. [Google Scholar] [CrossRef]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Zerbe, S.; Maurer, U.; Schmitz, S.; Sukopp, H. Biodiversity in Berlin and its potential for nature conservation. Landsc. Urban Plan. 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Fardell, L.L.; Pavey, C.R.; Dickman, C.R. Backyard Biomes: Is anyone there? Improving public awareness of urban wildlife activity. Diversity 2022, 14, 263. [Google Scholar] [CrossRef]
- Hussain, M.N.; Li, Z.; Yang, S. Heterogeneous effects of urbanization and environment Kuznets curve hypothesis in Africa. Nat. Resour. Forum 2023, 47, 317–333. [Google Scholar] [CrossRef]
- Handel, S.N.; Saito, O.; Takeuchi, K. Restoration Ecology in An Urbanizing World; Elmqvist, T., Redman, C.L., Barthel, S., Costanza, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 665–698. [Google Scholar]
- Gerrits, G.M.; Waenink, R.; Aradottir, A.L.; Buisson, E.; Dutoit, T.; Ferreira, M.C.; Fontaine, J.B.; Jaunatre, R.; Kardol, P.; Loeb, R.; et al. Synthesis on the effectiveness of soil translocation for plant community restoration. J. Appl. Ecol. 2023, 60, 714–724. [Google Scholar] [CrossRef]
- United Nations. The United Nations World Water Development Report 2023: Partnerships and Cooperation for Water. UNESCO, Paris. Available online: https://www.unesco.org/reports/wwdr/2023/en/download (accessed on 30 January 2024).
- Hulbert, J.M.; Hallett, R.A.; Roy, H.E.; Cleary, M. Citizen science can enhance strategies to detect and manage invasive forest pests and pathogens. Front. Ecol. Evol. 2023, 11, 1113978. [Google Scholar] [CrossRef]
- Caley, P.; Barry, S.C. The effectiveness of citizen surveillance for detecting exotic vertebrates. Front. Ecol. Evol. 2022, 10, 1253. [Google Scholar] [CrossRef]
- Forister, M.L.; Halsch, C.A.; Nice, C.C.; Fordyce, J.A.; Dilts, T.E.; Oliver, J.C.; Prudic, K.L.; Shapiro, A.M.; Wilson, J.K.; Glassberg, J. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 2021, 371, 1042–1045. [Google Scholar] [CrossRef]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Arjona, J.M.; Ibáñez-Álamo, J.D.; Sanllorente, O. Mediterranean university campuses enhance butterfly (Lepidoptera) and beetle (Coleoptera) diversity. Front. Ecol. Evol. 2023, 11, 197. [Google Scholar] [CrossRef]
- Villaseñor, N.R.; Escobar, M.A. Cemeteries and biodiversity conservation in cities: How do landscape and patch-level attributes influence bird diversity in urban park cemeteries? Urban Ecosyst. 2019, 22, 1037–1046. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Richardson, P.J. Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 2010, 47, 966–975. [Google Scholar] [CrossRef]
- Francis, R.A.; Lorimer, J. Urban reconciliation ecology: The potential of living roofs and walls. J. Environ. Mgmnt. 2011, 92, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Brodie, J.F.; Watson, J.E. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2205512120. [Google Scholar] [CrossRef]
- Prieto-Curiel, R.; Patino, J.E.; Anderson, B. Scaling of the morphology of African cities. Proc. Natl. Acad. Sci. USA 2023, 120, e2214254120. [Google Scholar] [CrossRef]
- Elliot, R. Faking nature. Inquiry 1982, 25, 81–93. [Google Scholar] [CrossRef]
- Del Tredici, P. Neocreationism and the illusion of ecological restoration. Harv. Des. Mag. 2004, 20, 87–89. [Google Scholar]
- Hill, A.P.; Nolan, C.J.; Hemes, K.S.; Cambron, T.W.; Field, C.B. Low-elevation conifers in California’s Sierra Nevada are out of equilibrium with climate. PNAS Nexus 2023, 2, pgad004. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.L.; Anson, J.R.; Leo, V.; Wright, B.R.; Newsome, T.M.; Grueber, C.E. Urban restoration of common species: Population genetics of reintroduced native bush rats Rattus fuscipes in Sydney, Australia. Anim. Conserv. 2022, 25, 825–836. [Google Scholar] [CrossRef]
- Aloisio, J.M.; Lewis, J.D. Socio-Ecological Dynamics of Green Roof Ecosystems. Front. Ecol. Evol. 2023, 11, 1254928. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. Available online: https://nap.nationalacademies.org/login.php?record_id=25762 (accessed on 31 January 2024).
- United Nations Environment Programme. One Atmosphere: An Independent Expert Review on Solar Radiation Modification Research and Deployment. Available online: https://wedocs.unep.org/20.500.11822/41903 (accessed on 31 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perry, G.; Cox, R.D. Opportunities for Biodiversity Conservation via Urban Ecosystem Regeneration. Diversity 2024, 16, 131. https://doi.org/10.3390/d16030131
Perry G, Cox RD. Opportunities for Biodiversity Conservation via Urban Ecosystem Regeneration. Diversity. 2024; 16(3):131. https://doi.org/10.3390/d16030131
Chicago/Turabian StylePerry, Gad, and Robert D. Cox. 2024. "Opportunities for Biodiversity Conservation via Urban Ecosystem Regeneration" Diversity 16, no. 3: 131. https://doi.org/10.3390/d16030131
APA StylePerry, G., & Cox, R. D. (2024). Opportunities for Biodiversity Conservation via Urban Ecosystem Regeneration. Diversity, 16(3), 131. https://doi.org/10.3390/d16030131