Next Article in Journal
Genetic Diversity of the Lilac-Crowned Parrot (Amazona finschi), a Species Endemic to Mexico
Previous Article in Journal
Distribution, Ecology, Chorology and Phytocenology of Sweet Chestnut (Castanea sativa) in the Oltenia Region, Romania
Previous Article in Special Issue
Szulczewski’s Fungarium—A Collection of Fungi on Their Host Plants in the POZ Herbarium, Poznań, Poland
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Historical and Contemporary Herbaria as a Source of Data in Plant Taxonomy and Phytogeography Research: An Example from Poland

by
Adam Rostański
*,
Izabela Gerold-Śmietańska
and
Barbara Tokarska-Guzik
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
*
Author to whom correspondence should be addressed.
Diversity 2024, 16(8), 434; https://doi.org/10.3390/d16080434
Submission received: 31 May 2024 / Revised: 17 July 2024 / Accepted: 19 July 2024 / Published: 23 July 2024

Abstract

:
The art of drying plants has a long tradition. It was already known in the Middle Ages as a form of documenting flora. It began to develop more intensively in Europe in the 16th century. This method of documenting plant collections quickly gained recognition among scientists. Its role and importance has changed throughout historical periods. The current study presents a short history and resources of Polish and European herbaria against the background of world data. It primarily focuses on indicating their contemporary importance in research in plant taxonomy and geography, as well as on the current situation of herbaria and problems identified using the example of Polish herbaria.

1. Introduction—An Outline of the History and Status of Herbarium Resources

The art of plant drying began to spread in Europe in the 16th century. It was initiated by the Italian physicist and botanist Luca Ghini from Bologna and his students, Andrea Cesalpino and Ulisses Aldrovandi. The plant collections created in this way in the form of herbaria were called dry gardens (hortus siccus) [1,2,3]. The oldest European herbaria preserved to the present day include the herbarium of Farncesco Petrollini (formerly known as “Cibo herbarium”, 1550, Rome), Luca Ghini’s students Ulysses Aldrovandi (1551–1586, Bologna) and Andrea Cesalpino (1563, Florence), the herbaria of Jean Girault (1558, Paris), and Kaspar Ratzenberger (1555–1592, Kassel) [3,4]. This method of documenting plant collections quickly gained recognition among scientists. The oldest European collections that were gathered by institutions, rather than by private individuals, belong to the Herbarium of the University of Bologna (1568). One of the oldest and largest in Europe is the herbarium of the Botanical Garden in Leiden in the Netherlands, founded in 1575 and currently comprising approximately 5 million specimens. Another is the herbarium of the Natural History Museum in Paris, founded in 1653 and currently holding more than 8 million specimens [5].
Representatives of the aristocracy, doctors, pharmacists, and teachers were responsible for creating ancient herbaria in Europe and Poland. The first known Polish herbaria included the plant collections of Anna Wazówna, sister of King Sigismund III Vasa, dating back to the turn of the 16th and 17th centuries. Her herbarium was destroyed during World War II. The oldest herbarium in Poland is the herbarium of the Italian physician Silvius Boccone, initiated in 1674, which is kept in the Natural History Museum in Wrocław [2,6]. The National Library in Warsaw houses the herbarium of the Prussian botanist–pastor Georg Andreas Helwing (1666–1748), collected at the turn of the 17th and 18th centuries. It is one of the oldest preserved herbaria of dried plants in Poland. This two-volume work, with almost 700 pages, is located in the National Library in Warsaw and is available on the Internet. These types of archives were called herbaria viva—living herbaria, because they contained real plants, not their images. The oldest collection in the herbarium of the Institute of Botany W. Szafer PAN in Kraków (KRAM V) is the herbarium of J. Jundziłł (1794–1877), a professor at the University of Vilnius. It consists of 7318 specimens (including 6249 vascular plants) arranged in 40 herbarium boxes and 5 fascicles. Jundziłł’s collection comes from the vicinity of Kaunas (Lithuania) and was collected in the years 1825–1832. The herbarium of Jundziłł contains the oldest specimens in KRAM V—51 sheets collected by J.G. Forster (1754–1794) during J. Cook’s (1772–1775) expedition to South Africa and 29 sheets by H.E. Gilibert (1741–1814), consisting of specimens without descriptions [7].
The next stage in the development of herbaria is associated with the establishment of natural history departments in university centers in the 18th century. The creation of scientific herbarium collections can be dated from this period.
Currently, herbaria are an integral part of scientific and research institutions conducting botanical research and disseminating knowledge in this field. They operate at universities, research and development institutes, botanical gardens, and nature museums [8,9]. In 1959, “INDEX HERBARIORUM—The Herbaria of the World” was created by the New York Botanical Garden in the USA [5]. There are approximately 4000 registered worldwide herbaria (approximately 3000 of which are active) in 180 countries, storing approximately 390 million herbarium specimens documenting vegetation of the Earth over the last 400 years [5].
There are approximately 700 herbaria in Europe, comprising approximately 175 million plant specimens [5]. The total number of scientific herbaria in Poland is over 60 [10], including 32 listed in the Index Herbariorum [5] (Figure 1). The resources of Polish herbaria include over 5 million specimens of vascular plants and bryophytes.
Botanical collections gathered in the form of herbaria, in addition to their documentary and historical value, have scientific significance [11]. They are used, among other ways, in research on plant taxonomy and systematics, floristics, morphology, phenology, ecology and phytogeography, constituting a source of information on the distribution of plant species in the world and changes in plant cover over the years [12,13,14,15,16,17].
Herbarium collections containing nomenclature types of described taxa, enabling comparative research and taxonomic revisions, are of particular taxonomic value. In recent years, resources consisting of hundreds of millions of herbarium specimens are finding new applications in science, thanks to new techniques such as digital images of herbarium specimens and artificial intelligence techniques enabling the preliminary recognition of species and their features [18].
The revision of herbarium materials of many plant species has allowed the development of their current distribution maps. Nowadays, herbarium documentation is an important supplement to the data used to model natural phenomena and forecast changes in the ranges of plant species in the future [19,20]. Currently, other new possibilities are being investigated of using data documented in the form of herbarium specimens collected in specific conditions of time and space [14,21,22,23].
The traditional role of herbaria in scientific research was recently summarized by Heberling et al. [15] and Davis [9]. At the same time they pointed to new and innovative functions of herbaria in the future. Davis [9], highlighting the current revolutionary changes in the use of herbaria in basic and applied sciences, forecasted their development towards the creation of the ‘herbarium of the future’ (or the ‘global metaherbarium’) which “will be the central element guiding the exploration, illumination, and prediction of plant biodiversity change in the Anthropocene”.
The present study aims to illustrate and document the importance of herbarium collections in contemporary plant taxonomy and geography research using the example of the regional (national) and local collections in Poland, as well as giving an indication of the main problems they face.

2. Materials and Methods

This research study was conducted based on a literature search which, among other criteria, covered the last 200 years based on: titles of studies, keywords, quotations, abstracts, available databases, and websites. The subjects of interest were monographs, monograph chapters and articles published in Polish and foreign journals.
The analyses covered studies relating to Poland and individual regions and included the terms: ‘vascular plants/species’, ‘flora’, ‘vegetation’, ‘plant community’, ‘plant taxonomy’, ‘phytogeography’, ‘plant distribution’, and also ‘herbarium’, ‘plant collections’, ‘notes/floristic records’, ‘materials for flora’, ‘new species in flora’, ‘new site(s)’, ‘protected and endangered plants’, ‘alien plant species’, ‘invasive plants’, ‘herbarium data’, and ‘herbarium specimens’ in Polish or their English equivalents in their titles and/or keywords. Publications selected on this basis were then analyzed in terms of the use of herbarium materials in specific studies [24,25,26,27,28,29].
Previously collected data in the form of databases and lists of publications, some of which were prepared as part of completed projects, were also used [17,30,31]. Information contained in publications [27,31,32,33,34,35,36,37] and on the websites of individual herbaria/institutions, together with our own data and experience, were used to assess the condition of botanical collections and the situation of herbaria in Poland.
A plant collection gathered in the Scientific Herbarium of the University of Silesia in Katowice (KTU) was used to illustrate the presented results. The Herbarium, currently named after Prof. Krzysztof Rostański, Ph.D., began operating in 1972, and in 1974 was entered into the international list of scientific herbaria in the world—“Index Herbariorum”—where it obtained a unique acronym—KTU [17,38]. The oldest specimens of the collection of the Scientific Herbarium of the University of Silesia in Katowice (KTU) come from the second half of the 19th century (Austria, Tirol—Dianthus sylvestris Vulf., Ranunculus seguieri Vill.), which were added to the collection as a private gift.

3. Results

3.1. The Importance of Herbarium Collections in Taxonomic Research—Using a Local Example

Comparative research and taxonomic revisions in Poland are made possible primarily by herbarium collections containing nomenclature types of particular genera, e.g., Aconitum [39,40,41], Amaranthus [42], Cerastium [43], Crataegus [44], Dryopteris [45], Erysimum [46], Fumaria [47], Oxalis [48], Rubus [49,50], and Valeriana [51]. The critical revision of the genus Rubus carried out in the first study was based primarily on old herbarium material [49], while the next one was supplemented with new herbarium material collected during field research [50].
Professor Krzysztof Rostański’s research on European taxa of the genus Oenothera, which lasted over 40 years, resulted in the creation of the largest collection of this genus in Europe (Table 1). This collection, gathered in the Scientific Herbarium of the University of Silesia in Katowice (KTU) numbers over 12,000 herbarium sheets. On the basis of this collection (and other source materials) scientific research has been carried out on the taxonomic diversity and distribution of the Oenothera species in Europe [52,53]. The collection itself includes several dozen nomenclature types of various ranks (Table 2, Figure 2 and Figure 3).
The geographical and genetic center of Oenothera L. was originally in America, from where in different times and manners the representatives of this genus made their way to various continents and islands of the earth. In the flora of Europe and in Eastern Europe too, there are four groups of species defined by their origin [52]:
-
ornamental plants introduced to European gardens in the past (e.g., Oenothera fruticosa L., Oe. tetragona Roth., Oe. macrocarpa Nutt., Oe. glazioviana Micheli);
-
epoecophytes of the North American origin (e.g., Oenothera canovirens Stelle, Oe. depressa Geene, Oe. pycnocarpa Atkinson & Bartlet, Oe. subterminalis Gates)
-
European species, whose origin is controversial and uncertain, because their occurrence in America has not been confirmed (e.g., Oenothera ammophila Focke, Oe. biennis L. s.str., Oe. rubricaulis Kleb., Oe. suaveolens Desf ex. Pers.)
-
species of hybridogenous origin occurring in Europe, as a cross between European species and American newcomers (e.g., Oenothera fallax RennerOe. glazioviana × biennis; Oe. wienii Renner ex RostańskiOe. rubricaulis × depressa)
In the last paper published by Prof Rostański, summarizing research on genus Oenothera in Europe, 61 species and permanent hybrids of Oenothera were described [53].

3.2. The Use of Herbarium Collections in Research in the Field of Phytogeography

The revision of herbarium materials for many plant species allowed the development of current maps of their distribution in Poland [28,29]. In the first edition of the Distribution Atlas of Vascular Plants in Poland (ATPOL), prepared on the basis of approximately 4,500,000 floristic dates collected in the data bank of the flora, herbarium data were used to a limited extent [28]. The number of items of herbarium data used in ATPOL reaches 3.6%. However, for a large group of critical taxa, such as Alchemilla, Oenothera, Potamogeton and Rubus, maps (cartograms) were prepared almost exclusively based on the herbarium data. The study’s authors also pointed out significant limitations in the use of herbarium data, related at that time to the need to devote a huge amount of work to verifying these materials and entering the data into the database.
The second edition of the Atlas (ATPOL), which was significantly supplemented based on current and verified data, also uses herbarium data. Many maps in this edition were changed after specialists identified herbarium material from Poland (Figure 4). These maps include, among others, species from the Orobanchaceae family [29].
Herbarium data (including private herbaria) are used especially in regional and local studies, enabling analyses of changes in the flora of the studied areas over time [54,55,56,57,58,59,60,61]. Urban flora have a special place in these studies, especially those taking into account changes over time. Such studies, using herbarium data, have been published for several large cities in Poland, such as Warsaw [62,63] and Poznań [64,65,66]. At the same time, a large part of the floristic data collected during field work has been documented with herbarium specimens deposited in regional herbaria. This provides the possibility of comparative research in the future, e.g., ref. [67]—3000 collected herbarium sheets; ref. [68]—6410 herbarium sheets; ref. [66]—4300 herbarium sheets. Furthermore, a lack of herbarium specimens makes it impossible to verify the correctness of the plant species designation, and therefore the correctness of the data provided. In recent decades, the development of modern tools in the field of spatial information systems has allowed the collection of natural history data, including botanical data, in databases. These databases contain data documented by herbarium material. Regional databases allow for a systematic assessment of the degree to which the vascular plant flora has been researched. An example is the information on the flora of vascular plants in the Silesian Voivodeship collected in the Flora Silesiana database (the database of the herbarium of the University of Silesia in Katowice) [27].
Herbarium data were used in a study devoted to endangered, rare, relic and endemic plant species in Poland in the form of red books—both national [69,70] (Figure 5) and regional [71,72].
Herbarium collections also contain documentation of new plant species recorded in Poland for the first time [75,76,77,78,79,80] (Figure 6).
Herbarium collections as an important source of data made it possible to supplement maps of the occurrence of species of alien origin spreading in Poland [81,82,83,84,85,86,87] and have also allowed for the reconstruction of probable directions of range expansion (Figure 7).
Archival herbarium collections make it possible to identify the first (historical) records confirming the occurrence of a specific species in the area analyzed. It is worth noting that, in the case of 174 species for which historical data about the first sites in Poland have been collected, 58 come from herbarium materials and the oldest from the first half of the 19th century. An example illustrating the use of this type of data, allowing for the reconstruction of the formation and changes in the ranges of occurrence of plant species is studies on the anthropogenic changes (so-called synatropization) of the flora and vegetation [88].

3.3. Current Situation of Herbaria in Poland

Currently, the activities of Polish herbaria operating at scientific institutions are based on statutory financing of their activities. These are modest financial resources that usually enable these institutions to survive. Herbaria mainly document scientific works concerned with assessing national and regional flora resources. An important part of these activities is also documenting global flora resources and making collections available (for taxonomic research) and inter-herbarium exchange of plant collections (national, international). It is also worth mentioning the important role of herbaria in phylogeographic and phylogenetic research and providing specimens for molecular research. In addition, an important task of herbaria is to store specimens documenting special scientific achievements.
What is particularly important in the activities of herbaria is the continuous verification of specimens, especially critical taxa, in taxonomic revisions. It is necessary to constantly update the collection database using the appropriate scope of information (including georeferencing) and to have data sharing tools (hardware and software).
The proper operation of the herbarium requires an appropriate team of qualified employees and guaranteed financial resources. Financial security for the statutory activities of parent institutions (universities, museums, scientific institutes) is often the only source of financing. Occasional grants and various projects, often quite modestly financed, are mainly aimed at modernizing and supplementing equipment and databases (e.g., The National Biodiversity Information Network, The Global Biodiversity Information Facility) [90,91,92].
However, there is a problem with the availability of qualified botanists, who should be responsible not only for managing herbaria but also for the continuous maintenance and care of botanical collections. Hence, the questions that are often left unanswered include:
-
Who should be the manager (curator) of a scientific herbarium collection? Should we educate staff in this direction?
-
Who will take over responsibility for the collections of scientific herbaria in the country in the future?
-
Who can act as a collection guardian, and who can be an employee of the scientific herbarium?
-
Should activities of the scientific herbarium count as scientific achievements (and how)?
These and other questions remain without a clear answer for now. However, there are threats resulting from such a situation, such as the liquidation of the collection (for various reasons, including institutional ones), the constant reduction and ultimately lack of financing of herbaria, as well as the “physical” reconstruction of the institution and the lack of a worthy place for the collection in the new conditions. Finally, there is a generational change of staff, a change in research directions and a deficit or complete lack of specialists (taxonomists, botanists, etc.). This may lead to the loss of importance of the herbarium, both nationally and globally.

4. Discussion

The role and importance of scientific herbaria cannot be overestimated. In addition to their historical value and role in taxonomy, based on plant morphology, herbarium specimens are showing promise in many other areas, especially in the case of innovative research programs assessing intra- and inter-specific changes resulting from climate change [93].
Yet, with over 390 million specimens worldwide [94], herbaria are often overlooked as rich repositories for trait data, and even extensive trait databases. Various authors [22] indicate that features from the herbarium cannot always be used interchangeably with features measured in fresh tissues due to their shrinkage. However, trait data from herbaria still have the potential to significantly expand the temporal, geographic, and taxonomic scope of global trait databases.
Herbarium specimens continue to play a key role in taxonomy, floristics, and species identification, as well as acting as scientific tokens [95], and in education and dissemination of scientific research results [93,96,97]. For example, field research and taxonomic revisions of species and hybrids of the genus Oenothera conducted in many European regions and herbaria led by Professor Krzysztof Rostański resulted in permanent traces in the literature and checklists of the flora of many European countries, such as Great Britain [98], Germany [99], Scandinavia [100] and Eastern European countries [52].
Current research on the genus Oenothera is resulting in changes to the names of some Oenothera taxa. Published studies of taxonomical revision and validation of the names were created with the use of herbarium specimens of the KTU Herbarium [101,102,103,104,105].
Climate change will strongly influence species distributions in the forthcoming decades [106]. Reliable herbarium data made available in an open system, thanks to modern tools, allow researchers to model changes in the ranges of specific plant species in response to forecasted climate change. Such models or forecasts are particularly important today because the ecological consequences of the projected shrinkage of the range of (mainly woody) plant species are important from an economic point of view. They are serious for forest management and especially for nature conservation in Europe [107]. What is more, climate change and biological invasions are both listed among the factors threatening global biodiversity [108], which allows us to assume that future climate change may significantly increase the vulnerability of the Polish territory to invasions by alien species [109].
The increasing number of publications regarding the contemporary use of herbarium data strongly suggests that we have entered a new era of specimen use [16,21,110,111,112].
Currently, herbarium documentation can be used in research in critical or poorly described taxa, especially in connection with new research tools and techniques (e.g., DNA analysis, electron microscopy—SEM, 3D imaging) [21,101,102,103,104,105,113]. For this reason, it is important to properly secure the plant collection, ensure appropriate conditions for its storage, and ensure that a correct description of a herbarium specimen is prepared via the herbarium label and information in the database.
According to Hedrick et al. [114] the online mobilization of specimens via digitization—the conversion of specimen data into accessible digital content—has greatly expanded the use of natural history collections across scientific disciplines. Therefore, it is important to make regional and local collections available in this way. In Poland, such initiatives have been undertaken as part of regional and national projects aimed at digitizing collections and making them available through the Polish Biodiversity Information Network (KSIB) and, ultimately, the Global Biodiversity Information Facility (GBIF) [8,92]. The IMBIO project (on integration and mobilization of data on biotic diversity of Eucaryota in resources of Polish scientific institutions) digitized over 570,000 herbarium specimens stored in the scientific herbaria of a dozen scientific institutions, universities and natural museums [8]. The IMBIO project covered selected collections or their parts deposited in the KTU Scientific Herbarium. A total of 63,100 specimens were digitized [17,115,116], including the Oenothera collections described above [117]. The database records associated with each specimen received a unique identifier, the so-called 2D matrix code, and was characterized based on nearly 40 identified attributes. Additionally, 6000 moss records from the KTU-B herbarium were transferred to the IMBIO database [17,118]. Making the remaining part of the herbarium collections available in Polish herbaria requires the continuation of digitization activities and supplementing the database, which largely depends on the financial capabilities of individual scientific institutions.
Digitization of herbarium collections as a tool for global taxonomic analyses provides the possibility of open access to plant specimens from different parts of the world for taxonomic and phytogeographical research, which is arousing the interest of researchers from all over the world [119,120,121,122,123]. The possibility of financing this type of research may enable national and international projects, as well as the creation of scientific networks (e.g., KSIB in Poland).

5. Conclusions

Gathering herbarium collections was and is an important documentation of aspects of botanical research, such as taxonomy and phytogeography. Old herbarium specimens (over 100 years old) are often the basic source of knowledge about the morphology and distribution of taxa, including critical taxa and hybrids.
Herbarium materials may constitute interesting material for modern genetic and phylogenetic research, shedding light on previously unsolved taxonomic and phytogeographical problems.
The ongoing digitization of herbarium collections in Poland, making them available and transferring data to databases, either global (e.g., GBIF, GRIIS), national (KSIB) or thematic (e.g., EASIN), will allow existing knowledge to be supplemented and, above all, will facilitate access to reliable sources of data that were previously difficult to access.
Due to the system of formal authorization, staffing, and size of collection resources, database resources of national herbaria are diverse. It is necessary to create an integrated system of cooperation, data flow and mutual support of institutions collecting botanical data in the form of scientific herbaria.
In individual countries, it is possible and important to develop strategies for financing and treating plant collections as a type of “national heritage”.

Author Contributions

Conceptualization, A.R. and B.T.-G.; methodology, A.R. and B.T.-G.; software, I.G.-Ś.; validation, A.R., B.T.-G. and I.G.-Ś.; formal analysis, A.R. and I.G.-Ś.; investigation, A.R., B.T.-G. and I.G.-Ś.; resources, A.R. and B.T.-G.; data curation, A.R., B.T.-G. and I.G.-Ś.; writing—original draft preparation, A.R., B.T.-G. and I.G.-Ś.; writing—review and editing, A.R., B.T.-G. and I.G.-Ś.; visualization, A.R., B.T.-G. and I.G.-Ś.; supervision, A.R. and B.T.-G.; project administration, A.R. and B.T.-G.; funding acquisition, B.T.-G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the publication and all the people who contributed to the development of this publication. The authors would like to thank Ian C. Trueman from Wolverhampton, UK, for critical proofreading and improving the English text.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Piekiełko, A. Dwa Osiemnastowieczne Zielniki ze Zbiorów Instytutu Botaniki Uniwersytetu Jagiellońskiego; Ossolineum: Wroclaw, Poland, 1981. [Google Scholar]
  2. Rostański, K. Wykłady z Botaniki Systematycznej. Wyd; Uniwersytet Śląski: Katowice, Poland, 2003. [Google Scholar]
  3. Cristofolini, G. Origin and evolution of herbaria in the sixteenth century. Rend. Fis. Acc. Lincei 2024, 35, 63–75. [Google Scholar] [CrossRef]
  4. Baldini, R.M.; Cristofolini, G.; Aedo, C. The extant herbaria from the sixteenth century: A synopsis. Webbia 2022, 77, 23–33. [Google Scholar] [CrossRef]
  5. Index Herbariorum. Available online: https://sweetgum.nybg.org/science/ih/ (accessed on 10 January 2024).
  6. Drobnik, J. Zielnik i Zielnikarstwo; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007. [Google Scholar]
  7. Available online: https://botany.pl/index.php/pl/research-results-pl/national-biodiversity-collection-herbarium-kram-pl (accessed on 26 April 2024).
  8. Tykarski, P. Zasoby danych przyrodniczych polskich instytucji naukowych–bogactwo, historia, znaczenie. Kosmos 2021, 70, 131–137. [Google Scholar] [CrossRef] [PubMed]
  9. Davis, C.C. The herbarium of the future. Trends Ecol. Evol. 2023, 38, 412–423. [Google Scholar] [CrossRef] [PubMed]
  10. Mirek, Z.; Musiał, L.; Wójcicki, J.J. Polish Herbaria. Second Edition. Pol. Bot. Stud. Guideb. Ser. 1997, 18, 3–116. [Google Scholar]
  11. Knutelski, S.; Nobis, M.; Pyrcz, T.; Fiałkowski, W. Zasoby informacji o różnorodności biotycznej w kolekcjach przyrodniczych Uniwersytetu Jagiellońskiego. Kosmos 2021, 70, 273–289. [Google Scholar] [CrossRef] [PubMed]
  12. Bebber, D.P.; Carine, M.; Wood, J.; Wortley, A.; Harris, D.; Prance, G.; Davidse, G.; Paige, J.; Pennington, T.; Robson, N.; et al. Herbaria are a major frontier for species discovery. Proc. Natl. Acad. Sci. USA 2010, 107, 22169–22171. [Google Scholar] [CrossRef] [PubMed]
  13. Davis, C.C.; Willis, C.G.; Connolly, B.; Kelly, C.; Ellison, A.M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 2015, 102, 1599–1609. [Google Scholar] [CrossRef]
  14. Heberling, J.M.; Isaac, B.L. Herbarium specimens as exaptations: New uses for old collections. Am. J. Bot. 2017, 104, 963–965. [Google Scholar] [CrossRef]
  15. Heberling, J.M.; Prather, L.A.; Tonsor, S.J. The changing uses of herbarium data in an era of global change: An overview using automated content analysis. BioScience 2019, 69, 812–822. [Google Scholar] [CrossRef]
  16. Lang, P.; Willems, F.; Scheepens, J.; Burbano, H.; Bossdorf, O. Using herbaria to study global environmental change. New Phytol. 2019, 221, 110–122. [Google Scholar] [CrossRef] [PubMed]
  17. Bzdęga, K.; Fojcik, B.; Gerold-Śmietańska, I.; Rostański, A.; Tokarska-Guzik, B.; Chłond, D.; Drohojowska, J.; Gorczyca, J.; Kalandyk-Kołodziejczyk, M.; Cieplok, A.; et al. Kolekcje i dane przyrodnicze Instytutu Biologii, Biotechnologii i Ochrony Środowiska Uniwersytetu Śląskiego w Katowicach. Kosmos 2021, 70, 321–338. [Google Scholar]
  18. Younis, S.; Weiland, C.; Hoehndorf, R.; Dressler, S.; Hickler, T.; Seeger, B.; Schmidt, M. Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Bot. Lett. 2018, 165, 377–383. [Google Scholar] [CrossRef]
  19. Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef]
  20. Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pysek, P.; van Kleunen, M.; Winter, M.; et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 2018, 115, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
  21. Bieker, V.C.; Martin, M.D. Implications and future prospects for evolutionary analyses of DNA in historical herbarium collections. Bot. Lett. 2018, 165, 409–418. [Google Scholar] [CrossRef]
  22. Perez, T.M.; Rodriguez, J.; Heberling, J.M. Herbarium-based measurements reliably estimate three functional traits. Am. J. Bot. 2020, 107, 1457–1464. [Google Scholar] [CrossRef]
  23. Papalini, S.; Di Vittori, V.; Pieri, A.; Allegrezza, M.; Frascarelli, G.; Nanni, L.; Bitocchi, E.; Bellucci, E.; Gioia, T.; Pereira, L.G. Challenges and Opportunities behind the Use of Herbaria in Paleogenomics Studies. Plants 2023, 12, 3452. [Google Scholar] [CrossRef]
  24. Rostański, A. Collection of grasses in the Herbarium of the University of Silesia. In Problems of Grass Biology; Frey, L.W., Ed.; Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2003; pp. 229–233. ISBN 83-85444-29-7. [Google Scholar]
  25. Rostański, A.; Bzdęga, K.; Gerold-Śmietańska, I. Collection of Coniferophytes (Pinophyta) in the Herbarium of University of Silesia (KTU). Bull. Bot. Gard. 2006, 15, 133–138. [Google Scholar]
  26. Tokarska-Guzik, B.; Bzdęga, K.; Nowak, T. Alien plants in Poland: Research directions and putting the results into practice. Biodivers. Res. Conserv. 2014, 1, 57–74. [Google Scholar] [CrossRef]
  27. Tokarska-Guzik, B. Stan poznania, ochrony i zagrożenia roślin naczyniowych województwa śląskiego. In Przyroda Żywa Województwa Śląskiego-Stan Poznania, Ochrony i Zagrożenia; Parusel, J., Ed.; Centrum Dziedzictwa Przyrody Górnego Śląska: Katowice, Poland, 2020; pp. 98–142. ISBN 978-83-958371-0-4. [Google Scholar]
  28. Zając, A.; Zając, M. Atlas Rozmieszczenia Roślin Naczyniowych w Polsce; Instytut Botaniki Uniwersytetu Jagiellońskiego: Kraków, Poland, 2001. [Google Scholar]
  29. Zając, A.; Zając, M. Atlas Rozmieszczenia Roślin Naczyniowych w Polsce: Dodatek; Instytut Botaniki Uniwersytetu Jagiellońskiego: Kraków, Poland, 2019. [Google Scholar]
  30. Bzdęga, K.; Rostański, A.; Pasierbiński, A. Baza danych kolekcji Zielnika Naukowego Uniwersytetu Śląskiego w ramach Krajowej Sieci Informacji o Bioróżnorodności (KSIB). Fragm. Florist. Geobot. Polon. Suppl. 2007, 9, 197–208. [Google Scholar]
  31. Tokarska-Guzik, B.; Chybiorz, R.; Parusel, J. Results of studies of nature resources as a source of spatial data for a regional information system under the auspices of the BIOGEO-SILESIA ORSIP group. In Scientific, Technological and Legal Background of Creating Integrated Biotic Databases, Wydawnictwo Naukowe Uniwersytetu im; Adama Mickiewicza: Poznań, Poland, 2015; pp. 35–50. ISBN 978-83-232-2859-2. [Google Scholar]
  32. Aleksandrowicz, O.; Sobisz, Z.; Truchan, M.; Wiśniewski, K. Przyrodnicze kolekcje naukowe Akademii Pomorskiej w Słupsku. Kosmos 2021, 70, 167–172. [Google Scholar] [CrossRef] [PubMed]
  33. Graniszewska, M.; Leśniewska, H. Kolekcja zielnika WA Uniwersytetu Warszawskiego; bogactwo o nie tylko historycznym znaczeniu. Kosmos 2021, 70, 157–166. [Google Scholar] [CrossRef] [PubMed]
  34. Kotusz, J.; Wanat, M. Zasoby danych Muzeum Przyrodniczego Uniwersytetu Wrocławskiego w przestrzeni nauki, natury i kultury. Kosmos 2021, 70, 351–368. [Google Scholar] [CrossRef]
  35. Krawczyk, W.; Jadwisieńczak, D.; Pyrek, P.; Rainer, O.; Gazda, A. Zasoby Herbarium Wydziału Leśnego Uniwersytetu Rolniczego w Krakowie; historia, stan obecny i przyszłość. Kosmos 2021, 70, 315–320. [Google Scholar] [CrossRef] [PubMed]
  36. Kupryjanowicz, J.; Burzyńska, J.; Ratkiewicz, M. Flora i fauna Polski w zbiorach Wydziału Biologii i Uniwersyteckiego Centrum Przyrodniczego, Uniwersytetu w Białymstoku. Kosmos 2021, 70, 339–349. [Google Scholar] [CrossRef]
  37. Czarnecka, J.; Mułenko, W.; Staniec, B. Zbiory naukowe Wydziału Biologii i Biotechnologii Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Kosmos 2021, 70, 305–314. [Google Scholar] [CrossRef] [PubMed]
  38. Rostański, A.; Gerold-Śmietańska, I. Description and significance of the Herbarium of University of Silesia (KTU). In The Importance of Natural History Museum of Taxonomy; Borowiec, L., Tarnawski, D., Eds.; Polish Taxonomical Monographs: Wrocław, Poland, 2008; Volume 15, pp. 71–84. [Google Scholar]
  39. Mitka, J. Phenetic and geographic pattern of Aconitum sect. Napellus (Ranunculaceae) in the Eastern Carpathians—A numerical approach. Acta Soc. Bot. Pol. 2000, 71, 35–48. [Google Scholar] [CrossRef]
  40. Mitka, J. The genus Aconitum L. (Ranunculaceae) in Poland and adjacent countries. In A Phenetic–Geographic Study; Institute of Botany of the Jagiellonian University: Kraków, Poland, 2003. [Google Scholar]
  41. Mitka, J. Aconitum moldavicum Hacq. (Ranunculaceae) and its hybrids in the Carpathians and adjacent regions. Rocz. Bieszcz. 2008, 16, 233–252. [Google Scholar]
  42. Frey, A. Rodzaj Amaranthus L. w Polsce. Fragm. Florist. Geobot. 1974, 20, 143–201. [Google Scholar]
  43. Zając, A. The genus Cerastium in Poland. In Section Fugacia and Caespitosa. Monographiae Botanicae 47; Polish Botanical Society: Warszawa, Poland, 1975. [Google Scholar]
  44. Oklejewicz, K.; Chwastek, E.; Szewczyk, M.; Bobiec, A.; Mitka, J. Distribution of Crataegus (Rosaceae) in S-E Poland along a gradient of anthropogenic influence. Pol. J. Ecol. 2013, 61, 683–691. [Google Scholar]
  45. Piękoś-Mirkowa, H.; Tlałka, D.; Podsiedlik, M.; Szypuła, W. Rodzaj Dryopteris Adans. In Atlas Rozmieszczenia Roślin Naczyniowych w Polsce: Dodatek; Zając, A., Zając, M., Eds.; Instytut Botaniki Uniwersytetu Jagiellońskiego: Kraków, Poland, 2019. [Google Scholar]
  46. Latowski, K. Erysimum L., Pszonak. In Flora Polski, 2nd ed.; Jasiewicz, A., Ed.; Państwowe Wydawnictwo Naukowe: Warszawa-Kraków, Poland, 1985; Volume 4, pp. 149–159. [Google Scholar]
  47. Zając, E.U. Genus Fumaria L. in Poland. Zesz. Naukowe Uniw. Jagiell. 360 Pr. Bot. 1974, 2, 25–119. [Google Scholar]
  48. Pawłowska, S. Rodzina: Oxalidaceae, Szczawikowate. In Flora Polski; Szafer, W., Pawłowski, B., Eds.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1959; Volume 8/5, pp. 321–324. [Google Scholar]
  49. Weber, H.E. A survey of the bramble species (Rubus subgenus Rubus, Rosaceae) in Poland. Pol. Bot. Stud. 1991, 2, 199–211. [Google Scholar]
  50. Zieliński, J. The genus Rubus (Rosaceae) in Poland. Pol. Botanical Stud. 2004, 16, 1–300. [Google Scholar]
  51. Rostański, K. Rodzina: Valerianaceae, Kozłkowate. In Flora Polski; Pawłowski, B., Ed.; Państwowe Wydawnictwo Naukowe: Warszawa-Kraków, Poland, 1967; Volume 11, pp. 338–357. [Google Scholar]
  52. Rostański, K.; Dzhus, M.; Gudzinskas, Z.; Rostański, A.; Shevera, M.; Sulcs, V.; Tokhtar, V. The Genus Oenothera L. in Eastern Europe; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2004. [Google Scholar]
  53. Rostański, K.; Rostański, A.; Gerold-Śmietańska, I.; Wąsowicz, P. Evening-Primroses (Oenothera) occurring in Europe. In Wiesiołki (Oenothera) Występujące w Europie; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2010. [Google Scholar]
  54. Towpasz, K. Rośliny naczyniowe Pogórza Strzyżowskiego. The Vascular Plants of the Strzyżów Foothils (Southern Poland). Zesz. Nauk. Uniw. Jagiell. Pr. Bot. 1987, 16, 1–157. [Google Scholar]
  55. Chmiel, J. Flora Roślin Naczyniowych Wschodniej Części Pojezierza Gnieźnieńskiego i Jej Antropogeniczne Przeobrażenia w Wieku XIX i XX.; Cz, I., Cz, II. Atlas rozmieszczenia roślin. Flora of vascular plants of the eastern part of the Gniezno Lake District and its transformation under the influence of man in the 19th and 20th centuries. Part I, Part II. Atlas of distribution of plants; Prace Zakłału Taksonomii Roślin, Uniwersytet i.m. A. Mickiewicza: Poznań, Poland, 1993; Part 1, 1–202; Part 2, 1–212. [Google Scholar]
  56. Oklejewicz, K. Flora Dołów Jasielsko-Sanockich. The flora of the Jasło-Sanok Basin. Zesz. Nauk. Uniw. Jagiell. Pr. Bot. 1993, 26, 1–167. [Google Scholar]
  57. Kornaś, J.; Medwecka-Kornaś, A.; Towpasz, K. Rośliny naczyniowe Pogórza Ciężkowickiego (Karpaty Zachodnie)–Vascular plants of Pogórze Ciężkowickie (Western Carpathians). Zesz. Nauk. Uniw. Jagiell. Pr. Bot. 1996, 28, 1–170. [Google Scholar]
  58. Kucharczyk, M. Distribution Atlas of Vascular Plants in the Middle Vistula River Valley; Maria Curie-Skłodowska University Press: Lublin, Poland, 2001; p. 395. [Google Scholar]
  59. Adamowski, W.; Dvorak, L.; Ramanjuk, I. Atlas of alien woody species of the Białowieża primaeval forest. Phytocoenosis 2002, 14, 1–303. [Google Scholar]
  60. Urbisz, A. Atlas rozmieszczenia roślin naczyniowych na Wyżynie Krakowsko-Częstochowskiej. In Distribution atlas of vascular plants in the Kraków-Częstochowa uplands; Centrum Dziedzictwa Przyrody Górnego Śląska: Katowice, Poland, 2012; p. 397. ISBN 978-83-62652-27-3. [Google Scholar]
  61. Paul, W. Rozmieszczenie Roślin Naczyniowych Południowej Części Płaskowyżu Tarnogrodzkiego i Terenów Przyległych; Instytut Botaniki im. W. Szafera, Polska Akademia Nauk: Kraków, Poland, 2013; p. 526. [Google Scholar]
  62. Sudnik-Wójcikowska, B. Flora Miasta Warszawy i Jej Przemiany w Ciągu XIX i XX Wieku. Flora of the Town of Warsaw and Its Changes in 19th and 20th Centuries; Wyd. Uniw. Warsz.: Warszawa, Poland, 1987; Part 1: 1–242, Part 2:1–435. [Google Scholar]
  63. Sudnik-Wójcikowska, B. Czasowe i Przestrzenne Aspekty Procesu Synantropizacji Flory na Przykładzie Wybranych Miast Europy Środkowej.-Historical and Spatial Aspects of the Flora Synanthropization Process Exemplified by a Few Central European Cities; Wyd. Uniw. Warsz.: Warszawa, Poland, 1998; p. 167. [Google Scholar]
  64. Jackowiak, B. Antropogeniczne Przemiany Flory Roślin Naczyniowych Poznania-Anthropogenic Changes of the Flora of Vascular Plants of Poznań; Seria Biologia 42; Wyd. Nauk. Uniw. A. Mickiewicza: Poznań, Poland, 1990; pp. 1–232. [Google Scholar]
  65. Jackowiak, B. Atlas Rozmieszczenia Roślin Naczyniowych w Poznaniu-Atlas of Distribution of Vascular Plants in Poznań; Publications of the Department of Plant Taxonomy of the Adam Mickiewicz University: Poznań, Poland, 1993; Volume 2, pp. 1–409. [Google Scholar]
  66. Jackowiak, B. Struktura Przestrzenna Flory Dużego Miasta. Studium Metodyczno-Problemowe-Spatial Structure of Urban Flora. A Methodological-Cognitive Study; Publications of the Department of Plant Taxonomy of Adam Mickiewicz University, Bogucki Scientific Publishers: Poznań, Poland, 1998; Volume 8, pp. 1–228. [Google Scholar]
  67. Piotrowska, H.; Żukowski, W.; Jackowiak, B. Rośliny Naczyniowe Słowińskiego Parku Narodowego. Vascular Plants of the Słowiński National Park; Pr. Zakł. Taks. Rośl. Uniw. A. Mickiewicza: Poznań, Poland, 1997; Volume 6, pp. 1–216. [Google Scholar]
  68. Szeląg, Z. Rośliny Naczyniowe Masywu Śnieżnika i Gór Bialskich. Vascular Plants of the Śnieżnik Massif and the Góry Bialskie Mts; Instytut Botaniki im. W. Szafera, Polska Akademia Nauk: Kraków, Poland, 2000; p. 255. [Google Scholar]
  69. Kaźmierczakowa, R.; Zarzycki, K. (Eds.) Polska Czerwona Księga Roślin. Paprotniki i Rośliny Kwiatowe; Instytut Botaniki im. W. Szafera PAN: Kraków, Poland, 1993. [Google Scholar]
  70. Kaźmierczakowa, R.; Zarzycki, K. (Eds.) Polska Czerwona Księga Roślin. Paprotniki i Rośliny Kwiatowe; Instytut Botaniki im. W. Szafera Polska Akademia Nauk: Kraków, Poland, 2001. [Google Scholar]
  71. Nowak, A.; Spałek, K. (Eds.) Czerwona Księga Roślin Naczyniowych Województwa Opolskiego; OTPN: Opole, Poland, 2002; p. 160. [Google Scholar]
  72. Mirek, Z.; Piękoś-Mirkowa, H. (Eds.) Czerwona Księga Karpat Polskich; Instytut Botaniki im. W. Szafera Polska Akademia Nauk: Kraków, Poland, 2008. [Google Scholar]
  73. Nowak, T.; Babczyńska-Sendek, B.; Zaufal, T. Euphorbia epithymoides L. (Euphorbiaceae) w województwie śląskim i na terenach sąsiednich. Acta Biol. Sil. 2003, 37, 39–49. [Google Scholar]
  74. Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Vascular Plants of Poland. An Annotated Checklist [Rośliny Naczyniowe Polski. Adnotowany Wykaz Gatunków]; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2020. [Google Scholar]
  75. Zając, M.; Zając, A. Nowy kenofit w Polsce-Veronica peregrina L.-A new kenophyte in Poland-Veronica peregrina L. Zesz. Nauk. UJ Pr. Bot. 1990, 1, 145–150. [Google Scholar]
  76. Fojcik, B.; Tokarska-Guzik, B. Reynoutria × bohemica (Polygonaceae)—A new taxon to the Polish flora. Fragm. Florist. Geobot. Polon. 2000, 7, 63–71. [Google Scholar]
  77. Urbisz, A. Occurrence of Temporarily-Introduced Alien Plant Species (Ephemerophytes) in Poland-Scale and Assessment of the Phenomenon Prace Naukowe Uniwersytetu Śląskiego w Katowicach; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2011; p. 199. ISBN 978-83-226-2053-3. [Google Scholar]
  78. Dajdok, Z. Coleanthus subtilis (Poaceae) in the Milicz Fish-ponds—A new locality in Poland. Fragm. Florist. Geobot. Polon. 2009, 16, 227–236. [Google Scholar]
  79. Szeląg, Z. Hieracium boratynskii (Asteraceae), a new species in the H. canescens aggregate from the Sudetes in Poland. Phytotaxa 2022, 541, 209–212. [Google Scholar] [CrossRef]
  80. Szeląg, Z. Hieracium umbellonigritum (Asteraceae), a new hybridogenous species from the Sudetes in Poland. Phytotaxa 2023, 589, 289–292. [Google Scholar] [CrossRef]
  81. Trzcińska, H. Badania nad zasięgami roślin synantropijnych. 1. Bidens melanocarpus Weig. w Polsce.-Studies on the distribution of synantropic plants. 1. Bidens melanocarpus Weig. in Poland. Fragm. Florist. Geobot. 1961, 7, 161–168. [Google Scholar]
  82. Trzcińska-Tacik, H. Badania nad zasięgami roślin synantropijnych. 2. Rumex confertus Willd. in Poland. Studies on the distribution of synanthropic plants. 2. Rumex confertus Willd. in Poland. Fragm. Florist. Geobot. 1963, 9, 73–84. [Google Scholar]
  83. Świeboda, M. Rozmieszczenie Elsholtzia partini (Lep.) Garcke w Polsce.-Distribution of Elsholtzia partini (Lep.) Garcke in Poland. Fragm. Florist. Geobot. 1963, 9, 239–242. [Google Scholar]
  84. Zając, E.U.; Zając, A. Badania nad zasięgami roślin synantropijnych. 3. Corydalis lutea DC. 4. Linaria cymbalaria (L.) Mill. 5. Impatiens roylei Walp. Studies of the distribution of synanthropic plants. 3. Corydalis lutea DC. 4. Linaria cymbalaria (L.) Mill. 5. Impatiens roylei Walp. Zesz. Nauk. UJ Prace Bot. 1973, 1, 41–55. [Google Scholar]
  85. Guzik, J.; Sudnik-Wójcikowska, B. Badania nad zasięgami roślin synantropijnych. 6. Iva xanthiifolia Nutt. w Polsce. Fragm. Florist. Geobot. 1989, 34, 255–276. [Google Scholar]
  86. Rostański, K.; Tokarska-Guzik, B. Distribution of the american epecophytes of Oenothera L. in Poland. Phytocoen. 10 N. S. Suppl. Cartogr. Geobot. 1998, 9, 117–130. [Google Scholar]
  87. Górski, P.; Czarna, A.; Tokarska-Guzik, B. Distribution of Erechtites hieracifolia (L.) Raf. ex DC. (Asteraceae) in Poland. In Phytogeographical Problems of Synanthropic Plants; Zając, A., Zając, M., Zemanek, B., Eds.; Institute of Botany, Jagiellonian University: Cracow, Poland, 2003; pp. 147–153. [Google Scholar]
  88. Tokarska-Guzik, B. The Establishment and Spread of Alien Plant Species (Kenophytes) in Poland; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2005. [Google Scholar]
  89. Graebner, P. Zur Flora der Kreise Putzig. Neustadt W pr. Und Lauenburg i. Pomm. Ber. West-Preuss. Bot-Zool. Ver. 1894, 17, 271–395. [Google Scholar]
  90. Gilman, E.; King, N.; Peterson, T.; Chavan, V.; Hahn, A. Building the Biodiversity Data Commons-The Global Biodiversity Information Facility. In ICT for Agriculture and Biodiversity Conservation; Maurer, L., Ed.; ICT Ensure, Graz University of Technology: Graz, Austria, 2009; pp. 79–99. [Google Scholar]
  91. Yesson, C.; Brewer, P.W.; Sutton, T.; Caithness, N.; Pahwa, J.S.; Burgess, M.; Grey, W.A.; White, R.J.; Jones, A.C.; Bisby, F.A.; et al. How global is the Global Biodiversity Information Facility? PLoS ONE 2007, 2, e1124. [Google Scholar] [CrossRef] [PubMed]
  92. Tykarski, P. Ogólnodostępne systemy gromadzenia danych o różnorodności biologicznej i możliwości ich wykorzystania. In Baza Danych Przestrzennych w Zarządzaniu Zasobami Środowiska Przyrodniczego Województwa Śląskiego; Tokarska-Guzik, B., Chybiorz, R., Parusel, J., Eds.; Uniwersytet Śląski w Katowicach: Katowice, Poland, 2015; pp. 53–65. [Google Scholar]
  93. Meineke, E.K.; Davies, T.J.; Daru, B.H.; Davis, C.C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. 2019, B 374, 20170386. [Google Scholar] [CrossRef]
  94. Thiers, B.M. The World’s Herbaria 2019: A Summary Report Based on Data from Index Herbariorum 3.0. Index Herbariorum 2020. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 29 April 2024).
  95. Funk, V.F.; Hoch, P.C.; Prather, L.A.; Wagner, W.L. The importance of vouchers. Taxon 2005, 54, 127–129. [Google Scholar] [CrossRef]
  96. Cook, J.A.; Edwards, S.V.; Lacey, E.A.; Guralnick, R.P.; Soltis, P.S.; Soltis, D.E.; Welch, C.K.; Bell, K.C.; Galbreath, K.E.; Himes, C.; et al. Natural history collections as emerging resources for innovative education. Bioscience 2014, 64, 725–734. [Google Scholar] [CrossRef]
  97. Monfils, A.K.; Powers, K.E.; Marshall, C.J.; Martine, C.T.; Smith, J.F.; Prather, L.A. Natural History Collections: Teaching about Biodiversity Across Time, Space, and Digital Platforms. Outdoor Classr. Southeast. Nat. 2017, 16, 47–57. [Google Scholar] [CrossRef]
  98. Rostański, K. Oenothera L. Evening primroses. In New Flora of the British Isles, 3rd ed.; Stace, C., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 362–364. [Google Scholar]
  99. Rostański, K.; Gutte, P. Oenothera L. [Onagra Mill.]-Nachtkerze. In Excursionsflora von Deutschland–Gefasspflanzen: Grundband; Rothmaler, W., Jaeger, E.J., Eds.; Spektrum Akademische Verlag: Heidelberg, Germany, 2011; pp. 500–506. [Google Scholar]
  100. Rostański, K.; Karlsson, T. Oenothera L. In Flora Nordica Volume 6; Jonsell, B., Karlsson, T., Eds.; The Swedish Museum of Natural History: Stockholm, Sweden, 2010; pp. 132–148. [Google Scholar]
  101. Woźniak-Chodacka, M. Taxonomic notes and validation of the name Oenothera mollis (Onagraceae). Phytotaxa 2017, 303, 297–300. [Google Scholar] [CrossRef]
  102. Woźniak-Chodacka, M. A revision of taxonomic relation between Oenothera perangusta and O. ersteinensis (Onagraceae) based on morphometric research and statistical analyses. Phytotaxa 2018, 383, 55–74. [Google Scholar] [CrossRef]
  103. Woźniak-Chodacka, M. Taxonomic notes and validation of Oenothera acutifolia (Onagraceae). Phytotaxa 2019, 427, 75–79. [Google Scholar] [CrossRef]
  104. Woźniak-Chodacka, M. A revision of taxonomic relation between Oenothera royfraseri and O. turoviensis (sect. Oenothera, subsect. Oenothera; Onagraceae) based on multivariate analyses of morphological characters. Phytotaxa 2020, 435, 164–180. [Google Scholar] [CrossRef]
  105. Woźniak-Chodacka, M. Lectotypification, epitypification and taxonomic notes on Oenothera fallax (Onagraceae). Phytotaxa 2023, 612, 283–292. [Google Scholar] [CrossRef]
  106. Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
  107. Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
  108. IPBES. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Roy, H.E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B.S., Hulme, P.E., Ikeda, T., Sankaran, K.V., McGeoch, M.A., Eds.; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar] [CrossRef]
  109. Solarz, W.; Najberek, K.; Tokarska-Guzik, B.; Pietrzyk-Kaszyńska, A. Climate change as a factor enhancing the invasiveness of alien species. Environ. Socio-Econ. Stud. 2023, 11, 36–48. [Google Scholar] [CrossRef]
  110. Nualart, N.; Ibáñez, N.; Soriano, I.; López-Pujol, J. Assessing the Relevance of Herbarium Collections as Tools for Conservation. Biol. Bot. Rev. 2017, 83, 303–325. [Google Scholar] [CrossRef]
  111. Carine, M.A.; Cesar, E.A.; Ellis, L.; Hunnex, J.; Paul, A.M.; Prakash, R.; Rumsey, F.J.; Wajer, J.; Wilbraham, J.; Yesilyurt, J.C. Examining the spectra of herbarium uses and users. Bot. Lett. 2018, 165, 328–336. [Google Scholar] [CrossRef]
  112. Meineke, E.K.; Davis, C.C.; Davies, T.J. The unrealized potential of herbaria for global change biology. Ecol. Monogr. 2018, 88, 505–525. [Google Scholar] [CrossRef]
  113. Senderowicz, M.; Nowak, T.; Weiss-Schneeweiss, H.; Papp, L.; Kolano, B. Molecular and Cytogenetic Analysis of rDNA Evolution in Crepis Sensu Lato. Int. J. Mol. Sci. 2022, 23, 3643. [Google Scholar] [CrossRef] [PubMed]
  114. Hedrick, B.P.; Heberling, J.M.; Meineke, E.K.; Turner, K.G.; Grassa, C.J.; Park, D.S.; Kennedy, J.; Clarke, J.A.; Cook, J.A.; Blackburn, D.C.; et al. Digitization and the Future of Natural History Collections. BioScience 2020, 70, 243–251. [Google Scholar] [CrossRef]
  115. Bzdęga, K.; Tokarska-Guzik, B.; Gerold-Śmietańska, I. KTU Herbarium-Collection of Alien Plants. Version 1.2. University of Silesia, Laboratory of Botanical Documentation-Herbarium KTU. 2024. Occurrence Dataset. Available online: https://www.gbif.org/occurrence/download/0089363-240506114902167 (accessed on 28 May 2024). [CrossRef]
  116. Rostański, A.; Gerold-Śmietańska, I. KTU Herbarium-General Collection. Version 1.2. University of Silesia, Laboratory of Botanical Documentation-Herbarium KTU. 2024, Occurrence Dataset. Available online: https://www.gbif.org/dataset/1e81eb56-22e3-482f-85ce-70ae9573724a (accessed on 28 May 2024). [CrossRef]
  117. Rostański, K.; Rostański, A.; Gerold-Śmietańska, I. KTU Herbarium-Oenothera Collection. University of Silesia, Laboratory of Botanical Documentation-Herbarium KTU. 2024, Occurrence Dataset. Available online: https://www.gbif.org/dataset/bcf5e3a0-7877-46fe-b818-e236f030fd45 (accessed on 28 May 2024). [CrossRef]
  118. Fojcik, B. KTU Herbarium-Bryophyta. University of Silesia, Laboratory of Botanical Documentation-Herbarium KTU. 2024, Occurrence Dataset. Available online: https://www.gbif.org/dataset/27678e7d-527b-4f97-b429-2becf727985f (accessed on 28 May 2024). [CrossRef]
  119. Funk, V.A. Collections-based science in the 21st Century. J. Syst. Evol. 2018, 56, 175–193. [Google Scholar] [CrossRef]
  120. Soltis, P.S.; Nelson, G.; James, S.A. Green digitization: Online botanical collections data answering real-world questions. Appl. Plant Sci. 2018, 6, e1028. [Google Scholar] [CrossRef]
  121. De Gasper, A.L.; Heiden, G.; Versieux, L.M.; Leitman, P.M.; Forzza, R.C. Challenges and lessons learned from digitizing small Brazilian herbaria. Acta Bot. Bras. 2021, 35, 689–697. [Google Scholar] [CrossRef]
  122. Ong, S.Q.; Mat Jalaluddin, N.S.; Yong, K.T.; Ong, S.P.; Lim, K.F.; Azhar, S. Digitization of natural history collections: A guideline and nationwide capacity building workshop in Malaysia. Ecol. Evol. 2023, 13, e10212. [Google Scholar] [CrossRef] [PubMed]
  123. Roma-Marzio, F.; Maccioni, S.; Dolci, D.; Astuti, G.; Magrini, N.; Pierotti, F.; Vangelisti, R.; Amadei, L.; Peruzzi, L. Digitization of the historical Herbarium of Michele Guadagno at Pisa (PI-GUAD). PhytoKeys 2023, 234, 107–125. [Google Scholar] [CrossRef]
Figure 1. Distribution of scientific herbaria in Poland (green dot—Polish herbaria listed in the Index Herbariorum [5]; red dot—Polish herbaria listed only in Polish Herbaria [10]).
Figure 1. Distribution of scientific herbaria in Poland (green dot—Polish herbaria listed in the Index Herbariorum [5]; red dot—Polish herbaria listed only in Polish Herbaria [10]).
Diversity 16 00434 g001
Figure 2. Oenothera cambrica Rostański—Holotype from the collection of KTU Herbarium.
Figure 2. Oenothera cambrica Rostański—Holotype from the collection of KTU Herbarium.
Diversity 16 00434 g002
Figure 3. Oenothera depressa Greene for. angustifolia Rostański—Isotype from the collection of KTU Herbarium.
Figure 3. Oenothera depressa Greene for. angustifolia Rostański—Isotype from the collection of KTU Herbarium.
Diversity 16 00434 g003
Figure 4. Revision of herbarium material of many plant species allowed the development of current distribution maps in Poland. An example is Aphanes inexspectata W. Lippert [29]. Explanations of symbols: •—station of species; ?—doubtful station.
Figure 4. Revision of herbarium material of many plant species allowed the development of current distribution maps in Poland. An example is Aphanes inexspectata W. Lippert [29]. Explanations of symbols: •—station of species; ?—doubtful station.
Diversity 16 00434 g004
Figure 5. A specimen of Euphorbia epithymoides L. from KTU Herbarium (1990). In Poland, the species is at risk of extinction (VU) [73]; however, at the same time, it is indicated as a taxon of uncertain status in Polish flora [74]. The species are found in the Silesian Upland in the southern part of the country on hills made of Triassic limestone [73].
Figure 5. A specimen of Euphorbia epithymoides L. from KTU Herbarium (1990). In Poland, the species is at risk of extinction (VU) [73]; however, at the same time, it is indicated as a taxon of uncertain status in Polish flora [74]. The species are found in the Silesian Upland in the southern part of the country on hills made of Triassic limestone [73].
Diversity 16 00434 g005
Figure 6. Specimens as a documentation of new plant species recorded in Poland from KTU Herbarium (1999–2001): (a) Reynoutria × bohemica Chrtek & Chrtkova, (b) Eleusine indica (L.) Gaertner.
Figure 6. Specimens as a documentation of new plant species recorded in Poland from KTU Herbarium (1999–2001): (a) Reynoutria × bohemica Chrtek & Chrtkova, (b) Eleusine indica (L.) Gaertner.
Diversity 16 00434 g006
Figure 7. Changes in the distribution range of Reynoutria japonica Houtt. in Poland in subsequent periods of time [88]: (a) First recorded localities: 1—Gniezno, West Poland, ATPOL raster CC83 (Cybichowski herbarium specimen, POZ 1882); 2—Darzlubie, North Poland, ATPOL raster CA48 [89]; 3—Wrocław, West Poland, ATPOL raster BE49 (Baenitz, herbarium specimen, WU 1893), (b) Subsequent phases of spread 1950—occupation of new localities, predominantly in the southern part of Poland, (c) The current distribution of Reynoutria japonica is an effect of a fast spread rate, especially in river valleys where it forms copact monospecific phytocoenoses which often occupy extensive areas in the habitats of former willow-poplar forests and thickets. It also occurs commonly in urban areas and railway territory [28]. Symbols: Diversity 16 00434 i001—first recorded locality; Diversity 16 00434 i002—directions of further spread; Diversity 16 00434 i003—occupation of new localities, predominantly in the southern part of Poland.
Figure 7. Changes in the distribution range of Reynoutria japonica Houtt. in Poland in subsequent periods of time [88]: (a) First recorded localities: 1—Gniezno, West Poland, ATPOL raster CC83 (Cybichowski herbarium specimen, POZ 1882); 2—Darzlubie, North Poland, ATPOL raster CA48 [89]; 3—Wrocław, West Poland, ATPOL raster BE49 (Baenitz, herbarium specimen, WU 1893), (b) Subsequent phases of spread 1950—occupation of new localities, predominantly in the southern part of Poland, (c) The current distribution of Reynoutria japonica is an effect of a fast spread rate, especially in river valleys where it forms copact monospecific phytocoenoses which often occupy extensive areas in the habitats of former willow-poplar forests and thickets. It also occurs commonly in urban areas and railway territory [28]. Symbols: Diversity 16 00434 i001—first recorded locality; Diversity 16 00434 i002—directions of further spread; Diversity 16 00434 i003—occupation of new localities, predominantly in the southern part of Poland.
Diversity 16 00434 g007
Table 1. Estimated number of Oenothera genus specimens in selected herbaria in Europe (based on scientific contacts with Herbaria from 2005–2010).
Table 1. Estimated number of Oenothera genus specimens in selected herbaria in Europe (based on scientific contacts with Herbaria from 2005–2010).
Herbarium AcronymInstitutionCity–CountryNumber of Oenothera Specimens
KTUUniversity of Silesia in KatowiceChorzów–Poland12,000
GConservatoire et Jardin Botaniques de la Ville de GenèveGeneva–Switzerland2500
KRoyal Botanic Gardens KewLondon–UK 1500
WNaturhistorisches Museum WienWien–Austria1000
HBotanical MuseumHelsinki–Finland933
SSwedish Museum of Natural HistoryStockholm–Sweden900
KRAMW. Szafer Institute of Botany, Polish Academy of SciencesKraków–Poland865
JEFriedrich Schiller University JenaJena–Germany700
LODUniversity of LodzŁódź–Poland546
MSKNational Academy of Sciences of BelarusMinsk–Belarus411
BRNUMasaryk UniversityBrno Bohunice–Czech Republic400
MWMoscow State UniversityMoscow–Russia350
MAReal Jardín BotánicoMadrid–Spain346
WAUniversity of WarsawWarszawa–Poland283
HALMartin-Luther-UniversitätHalle–Germany150
BCInstitut Botànic de BarcelonaBarcelona–Spain148
PADUniversità degli Studi di PadovaPadova–Italy139
KRStaatliches Museum für Naturkunde KarlsruheKarlsruhe–Germany120
TRHNorwegian University of Science and TechnologyTrondheim–Norway85
MFUMuseo Friulano di Storia NaturaleUdine–Italy76
SAVSlovak Academy of SciencesBratislava–Slovakia71
WIVilnius UniversityVilnius–Lithuania62
BOLOUniversità di BolognaBologna–Italy54
Table 2. Nomenclature types of the Oenothera species in the collections of the KTU Herbarium.
Table 2. Nomenclature types of the Oenothera species in the collections of the KTU Herbarium.
Species NameType Status
Oenothera acerviphila RostańskiHolotypus, Isotypus
Oenothera acutifolia RostańskiLectotypus
Oenothera britannica RostańskiHolotypus, Isotypus
Oenothera cambrica RostańskiHolotypus, Isotypus, Paratypus
Oenothera cambrica Rostański var. impunctata RostańskiHolotypus, Paratypus
Oenothera carinthiaca RostańskiHolotypus, Isotypus, Paratypus
Oenothera coronifera RennerNeotypus, Loco Classico
Oenothera depressa Greene for. angustifolia RostańskiHolotypus, Isotypus, Paratypus
Oenothera drawertii Renner ex RostańskiIsotypus
Oenothera hassica Rostański nom. prov.Holotypus
Oenothera hoelscheri Renner ex RostańskiHolotypus, Isotypus
Oenothera hoelscheri Renner ex Rostański
      var. albinervis Rostański
Isotypus, Paratypus
Oenothera hoelscheri Renner ex Rostański
      var. rubricalyx Rostański
Holotypus, Isotypus, Paratypus
Oenothera issleri Renner ex RostańskiIsotypus
Oenothera issleri Renner ex Rostański var silesiacoidesIsotypus
Oenothera italica Rostański et SoldanoHolotypus, Isotypus
Oenothera jueterbogensis HudziokTopotypus
Oenothera ligerica Deschâtres & R.JeanIsotypus
Oenothera marinellae SoldanoTypus (Auct.)
Oenothera moravica JehlikIsotypus
Oenothera oehlkersi KappusNeotypus
Oenothera ploompuui RostańskiParatypus
Oenothera pycnocarpa Atk. & Bartl.Isotypus
Oenothera rostanskii JehlikIsotypus, Paratypus
Oenothera royfraseri GatesIsotypus
Oenothera rubricaulis Kleb.Isoneotypus
Oenothera rubricaulis Kleb. var. longistylis Gutte et RostańskiIsotypus
Oenothera schnedleri Rostański nom. prov.Holotypus
Oenothera sesitensis SoldanoTypus (Auct.)
Oenothera slovaca Jehlik et RostańskiIsotypus
Oenothera stucchii SoldanoIsotypus,
Oenothera suaveolens Desf. ex Pers.Typus (Auct.)
Oenothera subterminalis GatesNeotypus
Oenothera tacikii RostańskiIsotypus
Oenothera turoviensis RostańskiIsotypus
Oenothera wienii Renner ex RostańskiHolotypus, Isotypus, Paratypus
Oenothera wratislaviensis RostańskiIsotypus
Oenothera × casimiri RostańskiHolotypus
Oenothera × rigirubata Renner ex Gutte et RostańskiIsotypus, Paratypus, Typus
Oenothera × saxonica Gutte ex RostańskiIsotypus
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rostański, A.; Gerold-Śmietańska, I.; Tokarska-Guzik, B. Historical and Contemporary Herbaria as a Source of Data in Plant Taxonomy and Phytogeography Research: An Example from Poland. Diversity 2024, 16, 434. https://doi.org/10.3390/d16080434

AMA Style

Rostański A, Gerold-Śmietańska I, Tokarska-Guzik B. Historical and Contemporary Herbaria as a Source of Data in Plant Taxonomy and Phytogeography Research: An Example from Poland. Diversity. 2024; 16(8):434. https://doi.org/10.3390/d16080434

Chicago/Turabian Style

Rostański, Adam, Izabela Gerold-Śmietańska, and Barbara Tokarska-Guzik. 2024. "Historical and Contemporary Herbaria as a Source of Data in Plant Taxonomy and Phytogeography Research: An Example from Poland" Diversity 16, no. 8: 434. https://doi.org/10.3390/d16080434

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop