Genetic Diversity Analysis of Wild Cordyceps chanhua Resources from Major Production Areas in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Methods
2.2.1. Extraction and Molecular Identification of C. chanhua Genomic DNA
2.2.2. Whole-Genome Resequencing Analysis of C. chanhua
2.3. Statistical Methods
3. Results
3.1. Collection, Isolation, and Preservation of Wild Cordyceps chanhua Strains
3.2. Molecular Identification and Phylogenetic Analysis of C. chanhua
3.3. Sequencing Data Statistical Analysis
3.4. Alignment Rate Statistical Analysis
3.5. Coverage and Depth Statistical Analysis
3.6. Analysis of Variation Types
3.7. Distribution of Variations Across the Genome
3.8. Population Structure Analysis
3.8.1. Structure Analysis
3.8.2. PCA
3.9. Genetic Similarity Analysis
4. Discussion
4.1. Relationship Between Geographical Origin and Genetic Differentiation
4.2. Significance of Population Structure Analysis
4.3. Types and Distribution of Genetic Variations
4.4. Significance of the Development of C. chanhua Germplasm Resources
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Hywel-Jones, N.L.; Luan, F.; Zhang, S.; Sun, C.; Chen, Z.; Li, C.; Tan, Y.; Dong, J. Study on the biodiversity of cicada flowers I: Literature review. Mycosystema 2020, 39, 2191–2201. [Google Scholar] [CrossRef]
- Liu, A. Research and Application of Cicada Flower Resources in China; Guizhou Science and Technology Press: Guiyang, China, 2012. [Google Scholar]
- Xing, X. Classification of Cordyceps sobolifera and Cordyceps cicadae. Acta Microbiol. Sin. 1975, 15, 21–26. [Google Scholar] [CrossRef]
- Liang, Z. Fungorum Sinicorum Vol. 32: Cordyceps; Science Press: Beijing, China, 2007. [Google Scholar]
- Luangsa-Ard, J.J.; Hywel-Jones, N.L.; Manoch, L.; Samson, R.A. On the relationships of Paecilomyces ect. Isarioidea species. Mycol. Res. 2005, 109, 581–589. [Google Scholar] [CrossRef]
- Li, Z.; Luan, F.; Hywel-Jones, N.L.; Zhang, S.; Chen, M.; Huang, B.; Sun, C.; Chen, Z.; Li, C.; Tan, Y.; et al. Study on the biodiversity of cicada flowers II: Discovery and naming of the sexual form of Cordyceps cicadae. Mycosystema 2021, 40, 95–107. [Google Scholar] [CrossRef]
- Liang, S.; Wang, H. Research progress of Cordyceps cicadae. J. Zhejiang Agric. Sci. 2023, 35, 2013–2022. Available online: https://link.cnki.net/urlid/33.1151.S.20230620.1429.008 (accessed on 2 December 2024).
- Zhou, S.; Qiao, Y.; Liu, G.; Chen, W.; Wang, P.; Song, M.; Wang, C. Research status and analysis of Cordyceps cicadae. Food Ferment. Ind. 2024, 50, 341–350. [Google Scholar] [CrossRef]
- Li, H. Study on the Investigation and Utilization of Cordyceps Cicadae Resources in Sichuan Province. Ph.D. Dissertation, Northwest A&F University, Xianyang, China, 2022. [Google Scholar] [CrossRef]
- Li, Z.; Hywel-Jones, N.L.; Sun, C. Cultural and scientific history of Cordyceps. Mycosystema 2022, 41, 1731–1760. [Google Scholar] [CrossRef]
- Xie, H. Study on the Antitumor Mechanism of Active Components of Cordyceps Cicadae and Artificial Cultivation Technology Using Silkworm Pupae as an Alternative Host. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2021. [Google Scholar] [CrossRef]
- Xie, X.; Guo, H.; Liu, J.; Wang, J.; Li, H.; Deng, Z. Edible and medicinal progress of Cryptotympana atrata (Fabricius) in China. Nutrients 2023, 15, 4266. [Google Scholar] [CrossRef]
- Chun, R.L.; Yu, Q.W.; Wen, M.C.; Zhu, A.C.; Hywel-Jones, N.; Zeng, Z.L. Review on research progress and prospects of Isaria cicadae (ascomycetes). Int. J. Med. Mushrooms 2021, 23, 81–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.T.; Zheng, W.; Han, X.X.; Jiang, Y.H.; Hu, P.L.; Tang, Z.X.; Shi, L.E. Antibacterial activity and mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Zhao, J.C.; Shao, Y.; Ren, G.; Zhang, A.W.; Liu, H.; Li, W. Chemical components of spore powder and synnemata of Isaria cicadae and effect of the polysaccharides on Drosophila melanogaster. Food Sci. Technol. 2019, 44, 205–210+219. [Google Scholar]
- Olatunji, O.J.; Feng, Y.; Olatunji, O.O.; Tang, J.; Wei, Y.; Ouyang, Z.; Su, Z. Polysaccharides purified from Cordyceps cicadae protect PC12 cells against glutamate-induced oxidative damage. Carbohydr. Polym. 2016, 153, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, T.; Li, H.; Wang, Y.; Wang, J.; Yuan, H. Structural characterization and hypoglycemic function of polysaccharides from Cordyceps cicadae. Molecules 2023, 28, 526. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Song, W.; Gao, J.; Yan, S.; Guo, C.; Zhang, T. Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment. Braz. J. Microbiol. 2022, 53, 673–688. [Google Scholar] [CrossRef]
- Ke, B.J.; Lee, C.L. Investigation on the fermentation for high adenosine and N6-(2-hydroxyethyl)-adenosine (HEA) productions of Cordyceps cicadae. New Biotechnol. 2016, 33 (Supplement), S206–S207. [Google Scholar] [CrossRef]
- Ji, W.; Su, W.; Wang, Y.; Liu, X.; Ren, L.; Yang, Z.; Zhou, Z.; Chen, K. Breeding of superior strains of Cordyceps cicadae. J. Anhui Agric. Univ. 2024, 51, 697–705. [Google Scholar] [CrossRef]
- Jin, J.; Sui, Z.; Qin, L.; Zhao, J.; Ding, Y. Optimization of alkaline-assisted pressurized extraction of polysaccharides from Isaria cicadae fruiting bodies and evaluation of their in vitro immunological activity. Food Saf. Qual. Detect. J. 2023, 14, 96–103. [Google Scholar] [CrossRef]
- Yu, S.; Ji, W.; Dong, J.; Chen, Q.; Fan, M. Nutritional value analysis of proteins from different products of Isaria cicadae. Amino Acids Biol. Res. 2014, 36, 35–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, J.; Li, X.; Cheng, G.; Liu, T.; He, D. Preliminary investigation of artificial cultivation conditions for Isaria cicadae. Chem. Biol. Eng. 2019, 36, 12–14+28. Available online: https://link.cnki.net/urlid/42.1710.TQ.20190716.1322.006 (accessed on 2 December 2024).
- El-Esawi, M.A. Genetic diversity and evolution of Brassica genetic resources: From morphology to novel genomic technologies—A review. Plant Genet. Resour. 2017, 15, 388–399. [Google Scholar] [CrossRef]
- Shah, R.A.; Bakshi, P.; Jasrotia, A.; Itoo, H.; Padder, B.A.; Gupta, R.; Kour, G.; Dolkar, D. Morphological to molecular markers: Plant genetic diversity studies in walnut (Juglans regia L.)—A review. Erwerbs-Obstbau. 2023, 65, 1499–1511. [Google Scholar] [CrossRef]
- Dar, J.A.; Wani, A.A.; Dhar, M.K. Assessment of the genetic diversity of apple (Malus × domestica Borkh.) cultivars grown in the Kashmir Valley using microsatellite markers. J. King Saud Univ.-Sci. 2019, 31, 194–201. [Google Scholar] [CrossRef]
- Zeng, W.B.; Chang, C.; Li, J.P.; Wang, Y.B.; Dai, Y.D.; Yu, H. Morphological variations of Isaria cicadae. Acta Microbiol. Sin. 2017, 57, 350–362. [Google Scholar] [CrossRef]
- Fan, W.W.; Zhang, S.; Zhang, Y.J. The complete mitochondrial genome of the Chan-hua fungus Isaria cicadae: A tale of intron evolution in Cordycipitaceae. Environ. Microbiol. 2019, 21, 864–879. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Han, R.; Qiao, L.; Gao, X.; Xing, J.; Wang, R.; Zhu, D. Growth characteristics of an alkalophilic bacterium ZB109 and optimization of tetrahydropyrimidine fermentation conditions. Microbiol. Bull. 2024, 51, 3939–3953. [Google Scholar] [CrossRef]
- Ji, W.; Su, W.; Liu, X.; Ren, L.; Hu, S.; Sun, X.; Chen, K. Analysis of biological characteristics and genomic features of wild Ganoderma in Lianyungang. Jiangsu Agric. J. 2024, 40, 223–232. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Chen, M.; Lu, L.; Lin, Y.; Liu, Y.; Xie, J. Study on genetic heterogeneity of different origins of Isaria cicadae. J. Anhui Agric. Univ. 2021, 48, 452–457. [Google Scholar] [CrossRef]
- Bradburd, G.S.; Ralph, P.L.; Coop, G.M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 2013, 67, 3258–3273. [Google Scholar] [CrossRef]
- Liu, Y.; Dietrich, C.H.; Wei, C. The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Mol. Phylogenet. Evol. 2024, 199, 108146. [Google Scholar] [CrossRef]
- Feng, E.Y.; Xiao, X.O.; Lin, W.Q.; Mo, D.M.; Feng, X.G.; Ma, F.J. Analysis of genetic diversity in eggplant germplasm resources using SALF-seq simplified genome sequencing. Mol. Plant Breed. 2022, 20, 7940–7949. [Google Scholar] [CrossRef]
- Cao, L.; Yang, D.; Zhang, Q.; Ni, Y.; Li, W.; Feng, R.; Mu, W.; Zhao, X. Population genetic structure of Hymenopellis radicata germplasm resources based on genome re-sequencing. Front. Microbiol. 2024, 15, 1287641. [Google Scholar] [CrossRef]
- Pfenninger, M.; Foucault, Q. Genomic processes underlying rapid adaptation of a natural Chironomus riparius population to unintendedly applied experimental selection pressures. Mol. Ecol. 2020, 29, 2512. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Li, L.; Lan, H.; Ren, Z.; Liu, D.; Wu, L.; Liu, H.; Jaqueth, J.; Li, B.; et al. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom. 2016, 17, 697. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Soisangwan, N.; Vega-Estevez, S.; Price, R.J.; Uyl, C.; Iracane, E.; Shaw, M.; Soetaert, J.; Selmecki, A.; Buscaino, A. Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process. PLoS Genet. 2022, 18, e1010576. [Google Scholar] [CrossRef] [PubMed]
- Pacicco, L.; Bodesmo, M.; Torricelli, R.; Negri, V. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE 2018, 13, e0197709. [Google Scholar] [CrossRef]
- Abeli, T.; Dalrymple, S.; Godefroid, S.; Mondoni, A.; Müller, J.V.; Rossi, G.; Orsenigo, S. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 2020, 34, 303–313. [Google Scholar] [CrossRef]
- Tu, W.; Li, J.; Dong, J.; Wu, J.; Wang, H.; Zuo, Y.; Cai, X.; Song, B. Molecular Marker-Assisted Selection for Frost Tolerance in a Diallel Population of Potato. Cells 2023, 12, 1226. [Google Scholar] [CrossRef]
- Krishna, K.V.; Balasubramanian, B.; Park, S.; Bhattacharya, S.; Sebastian, J.K.; Liu, W.C.; Pappuswamy, M.; Meyyazhagan, A.; Kamyab, H.; Chelliapan, S.; et al. Conservation of Endangered Cordyceps sinensis through artificial cultivation strategies of C. militaris, an alternate. Mol. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Grimberg, Å.; Saripella, G.V.; Repo-Carrasco Valencia, R.A.-M.; Bengtsson, T.; Alandia, G.; Carlsson, A.S. Transcriptional regulation of quinoa seed quality: Identification of novel candidate genetic markers for increased protein content. Front. Plant Sci. 2022, 13, 816425. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Duan, Y.; Liu, C.; Yan, M. Secondary Metabolites of Fomitopsis betulina: Chemical Structures, Biological Activity, and Application Prospects. J. Fungi 2024, 10, 616. [Google Scholar] [CrossRef]
- Ryan, M.J.; McCluskey, K.; Verkleij, G.; Robert, V.; Smith, D. Fungal biological resources to support international development: Challenges and opportunities. World J. Microbiol. Biotechnol. 2019, 35, 139. [Google Scholar] [CrossRef]
- Yang, N.N.; Jiang, N.; Ma, Q.Y.; Kong, F.D.; Xie, Q.Y.; Zhou, L.M.; Yu, Z.F.; Zhao, Y.X. Chemical study of the strain Cordyceps spp. from cell fusion between Cordyceps militaris and Cordyceps cicadae. J. Asian Nat. Prod. Res. 2019, 21, 449–455. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Zeng, W. Research progress on the classification status and genetic diversity of Isaria cicadae. China Edible Fungi 2019, 38, 1–5+16. [Google Scholar] [CrossRef]
Sample | Reads | Bases | GC (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|
ICD1 | 4,124,352 | 1,154,492,377 | 47.39 | 98.31 | 94.49 |
ICD2 | 4,683,691 | 1,363,661,262 | 49.30 | 98.03 | 93.81 |
ICD3 | 3,623,066 | 1,029,968,277 | 48.02 | 98.25 | 94.37 |
ICL1 | 3,207,779 | 929,125,094 | 47.41 | 98.20 | 94.21 |
ICL2 | 4,211,406 | 1,206,105,388 | 46.02 | 98.14 | 94.05 |
ICL3 | 4,440,567 | 1,272,709,853 | 44.37 | 98.07 | 93.87 |
ICT1 | 3,267,501 | 961,121,803 | 51.98 | 98.18 | 94.21 |
ICT2 | 4,274,304 | 1,139,975,402 | 42.65 | 98.27 | 94.40 |
ICT3 | 5,309,365 | 1,533,716,813 | 50.60 | 98.21 | 94.29 |
ICY1 | 5,344,765 | 1,534,783,201 | 47.49 | 98.25 | 94.34 |
ICY2 | 4,447,074 | 1,268,660,226 | 44.70 | 98.20 | 94.19 |
ICY3 | 4,537,043 | 1,314,675,388 | 48.31 | 98.24 | 94.34 |
Mean | 4,289,243 | 1,225,749,590 | 47.35 | 98.20 | 94.21 |
Sum | 51,470,913 | 14,708,995,084 | - | - | - |
Sample | Number of Uniquely Mapped | Uniquely Mapped (%) | Number of Multiplely Mapped | Multiplely Mapped (%) | Number of Unmapped | Unmapped (%) |
---|---|---|---|---|---|---|
ICD1 | 2,313,372 | 56.09% | 64,311 | 1.56% | 1,746,669 | 42.35% |
ICD2 | 2,179,741 | 46.54% | 87,084 | 1.86% | 2,416,866 | 51.60% |
ICD3 | 2,753,051 | 75.99% | 90,423 | 2.50% | 779,592 | 21.52% |
ICL1 | 2,184,279 | 68.09% | 61,974 | 1.93% | 961,526 | 29.97% |
ICL2 | 2,763,972 | 65.63% | 89,585 | 2.13% | 1,357,849 | 32.24% |
ICL3 | 2,356,934 | 53.08% | 83,199 | 1.87% | 2,000,434 | 45.05% |
ICT1 | 2,332,767 | 71.39% | 51,922 | 1.59% | 882,812 | 27.02% |
ICT2 | 1,481,097 | 34.65% | 85,823 | 2.01% | 2,707,384 | 63.34% |
ICT3 | 3,544,771 | 66.76% | 89,463 | 1.69% | 1,675,131 | 31.55% |
ICY1 | 2,997,795 | 56.09% | 127,447 | 2.38% | 2,219,523 | 41.53% |
ICY2 | 2,250,217 | 50.60% | 91,622 | 2.06% | 2,105,235 | 47.34% |
ICY3 | 2,863,074 | 63.10% | 86,371 | 1.90% | 1,587,598 | 34.99% |
Mean | 2,501,756 | 59.00% | 84,102 | 1.96% | 1,703,385 | 39.04% |
Chromosome | Length (Mb) | Number of SNPs | SNP Density (per Mb) | Number of InDels | InDel Density (per Mb) |
---|---|---|---|---|---|
chrU01 | 7,106,960 | 10,775 | 1516.12 | 2778 | 390.88 |
chrU02 | 7,153,835 | 10,022 | 1400.93 | 2227 | 311.30 |
chrU03 | 7,016,597 | 12,572 | 1791.75 | 2442 | 348.03 |
chrU04 | 7,049,365 | 18,763 | 2661.66 | 2738 | 388.40 |
chrU05 | 5,839,791 | 30,296 | 5187.86 | 2332 | 399.33 |
Whole | 34,166,548 | 82,428 | 2412.54 | 12,517 | 366.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Wang, Y.; Liu, X.; Su, W.; Ren, L.; Wang, H.; Chen, K. Genetic Diversity Analysis of Wild Cordyceps chanhua Resources from Major Production Areas in China. Diversity 2025, 17, 85. https://doi.org/10.3390/d17020085
Ji W, Wang Y, Liu X, Su W, Ren L, Wang H, Chen K. Genetic Diversity Analysis of Wild Cordyceps chanhua Resources from Major Production Areas in China. Diversity. 2025; 17(2):85. https://doi.org/10.3390/d17020085
Chicago/Turabian StyleJi, Wei, Yipu Wang, Xiaomei Liu, Wenying Su, Likai Ren, Hengsheng Wang, and Kelong Chen. 2025. "Genetic Diversity Analysis of Wild Cordyceps chanhua Resources from Major Production Areas in China" Diversity 17, no. 2: 85. https://doi.org/10.3390/d17020085
APA StyleJi, W., Wang, Y., Liu, X., Su, W., Ren, L., Wang, H., & Chen, K. (2025). Genetic Diversity Analysis of Wild Cordyceps chanhua Resources from Major Production Areas in China. Diversity, 17(2), 85. https://doi.org/10.3390/d17020085