Donor Identification, Genetic Diversity, Population Structure and Marker–Trait Association Analyses for Iron Toxicity Tolerance Using Rice Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Phenotyping for Iron Toxicity Tolerance and DNA Extraction
2.2. Data Analysis
2.3. Population Structure Analysis
2.4. Marker–Trait Association Analysis
3. Results
3.1. Rice Germplasm Diversity Based on Morphology Under Iron Toxicity Condition
3.2. Existence of Molecular Diversity in the Population
3.3. Population Genetic Structure Analysis
3.4. Analysis of Molecular Variance (AMOVA)
3.5. Tolerance to Fe-Toxicity and Other Parameters Linked to Molecular Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandit, E.; Pawar, S.; Barik, S.R.; Mohanty, S.P.; Meher, J.; Pradhan, S.K. Marker-Assisted Backcross Breeding for Improvement of Submergence Tolerance and Grain Yield in the Popular Rice Variety ‘Maudamani’. Agronomy 2021, 11, 1263. [Google Scholar] [CrossRef]
- Mohapatra, S.; Panda, A.K.; Bastia, A.K.; Mukherjee, A.K.; Sanghamitra, P.; Meher, J.; Mohanty, S.P.; Pradhan, S.K. Development of submergence-tolerant, bacterial blight-resistant, and high-yielding near isogenic lines of popular variety, ‘Swarna’ through marker-assisted breeding approach. Front. Plant Sci. 2021, 12, 672618. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Naveenkumar, R.; Barik, S.R.; Mohanty, S.P.; Nayak, D.K.; Ghritlahre, S.K.; Sanjiba Rao, D.; Reddy, J.N.; et al. Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biol. 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Wairich, A.; Wang, Y.; Werner, B.T.; Vaziritabar, Y.; Frei, M.; Wu, L.B. The role of ascorbate redox turnover in iron toxicity tolerance. Plant Physiol. Biochem. 2024, 215, 109045. [Google Scholar] [CrossRef] [PubMed]
- IRRI (International Rice Research Institute). SES (Standard Evaluation System for Rice). International Network for Genetic Evaluation of Rice; IRRI: Los Banos, Philippines, 2013. [Google Scholar]
- Barik, S.R.; Pandit, E.; Mohanty, S.P.; Nayak, D.K.; Pradhan, S.K.; Mohapatra, T. Parental polymorphism survey and phenotyping of recombinant inbred lines for reproductive stage drought tolerance parameters in rice. ORYZA-Int. J. Rice 2016, 53, 374–384. [Google Scholar]
- Behera, L.; Sekhar, S.; Mohanty, S.; Parameswaran, C.; Pradhan, S. Genomics and other omics approaches for rice improvement. In Advances in Rice Breeding: Stress Tolerance, Climate Resilience, Quality and High Yield; ICAR-NRRI: Cuttack, India, 2021; pp. 369–426. [Google Scholar]
- Sanghamitra, P.; Barik, S.R.; Bastia, R.; Mohanty, S.P.; Pandit, E.; Behera, A.; Mishra, J.; Kumar, G.; Pradhan, S.K. Detection of Genomic Regions Controlling the antioxidant Enzymes, Phenolic Content, and Antioxidant Activities in Rice Grain through Association Mapping. Plants 2022, 11, 1463. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Khan, A.; Patra, S.; Behera, S.; Nayak, A.K.; Upadhyaya, S.; Moharana, D.; Muhammed Azharudheen, T.P.; Anilkumar, C.; Kar, M.K.; et al. Unraveling the genetic diversity in selected rice cultivars released in the last 60 years using gene-based yield-related markers. Genet. Resour. Crop Evol. 2024, 1–15. [Google Scholar] [CrossRef]
- Barik, S.R.; Pandit, E.; Sanghamitra, P.; Mohanty, S.P.; Behera, A.; Mishra, J.; Nayak, D.K.; Bastia, R.; Moharana, A.; Sahoo, A.; et al. Unraveling the genomic regions controlling the seed vigour index, root growth parameters and germination per cent in rice. PLoS ONE 2022, 17, e0267303. [Google Scholar] [CrossRef]
- Barik, S.R.; Moharana, A.; Pandit, E.; Behera, A.; Mishra, A.; Mohanty, S.P.; Mohapatra, S.; Sanghamitra, P.; Meher, J.; Pani, D.R.; et al. Transfer of Stress Resilient QTLs and Panicle Traits into the Rice Variety, Reeta through Classical and Marker-Assisted Breeding Approaches. Int. J. Mol. Sci. 2023, 24, 10708. [Google Scholar] [CrossRef]
- Bastia, R.; Pandit, E.; Sanghamitra, P.; Barik, S.R.; Nayak, D.K.; Sahoo, A.; Moharana, A.; Meher, J.; Dash, P.K.; Raj, R.; et al. Association Mapping for Quantitative Trait Loci Controlling Superoxide Dismutase, Flavonoids, Anthocyanins, Carotenoids, γ-Oryzanol and Antioxidant Activity in Rice. Agronomy 2022, 12, 3036. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Nayak, D.K.; Pandit, E.; Barik, S.R.; Mohanty, S.P.; Anandan, A.; Reddy, J.N. Characterization of morpho-quality traits and validation of bacterial blight resistance in pyramided rice genotypes under various hotspots of India. Aust. J. Crop Sci. 2015, 9, 127–134. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Dufey, I.; Hakizimana, P.; Draye, X.; Lutts, S.; Bertin, P. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 2009, 167, 143–160. [Google Scholar] [CrossRef]
- Dufey, I.; Mathieu, A.S.; Draye, X.; Lutts, S.; Bertin, P. Construction of an integrated map through comparative studies allows the identification of candidate regions for resistance to ferrous iron toxicity in rice. Euphytica 2015, 203, 59–69. [Google Scholar] [CrossRef]
- Matthus, E.; Wu, L.B.; Ueda, Y.; Höller, S.; Becker, M.; Frei, M. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). Theor. Appl. Genet. 2015, 128, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A. QTL analysis of genetic tolerance to iron toxicity in rice (Oryza sativa L.) by quantification of bronzing score. J. New Seeds 2009, 10, 171–179. [Google Scholar] [CrossRef]
- Wu, L.; Shhadi, M.Y.; Gregorio, G.; Matthus, E.; Becker, M.; Frei, M. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice Sci. 2014, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Pradhan, A.; Behera, L.; Das, S.R.; Pathak, H. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environmental and Experimental Botany 2020, 177, 104066. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Nayak, D.K.; Pandit, E.; Behera, L.; Anandan, A. Incorporation of bacterial blight resistance genes into lowland rice cultivar through marker-assisted backcross breeding. Phytopathology 2016, 106, 710–718. [Google Scholar] [CrossRef]
- Mohapatra, S.; Barik, S.R.; Dash, P.K.; Lenka, D.; Pradhan, K.C.; Raj, K.R.R.; Mohanty, S.P.; Mohanty, M.R.; Sahoo, A.; Jena, B.K.; et al. Molecular Breeding for Incorporation of Submergence Tolerance and Durable Bacterial Blight Resistance into the Popular Rice Variety ‘Ranidhan’. Biomolecules 2023, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, K.C.; Pandit, E.; Mohanty, S.P.; Moharana, A.; Sanghamitra, P.; Meher, J.; Jena, B.K.; Dash, P.K.; Behera, L.; Mohapatra, P.M.; et al. Development of Broad Spectrum and Durable Bacterial Blight Resistant Variety through Pyramiding of Four Resistance Genes in Rice. Agronomy 2022, 12, 1903. [Google Scholar] [CrossRef]
- Gawel, N.J.; Jarret, R.L. A modified CTAB DNA extraction procedure for Musa and Ipomoea plant. Mol. Biol. Rep. 1991, 9, 262–266. [Google Scholar]
- Anandan, A.; Anumalla, M.; Pradhan, S.K.; Ali, J. Population structure, diversity and trait association analysis in rice (Oryza sativa L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS ONE 2016, 11, e0152406. [Google Scholar] [CrossRef] [PubMed]
- Pandit, E.; Panda, R.K.; Sahoo, A.; Pani, D.R.; Pradhan, S.K. Genetic Relationship and Structure Analysis of Root Growth Angle for Improvement of Drought Avoidance in Early and Mid-Early Maturing Rice Genotypes. Rice Sci. 2020, 27, 124–132. [Google Scholar] [CrossRef]
- Mohapatra, S.; Barik, S.R.; Meher, J.; Patra, B.C.; Pradhan, S.K. Screening of rice germplasm and validation of markers for high temperature stress tolerance using morphologic traits and molecular markers. Oryza 2018, 55, 115–125. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Pandit, E.; Tasleem, S.; Barik, S.R.; Mohanty, D.P.; Nayak, D.K. Genome-wide association mapping reveals multiple QTLS governing tolerance response for seedling stage chilling stress in indica rice. Front. Plant Sci. 2017, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Barik, S.R.; Sahoo, A.; Mohapatra, S.; Nayak, D.K.; Mahender, A.; Meher, J.; Anandan, A.; Pandit, E. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE 2016, 11, e0160027. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Sanghamitra, P.; Nanda, N.; Pawar, S.; Pandit, E.; Bastia, R.; Muduli, K.C.; Pradhan, S.K. Association of molecular markers with physio-biochemical traits related to seed vigour in rice. Physiol. Mol. Biol. Plants 2020, 26, 1989–2003. [Google Scholar] [CrossRef]
- Pawar, S.; Pandit, E.; Arjun, P.; Wagh, M.; Bal, D.; Panda, S.; Bastia, D.N.; Pradhan, S.K.; Mohanty, I.C. Genetic variation and association of molecular markers for iron toxicity tolerance in rice. ORYZA-Int. J. Rice 2017, 54, 356–366. [Google Scholar] [CrossRef]
- Pawar, S.; Pandit, E.; Mohanty, I.C.; Saha, D.; Pradhan, S.K. Population genetic structure and association mapping for iron toxicity tolerance in rice. PLoS ONE 2021, 16, e0246232. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Mani, S.C. Genetic diversity in basmati rice. Oryza 2005, 42, 150–152. [Google Scholar]
- Das, K.N.; Bordoloi, P.K.; Bora, N. Tolerance level of iron in irrigation water for rice crop. Int. J. Trop. Agri. 1997, 15, 159–166. [Google Scholar]
- Bose, L.K.; Das, S.; Pradhan, S.K.; Subudhi, H.; Singh, S.; Singh, O. Genetic variability of quality characters and grain yield in lowland rice genotypes of Eastern India. Korean J. Breed. Sci. 2007, 39, 1–6. [Google Scholar]
- Pandit, E.; Panda, R.K.; Pani, D.R.; Chandra, R.; Singh, S.; Pradhan, S.K. Molecular marker and phenotypic analyses for low phosphorus stress tolerance in cultivars and landraces of upland rice under irrigated and drought situations. Indian J. Genet. Plant Breed. 2018, 78, 59–68. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Pandit, E.; Nayak, D.K.; Behera, L.; Mohapatra, T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC Plant Biol. 2019, 19, 352. [Google Scholar] [CrossRef]
- Pandit, E.; Sahoo, A.; Panda, R.K.; Mohanty, D.P.; Pani, D.R.; Anandan, A.; Pradhan, S.K. Survey of rice cultivars and landraces of upland ecology for phosphorous uptake 1 (pup1) QTL using linked and gene specific molecular markers. ORYZA-Int. J. Rice 2016, 53, 1–9. [Google Scholar]
- Barik, S.R.; Pandit, E.; Pradhan, S.K.; Mohanty, S.P.; Mohapatra, T. Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice. PLoS ONE 2019, 14, e0214979. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Bharati, B.; Chatopadhyay, K.; Singh, S.; Dash, P.; Reddy, J.N. Association mapping reveals multiple QTLs for grain protein content in rice useful for biofortification. Mol. Genet. Genom. 2019, 294, 963–983. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.K.; Sahoo, S.; Barik, S.R.; Sanghamitra, P.; Sangeeta, S.; Pandit, E.; Reshmi Raj, K.R.; Basak, N.; Pradhan, S.K. Association mapping for protein, total soluble sugars, starch, amylose and chlorophyll content in rice. BMC Plant Biology 2022, 22, 620. [Google Scholar] [CrossRef] [PubMed]
- Mahender, A.; Anandan, A.; Pradhan, S.K.; Pandit, E. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. Springer Plus 2016, 5, 2086. [Google Scholar] [CrossRef]
- Nawaz, Z.; Kakar, K.U.; Li, X.B.; Li, S.; Zhang, B.; Shou, H.X.; Shu, Q.Y. Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 8008–8016. [Google Scholar] [CrossRef] [PubMed]
Genotypes | DF | Tillers | PH | PL | GN | GW | Yield (t/ha) | LBI | Response | |
---|---|---|---|---|---|---|---|---|---|---|
Fe-Plot | Normal Plot | |||||||||
Sankaribako | 105.73 | 6.65 | 111.83 | 21.11 | 77.81 | 25.16 | 11.40 | 7.33 | 4.67 | MR |
Kalakrushna | 100.75 | 6.37 | 133.98 | 25.06 | 144.57 | 14.06 | 16.58 | 18.855 | 3.83 | MR |
Assamchudi | 100.05 | 5.16 | 117.63 | 22.90 | 102.80 | 21.70 | 11.09 | 8.485 | 4.67 | MR |
Gelei | 97.70 | 7.20 | 106.93 | 22.10 | 120.05 | 16.04 | 15.40 | 14.935 | 3.50 | R |
Kalamara | 99.08 | 4.61 | 131.43 | 21.80 | 79.43 | 14.63 | 9.78 | 10.28 | 2.33 | MR |
Nini | 96.60 | 6.68 | 125.34 | 24.51 | 97.96 | 21.09 | 9.68 | 8.995 | 3.67 | R |
Gurumukhi | 104.75 | 5.57 | 119.04 | 21.27 | 86.53 | 24.55 | 16.74 | 20.53 | 4.00 | MR |
Jubaraj | 105.00 | 6.15 | 116.16 | 24.13 | 84.35 | 18.99 | 12.51 | 11.19 | 5.17 | MS |
Champa | 105.33 | 6.42 | 119.46 | 20.81 | 124.10 | 22.76 | 24.22 | 24.025 | 2.67 | R |
Veleri | 110.25 | 5.72 | 126.42 | 24.75 | 87.85 | 21.90 | 12.05 | 19.73 | 4.00 | MS |
Dhinkisiali | 107.58 | 7.51 | 123.44 | 21.45 | 94.09 | 18.16 | 12.34 | 12.425 | 2.33 | R |
Dhabalabhuta | 106.17 | 6.58 | 129.95 | 21.78 | 86.17 | 20.44 | 23.22 | 23.3 | 3.00 | R |
Bayabhanda | 108.25 | 6.96 | 129.83 | 23.29 | 85.87 | 18.85 | 17.17 | 19.425 | 3.17 | R |
Latamahu | 102.83 | 6.29 | 118.90 | 20.46 | 89.79 | 18.94 | 20.47 | 20.565 | 3.67 | R |
Hatipanjara | 105.50 | 8.80 | 128.44 | 22.77 | 87.92 | 19.04 | 22.38 | 19.54 | 3.00 | R |
Mugei | 103.34 | 5.17 | 119.21 | 21.67 | 76.71 | 19.94 | 12.13 | 15.39 | 3.67 | R |
Sagiri | 102.00 | 4.99 | 138.59 | 22.33 | 125.97 | 24.24 | 15.70 | 21.095 | 5.00 | MR |
Kakiri | 102.67 | 5.79 | 113.64 | 22.31 | 102.22 | 23.30 | 18.27 | 18.63 | 4.83 | MR |
Madia | 101.75 | 5.71 | 129.12 | 24.47 | 106.22 | 19.86 | 19.86 | 15.07 | 5.67 | MS |
Dhusura | 102.50 | 6.54 | 122.82 | 25.70 | 82.58 | 21.18 | 21.18 | 21.17 | 1.83 | R |
Bangali | 100.83 | 5.32 | 125.18 | 22.84 | 99.77 | 24.11 | 24.11 | 20.55 | 3.67 | R |
Banda | 107.22 | 4.77 | 149.83 | 25.79 | 108.51 | 13.85 | 13.85 | 16.45 | 3.00 | R |
Jalpaya | 103.42 | 5.77 | 123.60 | 23.25 | 99.39 | 19.56 | 19.56 | 19.355 | 3.67 | R |
Chudi | 107.08 | 5.85 | 120.95 | 26.29 | 127.39 | 22.97 | 22.97 | 21.81 | 4.33 | MR |
Nilarpati | 104.83 | 5.13 | 121.85 | 22.34 | 103.19 | 24.65 | 14.65 | 21.49 | 3.50 | MS |
Gelei | 106.42 | 5.96 | 117.49 | 20.82 | 134.07 | 25.43 | 25.43 | 26.775 | 4.33 | MR |
Ratanmali | 105.25 | 6.77 | 109.45 | 25.04 | 123.58 | 19.17 | 14.17 | 19.53 | 2.50 | MS |
Umarcudi | 103.42 | 6.14 | 113.86 | 26.21 | 125.99 | 17.14 | 17.14 | 14.59 | 4.50 | MR |
Juiphula | 103.58 | 6.32 | 120.87 | 21.40 | 140.80 | 18.44 | 18.44 | 18.175 | 5.50 | MS |
Karpurakranti | 104.17 | 6.51 | 123.97 | 22.69 | 104.81 | 16.64 | 16.64 | 16.73 | 4.00 | MR |
Ramakrushnabilash | 102.67 | 7.45 | 121.47 | 23.44 | 135.25 | 25.72 | 25.72 | 21.04 | 3.33 | R |
Sunapani | 110.58 | 6.89 | 102.60 | 25.90 | 123.62 | 45.03 | 45.03 | 37.095 | 3.17 | R |
Anu | 100.50 | 6.53 | 125.53 | 22.64 | 148.89 | 18.21 | 18.21 | 16.44 | 3.17 | R |
Mayurkantha | 100.67 | 5.48 | 132.31 | 22.44 | 101.52 | 26.14 | 26.14 | 20.825 | 3.33 | R |
Champeisiali | 107.50 | 6.14 | 118.30 | 23.89 | 95.17 | 15.66 | 18.66 | 19.17 | 4.33 | R |
Nalijagannath | 106.42 | 5.60 | 121.50 | 19.88 | 120.45 | 46.92 | 35.92 | 37.925 | 4.67 | R |
Mahipal | 111.25 | 7.75 | 119.67 | 26.62 | 143.37 | 42.32 | 42.32 | 33.085 | 3.00 | R |
Ranisaheba | 104.17 | 6.79 | 117.14 | 23.07 | 129.63 | 25.14 | 25.14 | 22.84 | 2.50 | R |
Punjabniswarna | 104.92 | 5.24 | 124.55 | 26.30 | 93.20 | 17.38 | 17.38 | 16.87 | 2.67 | R |
Kusuma | 102.17 | 5.19 | 120.35 | 23.22 | 119.48 | 23.38 | 23.38 | 26.04 | 1.67 | R |
Kenrdajhali | 103.17 | 6.18 | 113.39 | 23.84 | 122.56 | 12.89 | 12.89 | 12.985 | 2.67 | R |
Jaiphula | 100.17 | 6.48 | 127.70 | 24.79 | 98.49 | 10.12 | 10.12 | 15.26 | 2.50 | R |
Jabaphula | 104.62 | 5.72 | 115.40 | 24.50 | 116.91 | 10.83 | 10.83 | 9.59 | 3.50 | MR |
Khandasagar | 101.33 | 5.37 | 117.95 | 22.67 | 74.25 | 11.96 | 11.96 | 10.755 | 5.83 | MS |
Pipalbasa | 102.67 | 6.03 | 128.92 | 24.90 | 67.66 | 11.19 | 11.19 | 11.84 | 5.00 | MR |
Budidhan | 105.08 | 6.29 | 122.70 | 27.24 | 120.65 | 13.91 | 13.91 | 16.335 | 3.33 | MS |
Karpuragundi | 107.67 | 5.79 | 116.57 | 22.65 | 126.80 | 17.83 | 15.83 | 18.39 | 5.33 | MS |
Basapatri | 100.67 | 6.48 | 122.08 | 21.61 | 100.36 | 14.31 | 14.31 | 15.555 | 4.67 | MR |
Bagadachinamala | 104.00 | 6.54 | 115.70 | 22.63 | 98.51 | 23.90 | 23.90 | 17.585 | 4.00 | MR |
Kalaheera | 105.33 | 6.56 | 124.13 | 23.71 | 118.39 | 33.23 | 33.23 | 26.77 | 4.33 | MR |
Rasapanjari | 106.42 | 4.81 | 113.87 | 23.38 | 126.93 | 23.27 | 23.27 | 22.63 | 4.17 | MR |
Biridibankoj | 109.67 | 6.37 | 123.72 | 23.27 | 108.16 | 24.95 | 24.95 | 19.53 | 3.00 | R |
Jagabalia | 113.25 | 6.36 | 115.67 | 21.85 | 141.56 | 38.40 | 27.05 | 25.07 | 3.67 | R |
Dhoiamadhoi | 109.75 | 5.97 | 115.66 | 25.75 | 107.71 | 23.56 | 33.95 | 33.815 | 3.50 | R |
Kaniara | 104.50 | 5.56 | 98.61 | 20.68 | 100.63 | 17.89 | 20.45 | 18.05 | 3.17 | R |
Bishnupriya | 106.75 | 6.06 | 111.91 | 21.54 | 121.40 | 17.90 | 21.26 | 19.025 | 5.67 | MS |
Madhabi | 108.17 | 5.12 | 113.98 | 22.07 | 126.24 | 22.79 | 23.53 | 25.265 | 4.00 | MR |
Jungajhata | 104.83 | 6.75 | 120.45 | 25.64 | 106.07 | 23.59 | 21.68 | 23.65 | 4.00 | MR |
Rangasiuli | 107.00 | 6.19 | 125.65 | 25.34 | 123.16 | 18.93 | 21.06 | 21.68 | 3.33 | R |
Mean | 104.57 | 6.12 | 120.96 | 23.34 | 108.94 | 19.83 | 19.29 | 18.61 | 3.75 | - |
CV | 2.5 | 10.2 | 6.6 | 7.8 | 10.8 | 12.02 | 14.7 | 13.34 | 17.1 | - |
CD | 4.272 | 1.8 | 12.959 | 2.957 | 29.584 | 7.061 | 7.709 | 2.248 | - |
Source of Variation | Df. | Mean Sum of Squares | Variance Components | Percentage Variation |
---|---|---|---|---|
Among individuals | 54 | 27.464 | 0.021 | 4% |
Within individuals (accessions) | 59 | 27.500 | 0.466 | 95% |
Total | 63 | 870.48 | 13.827 | 100% |
F Statistics | Value | p value | ||
Fst | 0.007 | 0.074 | ||
Fis | 0.044 | 0.028 | ||
Fit | 0.050 | 0.010 | ||
Fst max | 0.026 | |||
F’st | 0.254 |
Trait | Marker Name | MLM | GLM | ||||||
---|---|---|---|---|---|---|---|---|---|
F Value | p-Value | q Value | R2 | F Value | p-Value | q Value | R2 | ||
DF | RM293 | 9.57037 | 0.00313 | 0.010228 | 0.14502 | 7.62473 | 0.00785 | 0.046149 | 0.13674 |
DF | RM249 | 5.19551 | 0.02662 | 0.029752 | 0.08455 | 4.0294 | 0.04973 | 0.04973 | 0.07226 |
DF | RM5638 | 5.98752 | 0.01769 | 0.026736 | 0.09615 | 4.33541 | 0.04208 | 0.046149 | 0.07775 |
DF | RM3686 | 4.11138 | 0.04754 | 0.04754 | 0.06815 | 4.5943 | 0.0366 | 0.046149 | 0.08239 |
DF | RM144 | 4.27263 | 0.04354 | 0.045959 | 0.07063 | 5.20392 | 0.02651 | 0.046149 | 0.09333 |
Tiller no | RM3686 | 5.22963 | 0.02615 | 0.029752 | 0.08707 | 4.85618 | 0.03183 | 0.046149 | 0.08707 |
Tiller no | RM222 | 5.42038 | 0.02368 | 0.029752 | 0.08996 | 5.01719 | 0.02923 | 0.046149 | 0.08996 |
Panicle Length | RM10 | 6.85167 | 0.01147 | 0.023446 | 0.10605 | 4.53468 | 0.03779 | 0.046149 | 0.07925 |
Panicle Length | RM137 | 5.77697 | 0.0197 | 0.026736 | 0.09103 | 4.26518 | 0.04372 | 0.046149 | 0.07454 |
Panicle Length | RM287 | 12.13193 | 9.91 × 10−4 | 0.010228 | 0.17279 | 7.78103 | 0.00728 | 0.046149 | 0.13599 |
PH | RM528 | 9.76412 | 0.00286 | 0.010228 | 0.13982 | 6.45774 | 0.01395 | 0.046149 | 0.10934 |
PH | RM201 | 10.90051 | 0.00171 | 0.010228 | 0.15336 | 4.98005 | 0.02981 | 0.046149 | 0.08432 |
GN | RM5626 | 6.72307 | 0.01222 | 0.023446 | 0.10479 | 4.70743 | 0.03445 | 0.046149 | 0.08353 |
GW | RM416 | 9.58231 | 0.00311 | 0.010228 | 0.14972 | 8.38009 | 0.00546 | 0.046149 | 0.14599 |
Yield | RM416 | 9.50088 | 0.00323 | 0.010228 | 0.1437 | 4.69019 | 0.03477 | 0.046149 | 0.08412 |
Yield | RM258 | 5.84387 | 0.01904 | 0.026736 | 0.09379 | 6.29605 | 0.01513 | 0.046149 | 0.11293 |
Yield | RM258 | 6.4546 | 0.01397 | 0.02413 | 0.10254 | 6.11019 | 0.01662 | 0.046149 | 0.10959 |
LBI | RM335 | 6.70401 | 0.01234 | 0.023446 | 0.10898 | 4.32992 | 0.04221 | 0.046149 | 0.07402 |
LBI | RM346 | 6.79939 | 0.01177 | 0.023446 | 0.11036 | 5.87825 | 0.01871 | 0.046149 | 0.10048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Mishra, U.N.; Sahoo, C.; Tripathy, S.; Behera, U.K.; Das, S.; Sahu, C.; Datt, S.; Rout, M.K.; Mohanty, T.L.; et al. Donor Identification, Genetic Diversity, Population Structure and Marker–Trait Association Analyses for Iron Toxicity Tolerance Using Rice Landraces. Diversity 2025, 17, 33. https://doi.org/10.3390/d17010033
Saha D, Mishra UN, Sahoo C, Tripathy S, Behera UK, Das S, Sahu C, Datt S, Rout MK, Mohanty TL, et al. Donor Identification, Genetic Diversity, Population Structure and Marker–Trait Association Analyses for Iron Toxicity Tolerance Using Rice Landraces. Diversity. 2025; 17(1):33. https://doi.org/10.3390/d17010033
Chicago/Turabian StyleSaha, Debanjana, Udit Nandan Mishra, Chittaranjan Sahoo, Seema Tripathy, Uttam Kumar Behera, Susmita Das, Chandrasekhar Sahu, Shiv Datt, Manoj Kumar Rout, Tanmaya Lalitendu Mohanty, and et al. 2025. "Donor Identification, Genetic Diversity, Population Structure and Marker–Trait Association Analyses for Iron Toxicity Tolerance Using Rice Landraces" Diversity 17, no. 1: 33. https://doi.org/10.3390/d17010033
APA StyleSaha, D., Mishra, U. N., Sahoo, C., Tripathy, S., Behera, U. K., Das, S., Sahu, C., Datt, S., Rout, M. K., Mohanty, T. L., Mohanty, S. P., Barik, S. R., Mohanty, I. C., & Pradhan, S. K. (2025). Donor Identification, Genetic Diversity, Population Structure and Marker–Trait Association Analyses for Iron Toxicity Tolerance Using Rice Landraces. Diversity, 17(1), 33. https://doi.org/10.3390/d17010033