Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Sample Processing
2.3. Statistical Analysis
3. Results
3.1. Tree Age Distribution
3.2. Ordinations
3.2.1. Fuels
3.2.2. Tree Structure
3.2.3. Understory Plant Communities
3.3. Indicator Species Analysis of Understory Communities
3.4. Canonical Correlation Between Sets of Variables
4. Discussion
4.1. Study Limitations
4.2. Long-Term Changes in Tree Structure
4.3. Variation in Community Characteristics Along the Fire Activity Gradient
4.4. Variation Along the Soil Parent Material Gradient
4.5. Considerations for General Patterns of Vegetation Dynamics
4.6. Applications for Vegetation Management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eviner, V.T.; Hawkes, C.V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 2008, 16, 713–729. [Google Scholar] [CrossRef]
- Boyle, F.B.; Abella, S.R.; Shelburne, V.B. An ecosystem classification approach to assessing forest change in the southern Appalachian Mountains. For. Ecol. Manag. 2014, 323, 85–97. [Google Scholar] [CrossRef]
- Staver, A.C.; Botha, J.; Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 2017, 216, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Abella, S.R.; Denton, C.W. Spatial variation in reference conditions: Historical tree density and pattern on a Pinus ponderosa landscape. Can. J. For. Res. 2009, 39, 2391–2403. [Google Scholar] [CrossRef]
- Laliberté, E.; Grace, J.B.; Huston, M.A.; Lambers, H.; Teste, F.P.; Turner, B.L.; Wardle, D.A. How does pedogenesis drive plant diversity? Trends Ecol. Evol. 2013, 28, 331–340. [Google Scholar] [CrossRef]
- Craigg, T.L.; Adams, P.W.; Bennett, K.A. Soil matters: Improving forest landscape planning and management for diverse objectives with soils information and expertise. J. For. 2015, 113, 343–353. [Google Scholar] [CrossRef]
- Kirkman, L.K.; Goebel, P.C.; Palik, B.J.; West, L.T. Predicting plant species diversity in a longleaf pine landscape. Écoscience 2004, 11, 80–93. [Google Scholar] [CrossRef]
- Verstraeten, G.; Baeten, L.; Van den Broeck, T.; De Frenne, P.; Demey, A.; Tack, W.; Muys, B.; Verheyen, K. Temporal changes in forest plant communities at different site types. Appl. Veg. Sci. 2013, 16, 237–247. [Google Scholar] [CrossRef]
- Taylor, A.R.; Chen, H.Y.H. Multiple successional pathways of boreal forest stands in central Canada. Ecography 2011, 34, 208–219. [Google Scholar] [CrossRef]
- Leonard, J.M.; Medina, A.L.; Neary, D.G.; Tecle, A. The influence of parent material on vegetation response 15 years after the Dude Fire, Arizona. Forests 2015, 6, 613–635. [Google Scholar] [CrossRef]
- Evans, R.A. Management of Pinyon-Juniper Woodlands; General Technical Report INT, 249; U.S. Forest Service, Intermountain Research Station: Ogden, UT, USA, 1988.
- Floyd, M.L.; Romme, W.H. Ecological restoration priorities and opportunities in piñon-juniper woodlands. Ecol. Restor. 2012, 30, 37–49. [Google Scholar] [CrossRef]
- Romme, W.H.; Allen, C.D.; Bailey, J.D.; Baker, W.L.; Bestelmeyer, B.T.; Brown, P.M.; Eisenhart, K.S.; Floyd, M.L.; Huffman, D.W.; Jacobs, B.F.; et al. Historical and modern disturbance regimes, stand structures, and landscape dynamics in piñon-juniper vegetation of the western United States. Rangel. Ecol. Manag. 2009, 62, 203–222. [Google Scholar] [CrossRef]
- Chambers, J.C.; Strand, E.K.; Ellsworth, L.M.; Tortorelli, C.M.; Urza, A.K.; Crist, M.R.; Miller, R.F.; Reeves, M.C.; Short, K.C.; Williams, C.L. Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the western U.S. Fire Ecol. 2024, 20, 32. [Google Scholar] [CrossRef]
- Huffman, D.W.; Stoddard, M.T.; Springer, J.D.; Crouse, J.E.; Chancellor, W.W. Understory plant community responses to hazardous fuels reduction treatments in pinyon-juniper woodlands of Arizona, USA. For. Ecol. Manag. 2013, 289, 473–488. [Google Scholar] [CrossRef]
- Roundy, B.A.; Miller, R.F.; Tausch, R.J.; Young, K.; Hulet, A.; Rau, B.; Jessop, B.; Chambers, J.C.; Eggett, D. Understory cover responses to piñon-juniper treatments across tree dominance gradients in the Great Basin. Rangel. Ecol. Manag. 2014, 67, 482–494. [Google Scholar] [CrossRef]
- Bates, J.D.; Davies, K.W.; Hulet, A.; Miller, R.F.; Roundy, B. Sage grouse groceries: Forb response to piñon-juniper treatments. Rangel. Ecol. Manag. 2017, 70, 106–115. [Google Scholar] [CrossRef]
- Miller, R.F.; Tausch, R.J. The role of fire in juniper and pinyon woodlands: A descriptive analysis; Miscellaneous Publication No. 11; Galley, K.E.M., Wilson, T.P., Eds.; Tall Timbers Research Station: Tallahassee, FL, USA, 2001. [Google Scholar]
- Miller, R.F.; Chambers, J.C.; Evers, L.; Williams, C.J.; Snyder, K.A.; Roundy, B.A.; Pierson, F.B. The Ecology, History, Ecohydrology, and Management of Pinyon and Juniper Woodlands in the Great Basin Desert and Northern Colorado Plateau of the Western United States; General Technical Report RMRS-GTR-403; U.S. Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2019.
- Miller, R.F.; Heyerdahl, E.K. Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: An example from California, USA. Int. J. Wildland Fire 2008, 17, 245–254. [Google Scholar] [CrossRef]
- Miller, R.F.; Chambers, J.C.; Pyke, D.A.; Pierson, F.B.; Williams, C.J. A Review of Fire Effects on Vegetation and Soils in the Great Basin Region: Response and Ecological Site Characteristics; General Technical Report RMRS-GTR-308; U.S. Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013.
- Rau, B.M.; Chambers, J.C.; Pyke, D.A.; Roundy, B.A.; Schupp, E.W.; Doescher, P.; Caldwell, T.G. Soil resources influence vegetation and response to fire and fire-surrogate treatments in sagebrush-steppe ecosystems. Rangel. Ecol. Manag. 2014, 67, 506–521. [Google Scholar] [CrossRef]
- Hartsell, J.A.; Copeland, S.M.; Munson, S.M.; Butterfield, B.J.; Bradford, J.B. Gaps and hotspots in the state of knowledge of pinyon-juniper communities. For. Ecol. Manag. 2020, 455, 117628. [Google Scholar] [CrossRef]
- Ireland, K.B.; Stan, A.B.; Fulé, P.Z. Bottom-up control of a northern Arizona ponderosa pine forest fire regime in a fragmented landscape. Landsc. Ecol. 2012, 27, 983–997. [Google Scholar] [CrossRef]
- Smith, H.Y.; Hood, S.; Brooks, M.; Matchett, J.R.; Deuser, C. Response of Fuelbed Characteristics to Restoration Treatments in Piñon-Juniper-Encroached Shrublands on the Shivwits Plateau, Arizona. In Proceedings of the Fuels Management–How to Measure Success Conference Proceedings, Portland, OR, USA, 28–30 March 2006. [Google Scholar]
- Lindsay, B.A.; Strait, R.K.; Denny, D.W. Soil Survey of Grand Canyon Area, Arizona, Parts of Coconino and Mohave Counties; Natural Resources Conservation Service and National Park Service: Washington, DC, USA, 2003. [Google Scholar]
- Huffman, D.W.; Roccaforte, J.P.; Springer, J.D.; Crouse, J.E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 2020, 16, 18. [Google Scholar] [CrossRef]
- National Park Service. Fire Monitoring Handbook; National Interagency Fire Center: Boise, ID, USA, 2003. [Google Scholar]
- The PLANTS Database. Available online: http://plants.usda.gov (accessed on 30 December 2024).
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42; Natural Resources Conservation Service: Lincoln, NE, USA, 2022.
- McGarigal, K.; Cushman, S.; Stafford, S. Multivariate Statistics for Wildlife and Ecology Research; Springer: New York, NY, USA, 2000. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD: Multivariate Analysis of Ecological Data. User’s Guide; MjM Software Design: Gleneden Beach, OR, USA, 1999. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide; SAS Institute: Cary, NC, USA, 1999. [Google Scholar]
- Bates, J.D.; Davies, K.W. Seasonal burning of juniper woodlands and spatial recovery of herbaceous vegetation. For. Ecol. Manag. 2016, 361, 117–130. [Google Scholar] [CrossRef]
- Abella, S.R.; Crouse, J.E.; Covington, W.W.; Springer, J.D. Diverse responses across soil parent materials during ecological restoration. Restor. Ecol. 2015, 23, 113–121. [Google Scholar] [CrossRef]
- Scasta, J.D.; Fuez, B. Post-wildfire shrub dynamics and ecological site controls in a sagebrush steppe: Successional shift or enhanced visibility? Arid Land Res. Manag. 2018, 32, 229–235. [Google Scholar] [CrossRef]
- Abella, S.R.; Covington, W.W. Forest ecosystems of an Arizona Pinus ponderosa landscape: Multifactor classification and implications for ecological restoration. J. Biogeog. 2006, 33, 1368–1383. [Google Scholar] [CrossRef]
- Duniway, M.C.; Palmquist, E.C. Assessment of Rangeland Ecosystem Conditions in Grand Canyon-Parashant National Monument, Arizona; Open-File Report 2020-1040; U.S. Geological Survey: Reston, VA, USA, 2020.
- Abella, S.R.; Hurja, J.C.; Merkler, D.J.; Denton, C.W.; Brewer, D.G. Overstory-understory relationships along forest type and environmental gradients in the Spring Mountains of southern Nevada, USA. Folia Geobot. 2012, 47, 119–134. [Google Scholar] [CrossRef]
- Minott, J.A.; Kolb, T.E. Regeneration patterns reveal contraction of ponderosa forests and little upward migration of pinyon-juniper woodlands. For. Ecol. Manag. 2020, 458, 117640. [Google Scholar] [CrossRef]
- Puhlick, J.J.; Laughlin, D.C.; Moore, M.M.; Sieg, C.H.; Overby, S.T.; Shaw, J.D. Soil properties and climate drive ponderosa pine seedling presence in the southwestern USA. For. Ecol. Manag. 2021, 486, 118972. [Google Scholar] [CrossRef]
- Gascho Landis, A.; Bailey, J.D. Reconstruction of age structure and spatial arrangement of piñon-juniper woodlands and savannas of Anderson Mesa, northern Arizona. For. Ecol. Manag. 2005, 204, 221–236. [Google Scholar] [CrossRef]
- Huffman, D.W.; Crouse, J.E.; Chancellor, W.W.; Fulé, P.Z. Influence of time since fire on pinyon-juniper woodland structure. For. Ecol. Manag. 2012, 274, 29–37. [Google Scholar] [CrossRef]
- Beatley, J.C. Ecological status of introduced brome grasses (Bromus spp.) in desert vegetation of southern Nevada. Ecology 1966, 47, 548–554. [Google Scholar] [CrossRef]
- Jacobs, B.F.; Romme, W.H.; Allen, C.D. Mapping “old” vs. “young” piñon-juniper stands with a predictive topo-climatic model. Ecol. Appl. 2008, 18, 1627–1641. [Google Scholar] [CrossRef]
- Tausch, R.J.; West, N.E. Differential establishment of pinyon and juniper following fire. Amer. Midl. Nat. 1988, 119, 174–184. [Google Scholar] [CrossRef]
- Wangler, M.J.; Minnich, R.A. Fire and succession in pinyon-juniper woodlands of the San Bernardino Mountains, California. Madroño 1996, 43, 493–514. [Google Scholar]
- Williams, R.E.; Roundy, B.A.; Hulet, A.; Miller, R.F.; Tausch, R.J.; Chambers, J.C.; Matthews, J.; Schooley, R.; Eggett, D. Pretreatment tree dominance and conifer removal treatments affect plant succession in sagebrush communities. Rangel. Ecol. Manag. 2017, 70, 759–773. [Google Scholar] [CrossRef]
- Huffman, D.W.; Crouse, J.E.; Sánchez Meador, A.J.; Springer, J.D.; Stoddard, M.T. Restoration benefits of re-entry with resource objective wildfire on a ponderosa pine landscape in northern Arizona, USA. For. Ecol. Manag. 2018, 408, 16–24. [Google Scholar] [CrossRef]
- Westlind, D.J.; Kerns, B.K. Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances. For. Ecol. Manag. 2021, 480, 118645. [Google Scholar] [CrossRef]
- Clark, P.E.; Williams, C.J.; Pierson, F.B. Factors affecting efficacy of prescribed fire for western juniper control. Rangel. Ecol. Manag. 2018, 71, 345–355. [Google Scholar] [CrossRef]
- Barney, M.A.; Frischknecht, N.C. Vegetation changes following fire in the pinyon-juniper type of west-central Utah. J. Range Manag. 1974, 27, 91–96. [Google Scholar] [CrossRef]
- Koniak, S. Succession in pinyon-juniper woodlands following wildfire in the Great Basin. Great Basin Nat. 1985, 45, 556–566. [Google Scholar]
- Humphrey, L.D. Patterns and mechanisms of plant succession after fire on Artemisia-grass sites in southeastern Idaho. Vegetatio 1984, 57, 91–101. [Google Scholar] [CrossRef]
- Ralphs, M.H.; McDaniel, K.C. Broom snakeweed (Gutierrezia sarothrae): Toxicology, ecology, control, and management. Invasive Plant Sci. Manag. 2011, 4, 125–132. [Google Scholar] [CrossRef]
- McCulloch, C.Y. Effects of wildfire on deer habitat in pinyon-juniper woodland. J. Wildl. Manag. 1969, 33, 778–784. [Google Scholar] [CrossRef]
- Mueggler, W.F.; Blaisdell, J.P. Effects on associated species of burning, rotobeating, spraying, and railing sagebrush. J. Range Manag. 1958, 11, 61–66. [Google Scholar] [CrossRef]
- Harniss, R.O.; Murray, R.B. 30 years of vegetal change following burning of sagebrush-grass range. J. Range Manag. 1973, 26, 322–325. [Google Scholar] [CrossRef]
- West, N.E.; Hassan, M.A. Recovery of sagebrush-grass vegetation following wildfire. J. Range Manag. 1985, 38, 131–134. [Google Scholar] [CrossRef]
- Power, S.C.; Davies, G.M.; Wainwright, C.E.; Marsh, M.; Bakker, J.D. Restoration temporarily supports the resilience of sagebrush-steppe ecosystems subjected to repeated fires. J. Appl. Ecol. 2023, 60, 1607–1621. [Google Scholar] [CrossRef]
- Everett, R.L.; Ward, K. Early plant succession on pinyon-juniper controlled burns. Northwest Sci. 1984, 58, 57–68. [Google Scholar]
- Donato, D.C.; Fontaine, J.B.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. J. Ecol. 2009, 97, 142–154. [Google Scholar] [CrossRef]
- Abella, S.R.; Springer, J.D. Effects of tree cutting and fire on understory vegetation in mixed conifer forests. For. Ecol. Manag. 2015, 335, 281–299. [Google Scholar] [CrossRef]
- Abella, S.R.; Schelz, C.D. Resilient plant communities and increasing native forbs after wildfire in a southwestern Oregon oak shrubland. Northwest Sci. 2024, 97, 151–166. [Google Scholar] [CrossRef]
- Ott, J.E.; McArthur, E.D.; Sanderson, S.C. Plant Community Dynamics of Burned and Unburned Sagebrush and Pinyon-Juniper Vegetation in West-Central Utah. In Proceedings of the Shrubland Ecosystem Genetics and Biodiversity Proceedings, Provo, UT, USA, 13–15 June 2000. [Google Scholar]
- Condon, L.; Weisberg, P.J.; Chambers, J.C. Abiotic and biotic influences on Bromus tectorum invasion and Artemisia tridentata recovery after fire. Int. J. Wildland Fire 2011, 20, 597–604. [Google Scholar] [CrossRef]
- Barak, R.S.; Fant, J.B.; Kramer, A.T.; Skogen, K.A. Assessing the value of potential “native winners” for restoration of cheatgrass-invaded habitat. West. N. Am. Nat. 2015, 75, 58–69. [Google Scholar] [CrossRef]
- Reed, C.C.; Hood, S.M.; Cluck, D.R.; Smith, S.L. Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions. Fire Ecol. 2023, 19, 16. [Google Scholar] [CrossRef]
- Ganey, J.L.; Vojta, S.C. Comparative trends in log populations in northern Arizona mixed-conifer and ponderosa pine forests following severe drought. West. North Amer. Natl. 2017, 77, 281–292. [Google Scholar] [CrossRef]
- Welch, T.G.; Klemmedson, J.O. Influence of the biotic factor and parent material on distribution of nitrogen and carbon in ponderosa pine ecosystems. In Forest Soils and Forest Land Management; Bernier, B., Winget, C.H., Eds.; Les Presses de l’Université Laval: Laval, QC, Canada, 1975; pp. 159–178. [Google Scholar]
- Renne, R.R.; Bradford, J.B.; Burke, I.C.; Lauenroth, W.K. Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe. Ecology 2019, 100, e02824. [Google Scholar] [CrossRef] [PubMed]
- Heidmann, L.J.; King, R.M. Effect of Prolonged Drought on Water Relations of Ponderosa Pine Seedlings Growing in Basalt and Sedimentary Soils; Research Paper RM-301; U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1992.
- Moorhead, K.K. A pedogenic view of ecosystem restoration. Ecol. Restor. 2015, 33, 341–351. [Google Scholar] [CrossRef]
- Hotta, W.; Morimoto, J.; Yanai, S.; Uchida, Y.; Nakamura, F. Environmental heterogeneity on landslide slopes affects the long-term recoveries of forest ecosystem components. Catena 2024, 234, 107578. [Google Scholar] [CrossRef]
- Lecomte, N.; Bergeron, Y. Successional pathways on different surficial deposits in the coniferous boreal forest of the Quebec Clay Belt. Can. J. For. Res. 2005, 35, 1984–1995. [Google Scholar] [CrossRef]
- Day, N.J.; White, A.L.; Johnstone, J.F.; Degré-Timmons, G.É.; Cumming, S.G.; Mack, M.C.; Turetsky, M.R.; Walker, X.J.; Baltzer, J.L. Fire characteristics and environmental conditions shape plant communities via regeneration strategy. Ecography 2020, 43, 1464–1474. [Google Scholar] [CrossRef]
- Wonkka, C.L.; Twidwell, D.; West, J.B.; Rogers, W.E. Shrubland resilience varies across soil types: Implications for operationalizing resilience in ecological restoration. Ecol. Appl. 2016, 26, 128–145. [Google Scholar] [CrossRef] [PubMed]
Species | Group | Indicator Value (p) |
---|---|---|
––––––––––––––––––––––––––––––––– Shrub density –––––––––––––––––––––––––––––––– | ||
Fire activity | ||
Gutierrezia sarothrae | High | 54 (0.041) |
Purshia mexicana | High | 78 (<0.001) |
None | Low | |
None | Unburned | |
Soil parent material | ||
Artemisia tridentata | Limestone | 64 (0.039) |
Purshia mexicana | Limestone | 89 (<0.001) |
None | Basalt | |
–––––––––––––––––––––––––––––––––––– Cover –––––––––––––––––––––––––––––––––––– | ||
Fire activity | ||
Artemisia tridentata (S) 1 | High | 61 (0.016) |
Bromus tectorum * (AG) | High | 85 (0.001) |
Juniperus osteosperma (T) | Low | 69 (0.008) |
Bouteloua gracilis (PG) | Unburned | 57 (0.017) |
Erigeron divergens (BF) | Unburned | 55 (0.025) |
Hymenoxys cooperi (PF) | Unburned | 73 (0.002) |
Menodora scabra (PF) | Unburned | 68 (0.002) |
Phlox spp. | Unburned | 63 (0.007) |
Soil parent material | ||
Artemisia tridentata (S) | Limestone | 57 (0.008) |
Bromus tectorum * (AG) | Limestone | 80 (0.002) |
Allium acuminatum (PF) | Basalt | 55 (0.003) |
Bouteloua gracilis (PG) | Basalt | 66 (0.003) |
Hymenoxys cooperi (PF) | Basalt | 100 (<0.001) |
Hymenopappus filifolius (PF) | Basalt | 52 (0.029) |
Koeleria macrantha (PG) | Basalt | 62 (0.010) |
Lupinus brevicaulis (AF) | Basalt | 70 (0.003) |
Menodora scabra (PF) | Basalt | 64 (<0.001) |
Penstemon linarioides (PF) | Basalt | 65 (0.010) |
Phlox spp. (PF) | Basalt | 65 (0.014) |
Variate | Habitat 1 | Response 1 | Canonical Correlation |
---|---|---|---|
–––––– Fire-soil –––––– | ––––––– Fuel ––––––– | ||
1 | EC 0.90 | Fine litter 0.75 | 0.82 ± 0.07 2 |
No. fires 0.63 | Woody litter 0.73 | ||
26% 3 | 23% | 15% | |
2 | Gravel 0.85 | Oea 0.79 | 0.79 ± 0.08 |
Sand 0.74 | Fuel weight 0.59 | ||
22% | 29% | 18% | |
–––––– Fire-soil –––––– | ––––––– Trees ––––––– | ||
1 | pH 0.83 | Juniperus % dead 0.87 | 0.93 ± 0.03 |
No. fires 0.74 | Pinus seedlings/ha −0.57 | ||
33% | 28% | 24% | |
2 | Sand 0.60 | Pinus seedlings/ha 0.71 | 0.71 ± 0.10 |
No. fires 0.56 | Juniperus % dead 0.42 | ||
19% | 17% | 9% | |
–––– Fire-soil-trees –––– | –––––– Understory –––––– | ||
1 | No. fires 0.86 | SR native forb −0.83 | 0.92 ± 0.03 |
EC 0.62 | Shrubs/ha 0.63 | ||
38% | 38% | 33% | |
2 | Gravel −0.64 | Bromus tectorum cover 0.81 | 0.71 ± 0.10 |
Juniperus trees/ha −0.49 | SR shrub −0.66 | ||
20% | 35% | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abella, S.R.; Chiquoine, L.P.; Bailey, E.C.; Porter, S.L.; Morrison, C.D.; Farris, C.A.; Fox, J.E. Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients. Diversity 2025, 17, 88. https://doi.org/10.3390/d17020088
Abella SR, Chiquoine LP, Bailey EC, Porter SL, Morrison CD, Farris CA, Fox JE. Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients. Diversity. 2025; 17(2):88. https://doi.org/10.3390/d17020088
Chicago/Turabian StyleAbella, Scott R., Lindsay P. Chiquoine, Elizabeth C. Bailey, Shelley L. Porter, Cassandra D. Morrison, Calvin A. Farris, and Jennifer E. Fox. 2025. "Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients" Diversity 17, no. 2: 88. https://doi.org/10.3390/d17020088
APA StyleAbella, S. R., Chiquoine, L. P., Bailey, E. C., Porter, S. L., Morrison, C. D., Farris, C. A., & Fox, J. E. (2025). Diversity in Burned Pinyon–Juniper Woodlands Across Fire and Soil Parent Material Gradients. Diversity, 17(2), 88. https://doi.org/10.3390/d17020088