Modeling the Potential Distribution of Aulonemia queko: Historical, Current, and Future Scenarios in Ecuador and Other Andean Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.4. Generation of Models
2.5. Accuracy and Predictive Ability of the Models
2.6. Assessment and Selection of the Best Model
2.7. Model Classification and Area Calculation
3. Results
3.1. Selection of the Best Model
3.2. Potential Distribution of A. queko at the Regional Level
3.3. Potential Distribution of A. queko at the Ecuadorian Level
3.4. Potential Distribution with Land-Use Changes in Ecuador
3.5. Environmental Variables and Their Influence on Potential Distribution Models
4. Discussion
4.1. Potential Distribution of A. queko at a Regional Scale
4.2. Distribution of A. queko in Natural Habitats Within Ecuador
4.3. Distribution of A. queko in the Historical Scenario, Intersected with a Land-Use Change Layer for Ecuador (2020)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
TSS | True skill statistic |
GLMs | Generalized linear models |
RF | Random forest |
GBIF | Global Biodiversity Information Facility |
SSPs | Shared socioeconomic pathways |
MAATE | Ministry of Environment and Water and the Ecological Transition of Ecuador |
Appendix A. Climatic Variables and Elevation Used to Generate Potential Distribution Models. The Meaning of the Variables and Their Units Can Be Found in Table 1 of the Main Text
Specie | Longitud | Latitude | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | B15 | B16 | B17 | B18 | B19 | Elevation (m) |
Aulonemia queko | −77.0 | 1.2 | 13.7 | 9.3 | 87.8 | 46.1 | 18.7 | 8.1 | 10.6 | 13.4 | 13.9 | 14.1 | 13.0 | 2088 | 235.6 | 129.5 | 19.9 | 661.6 | 418.0 | 572.0 | 533.4 | 2483 |
Aulonemia queko | −78.2 | −1.0 | 11.6 | 10.0 | 83.1 | 53.3 | 17.9 | 5.9 | 12.0 | 11.3 | 11.9 | 12.1 | 10.9 | 1114 | 130.7 | 53.5 | 22.8 | 352.7 | 191.0 | 254.5 | 341.5 | 2925 |
Aulonemia queko | −75.0 | −11.5 | 9.6 | 13.2 | 79.4 | 49.0 | 17.2 | 0.6 | 16.6 | 9.6 | 9.0 | 10.2 | 9.0 | 1020 | 160.5 | 16.0 | 60.9 | 451.0 | 66.0 | 309.3 | 66.0 | 4004 |
Aulonemia queko | −73.6 | −11.6 | 18.8 | 12.4 | 82.0 | 61.6 | 26.0 | 10.9 | 15.1 | 18.7 | 18.1 | 19.6 | 18.1 | 1705 | 236.7 | 45.0 | 48.8 | 693.0 | 179.7 | 407.4 | 184.5 | 2039 |
Aulonemia queko | −79.4 | −2.8 | 9.3 | 9.8 | 82.0 | 52.2 | 15.3 | 3.4 | 11.9 | 9.7 | 8.6 | 9.7 | 8.5 | 974 | 137.7 | 32.8 | 43.3 | 389.5 | 118.3 | 342.3 | 123.3 | 3310 |
Aulonemia queko | −79.5 | −2.8 | 12.9 | 10.0 | 84.0 | 34.7 | 19.0 | 7.0 | 12.0 | 13.2 | 12.4 | 13.2 | 12.4 | 767 | 151.2 | 4.0 | 83.2 | 418.0 | 25.0 | 317.0 | 28.7 | 2649 |
Aulonemia queko | −79.4 | −2.8 | 10.1 | 10.1 | 82.5 | 49.7 | 16.3 | 4.1 | 12.2 | 10.5 | 9.4 | 10.5 | 9.4 | 917 | 138.6 | 26.4 | 50.1 | 388.9 | 97.2 | 331.2 | 97.9 | 3155 |
Aulonemia queko | −78.1 | −0.2 | 9.3 | 10.6 | 88.2 | 46.0 | 15.2 | 3.2 | 12.0 | 9.3 | 9.4 | 9.6 | 8.6 | 1212 | 118.7 | 78.5 | 13.5 | 353.0 | 263.0 | 273.5 | 320.2 | 3282 |
Aulonemia queko | −79.2 | −3.9 | 16.9 | 10.3 | 81.5 | 40.4 | 23.7 | 11.0 | 12.7 | 17.1 | 17.1 | 17.3 | 16.3 | 834 | 113.0 | 46.0 | 28.8 | 282.0 | 146.4 | 158.8 | 203.2 | 2046 |
Aulonemia queko | −79.1 | −1.8 | 14.1 | 10.1 | 82.7 | 32.9 | 20.4 | 8.2 | 12.2 | 14.4 | 13.7 | 14.4 | 13.7 | 856 | 177.3 | 5.5 | 88.0 | 495.3 | 37.0 | 399.0 | 37.0 | 2328 |
Aulonemia queko | −72.5 | −12.5 | 18.3 | 13.1 | 81.6 | 64.7 | 26.2 | 10.1 | 16.1 | 18.3 | 17.5 | 19.1 | 17.5 | 1543 | 239.3 | 35.5 | 57.2 | 676.3 | 141.8 | 385.3 | 143.0 | 2248 |
Aulonemia queko | −79.2 | −1.6 | 19.4 | 9.0 | 88.1 | 34.4 | 24.4 | 14.2 | 10.2 | 19.8 | 19.1 | 19.9 | 19.1 | 1674 | 342.5 | 8.7 | 92.5 | 944.8 | 51.5 | 771.3 | 65.5 | 1144 |
Aulonemia queko | −76.9 | 1.1 | 12.9 | 8.7 | 86.2 | 51.5 | 17.7 | 7.6 | 10.1 | 12.6 | 13.2 | 13.3 | 12.2 | 2474 | 338.0 | 135.0 | 32.1 | 900.7 | 424.0 | 664.0 | 782.5 | 2615 |
Aulonemia queko | −75.6 | −10.4 | 14.3 | 12.3 | 79.9 | 62.4 | 21.1 | 5.8 | 15.4 | 14.4 | 13.4 | 14.9 | 13.4 | 858 | 127.8 | 18.8 | 58.5 | 376.1 | 68.7 | 269.5 | 68.7 | 2860 |
Aulonemia queko | −67.8 | −16.3 | 13.7 | 12.6 | 75.9 | 107.1 | 21.2 | 4.6 | 16.6 | 14.6 | 12.3 | 14.7 | 12.3 | 889 | 183.3 | 16.0 | 71.6 | 454.5 | 63.0 | 373.5 | 63.0 | 2937 |
Aulonemia queko | −67.9 | −16.3 | 14.6 | 12.5 | 76.3 | 99.4 | 21.9 | 5.5 | 16.4 | 15.4 | 13.2 | 15.5 | 13.2 | 934 | 192.0 | 15.0 | 72.5 | 479.8 | 61.3 | 393.3 | 61.3 | 2736 |
Aulonemia queko | −76.1 | −9.8 | 17.5 | 13.2 | 81.8 | 50.1 | 25.1 | 8.9 | 16.2 | 17.3 | 17.0 | 18.2 | 17.0 | 643 | 102.8 | 11.3 | 64.7 | 287.3 | 40.0 | 161.3 | 40.0 | 2449 |
Aulonemia queko | −76.7 | 1.9 | 11.1 | 10.1 | 88.3 | 43.4 | 17.0 | 5.5 | 11.5 | 11.2 | 10.5 | 11.5 | 10.5 | 1837 | 219.3 | 99.9 | 29.7 | 626.8 | 321.8 | 522.9 | 324.7 | 2904 |
Aulonemia queko | −75.8 | −9.5 | 19.8 | 12.4 | 83.8 | 47.7 | 26.8 | 12.0 | 14.8 | 19.5 | 19.4 | 20.4 | 19.4 | 828 | 116.2 | 27.3 | 50.0 | 330.5 | 83.5 | 203.2 | 83.5 | 2144 |
Aulonemia queko | −78.8 | −2.9 | 15.6 | 11.6 | 85.3 | 47.6 | 22.7 | 9.2 | 13.6 | 15.9 | 15.9 | 16.0 | 14.9 | 873 | 101.8 | 57.1 | 19.4 | 276.6 | 178.5 | 244.0 | 215.7 | 2280 |
References
- Perosa, M.; Rojas, F.; Villagra, P.; Tognelli, M.F.; Carrara, R.; Alvarez, J.A. Distribución potencial de los bosques de Prosopis fexuosa en la Provincia Biogeográfica del Monte (Argentina). Ecol. Austral 2014, 24, 238–248. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Palma-Ordaz, S.; Delgadillo-Rodríguez, J. Distribución potencial de ocho especies exóticas de carácter invasor en el estado de Baja California, México. Bot. Sci. 2014, 92, 587–597. [Google Scholar] [CrossRef]
- Sánchez, C.; Townsend, A.; Escalante, P. El modelado de la distribución de especies y la conservación de la diversidad biológica. In Enfoques Contemporáneos en el Estudio de la Diversidad Biológica; Instituto de Biología, UNAM y Academia Mexicana de Ciencias: Mexico city, Mexico, 2001; pp. 359–379. Available online: https://www.researchgate.net/publication/230709853 (accessed on 1 October 2024).
- Maguire, K.C.; Nieto-Lugilde, D.; Fitzpatrick, M.C.; Williams, J.W.; Blois, J.L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 343–368. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Viana, P.L. O gênero Aulonemia Goudot (Poaceae: Bambusoideae: Bambuseae) no Brasil. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2010. Available online: http://hdl.handle.net/1843/BUOS-8XUNDD (accessed on 14 November 2024).
- Londoño, X. El bambú en Colombia. Biotecnología Vegetal. 2011, 11 (3). Available online: https://revista.ibp.co.cu/index.php/BV/article/view/485/881 (accessed on 15 November 2024).
- Camarillo Cuenca, A.Y.; León-Merino, A.; Sangerman-Jarquín, D.M.; Hernández-Juárez, M.; Zamora-Martínez, M.C. Aspectos socioeconómicos del aprovechamiento del bambú en una comunidad rural de Veracruz, México. Rev. Mex. Cienc. For. 2020, 11, 33–54. [Google Scholar] [CrossRef]
- Linares, E.L. Inventario preliminar de las plantas utilizadas para elaborar artesanías en Colombia. Univ. Sci. 1994, 2, 7–43. Available online: https://bit.ly/3Bu0TN1 (accessed on 14 November 2024).
- Londoño, X. Distribución, morfología, taxonomía, anatomía, silvicultura y usos de los bambúes del Nuevo Mundo. In Cátedra Maestria en Construccion. Módulo Guadua, Arquitectura; Universidad Nacional de Colombia: Bogotá, Colombia, 2002; Available online: http://www.maderinsa.com/guadua/taller.html (accessed on 18 November 2024).
- Aguirre, Z.; Aguirre, L. Estado actual e importancia de los Productos Forestales No Maderables. Bosques Latid. Cero 2021, 11, 71–82. [Google Scholar]
- Bystriakova, N.; Kapos, V.; Lysenko, I. Bamboo Biodiversity: Africa, Madagascar and the Americas; UNEP/Earthprint: Nairobi, Kenya, 2004; Available online: https://bit.ly/3ZxfGi9 (accessed on 16 November 2024).
- Vidaurre, P.J.; Paniagua, N.; Moraes, M. Etnobotánica en los Andes de Bolivia. Botánica Económica Los Andes Cent. 2006, 1, 224–238. [Google Scholar]
- Giraldo Cañas, D.A. Las Gramíneas en Colombia: Riqueza, Distribución, Endemismo, Invasión, Migración, Usos y Taxonomías Populares; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2013; Available online: https://bit.ly/4exkJ7r (accessed on 18 November 2024).
- Añazco, M. Estudio de Vulnerabilidad del Bambú (Guadua angustifolia) al Cambio Climático; Red Internacional del Bambú y Ratán INBAR: Quito, Ecuador, 2013; Available online: https://bit.ly/3ZuvP7K (accessed on 18 November 2024).
- Goudot, J. Aulonemia, nouveau genre de la tribu des Bambusées. In Annales des Sciences Naturelles; Fortin, Masson: Paris, France, 1846; Volume 3, pp. 75–77. Available online: https://www.biodiversitylibrary.org/page/41542486 (accessed on 20 November 2024).
- Valdez Cancinos, D. Manual Para el Cultivo de Bambú Experiencias en Guatemala; Ministerio de Agricultura, Ganadería y Alimentación: Guatemala City, Guatemala, 2013; Available online: https://bit.ly/41yTnLv (accessed on 22 November 2024).
- Hachmeyer, S. Modelando el nicho ecológico de bambúes leñosos (Bambuseae, Poaceae) en Bolivia: Implicaciones para la construcción de aerófonos autóctonos y la conservación de bambúes musicales. In la rebelión de los objetos Cestería y Maderas: Anales de la reunión anual de etnología; MUSEF: La Paz, Bolivia, 2018; Volume XXXI, pp. 183–210. Available online: https://bit.ly/412SgC0 (accessed on 25 September 2024).
- Jadán, O.; Donoso, D.A.; Cedillo, H.; Bermúdez, F.; Cabrera, O. Floristic groups, and changes in diversity and structure of trees, in tropical montane forests in the Southern Andes of Ecuador. Diversity 2021, 13, 400. [Google Scholar] [CrossRef]
- Londono, C.; Cleef, A.; Madriñán, S. Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes. Flora-Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 81–87. [Google Scholar] [CrossRef]
- Lizarazu, M.A. Bambúes Leñosos (Poaceae: Bambusoideae: Bambuseae) del Noreste Argentino y Regiones Limítrofes: Estudios Taxonómicos, Morfológicos, Anatómicos y Biogeográficos. Ph.D. Thesis, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina, 2013. Available online: https://bit.ly/3Bj4YDV (accessed on 25 November 2024).
- Lobovikov, M.; Ball, L.; Guardia, M. World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; Food & Agriculture Organization Of The United Nations: Rome, Italy, 2007; Available online: https://bit.ly/4iyMaBb (accessed on 2 December 2024).
- Navarro, M.; Franco, P.; Oyague, E.; Garitano, A.; Abarca, J. Importancia del Modelamiento del Nicho Ecológico del Suri Rhea Tarapacensis (Chubb 1913) Para su Conservación en los Andes Sudamericanos. In Tópicos en Biodiversidad Transfronteriza Chile, Perú y Bolivia; RIL Editores: Valencia, Spain, 2021; pp. 183–202. Available online: https://bit.ly/4izYf98 (accessed on 4 December 2024).
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Luo, W.; Han, S.; Yu, T.; Wang, P.; Ma, Y.; Wan, M.; Liu, J.; Li, Z.; Tao, J. Assessing the suitability and dynamics of three medicinal Sambucus species in China under current and future climate scenarios. Front. Plant Sci. 2023, 14, 1194444. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J. Generalized Linear Models, 2nd ed.; Hall, C.A., Ed.; Routledge: London, UK, 2019. [Google Scholar]
- De Araújo, C.B.; Marcondes-Machado, L.O.; Costa, G.C. The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. J. Biogeogr. 2014, 41, 513–523. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.A.; Ameztegui, A.; Rodríguez, F. Modelling Forest Ecosystems: A crossroad between scales, techniques and applications. Ecol. Model. 2020, 425, 109030. [Google Scholar] [CrossRef]
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwick, K.D. A tale of two “forests”: Random Forest machine learning aids tropical forest carbon mapping. PLoS ONE 2014, 9, e85993. [Google Scholar] [CrossRef]
- Chamberlain, S.; Oldoni, D.; Waller, J. rgbif: Interface to the Global Biodiversity Information Facility API, version 3.8.1; 2022. Available online: https://cran.r-project.org/package=rgbif (accessed on 12 September 2024).
- Zizka, A.; Silvestro, D.; Andermann, T.; Azevedo, J.; Duarte Ritter, C.; Edler, D.; Farooq, H.; Herdean, A.; Ariza, M.; Scharn, R. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 2019, 10, 744–751. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package ‘raster’. R Package 2015, 734, 473. [Google Scholar]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Transición Ecológica de Ecuador. Capa de Cobertura Vegetal y uso del Suelo de 2020 [Shapefile]; Ministerio de Ambiente y Transición Ecológica de Ecuador: Ibarra, Ecuador, 2024. Available online: https://www.ambiente.gob.ec (accessed on 26 September 2024).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Team, R.C. Package ‘caret’. R J. 2020, 223, 48. [Google Scholar]
- Cotrina Sanchez, A.; Rojas Briceno, N.B.; Bandopadhyay, S.; Ghosh, S.; Torres Guzman, C.; Oliva, M.; Guzman, B.K.; Salas Lopez, R. Biogeographic distribution of Cedrela spp. genus in Peru using MaxEnt modeling: A conservation and restoration approach. Diversity 2021, 13, 261. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Tshwene-Mauchaza, B.; Aguirre-Gutiérrez, J. Climatic drivers of plant species distributions across spatial grains in Southern Africa tropical forests. Front. For. Glob. Change 2019, 2, 69. [Google Scholar] [CrossRef]
- Burns, P.A.; Clemann, N.; White, M. Testing the utility of species distribution modelling using Random Forests for a species in decline. Austral Ecol. 2020, 45, 706–716. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 2021, 44, 1731–1742. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Package ‘dismo’. Circles 2017, 9, 1–68. [Google Scholar]
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. Package ‘Randomforest’, version 4.7-1.2; University of California: Berkeley, CA, USA, 2018; Available online: https://bit.ly/4gC8fwQ (accessed on 23 September 2024).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M.; Siegert, S.; Doering, M.; Billings, Z. Package ‘pROC’. 2021. Available online: https://cran.r-project.org/web/packages/pROC/pROC.pdf (accessed on 26 September 2024).
- Li, J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.A.; Moisen, G. PresenceAbsence: An R package for presence absence analysis. J. Stat. Softw. 2008, 23, 31p. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 2011, 34, 232–243. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Willis, K.J.; Whittaker, R.J. Species diversity—Scale matters. Science 2002, 295, 1245–1248. [Google Scholar] [CrossRef]
- Abrego, N.; Norberg, A.; Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. 2017, 105, 1070–1081. [Google Scholar] [CrossRef]
- Garcia-Carretero, R.; Holgado-Cuadrado, R.; Barquero-Pérez, Ó. Assessment of classification models and relevant features on nonalcoholic steatohepatitis using random forest. Entropy 2021, 23, 763. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Z.; Li, Z.; Liu, Y.; Fang, S. Predictive modeling of suitable habitats for Cinnamomum camphora (L.) presl using maxent model under climate change in China. Int. J. Environ. Res. Public Health 2019, 16, 3185. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.; Miller-Rushing, A.J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B. Biol. Sci. 2010, 365, 3101–3112. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Suárez, M.; Ramírez-Albores, J.E.; Vargas-Hernández, J.J.; Alfaro-Ramírez, F.U. A review of the knowledge of Hartweg’s Pine (Pinus hartwegii Lindl.): Current situation and the need for improved future projections. Trees 2022, 36, 25–37. [Google Scholar] [CrossRef]
- Hannah, L.; Ikegami, M.; Hole, D.G.; Seo, C.; Butchart, S.H.; Peterson, A.T.; Roehrdanz, P.R. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 2013, 8, e72590. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.; Price, J.; Fischlin, A.; de la Nava Santos, S.; Midgley, G. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim. Change 2011, 106, 141–177. [Google Scholar] [CrossRef]
- González-Trujillo, J.D.; Escobar-Alba, M.R.; Lara, D.E.; Carvajal-C, J.E. Mapping the threat: Projecting invasive plant distribution in the tropical Andes under climate change. Perspect. Ecol. Conserv. 2024, 22, 348–357. [Google Scholar] [CrossRef]
- Mansfield, N. A Biologically Meaningful Evaluation of Phenological Responses to Climate Change. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2022. Available online: https://pearl.plymouth.ac.uk/cgi/viewcontent.cgi?article=1415&context=bms-theses (accessed on 29 November 2024).
- Quintero, I.; Wiens, J.J. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Glob. Ecol. Biogeogr. 2013, 22, 422–432. [Google Scholar] [CrossRef]
- Lan, Z.; Huiliang, L.; Hongxiang, Z.; Yanfeng, C.; Lingwei, Z.; Kudusi, K.; Taxmamat, D.; Yuanming, Z. Potential distribution of three types of ephemeral plants under climate changes. Front. Plant Sci. 2022, 13, 1035684. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zheng, C.-F.; Gao, X.-Q.; Li, C.-H.; Li, Y.-X.; Xia, X.-H.; Yang, J.; Zheng, Y.-Q.; Huang, P. Distinct Ecological Habits and Habitat Responses to Future Climate Change in Two Subspecies of Magnolia sieboldii K. Koch, a Tree Endemic to East Asia. Plants 2024, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Liu, Q.; Qin, Y. Predicting the Potential Distribution of Haloxylon ammodendron under Climate Change Scenarios Using Machine Learning of a Maximum Entropy Model. Biology 2023, 13, 3. [Google Scholar] [CrossRef]
- Manchego, C.E.; Hildebrandt, P.; Cueva, J.; Espinosa, C.I.; Stimm, B.; Günter, S. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLoS ONE 2017, 12, e0190092. [Google Scholar] [CrossRef]
- Larsen, T.H.; Brehm, G.; Navarrete, H.; Franco, P.; Gomez, H.; Mena, J.L.; Morales, V.; Argollo, J.; Blacutt, L.; Canhos, V. Range shifts and extinctions driven by climate change in the tropical Andes: Synthesis and directions. In Climate Change and Biodiversity in the Tropical Andes; Inter-American Institute for Global Change Research (IAI); Scientific Committee on Problems of the Environment (SCOPE): Paris, France, 2011; Volume 1, pp. 47–67. Available online: https://core.ac.uk/download/pdf/48017894.pdf#page=60 (accessed on 11 December 2024).
- Prokopová, M.; Salvati, L.; Egidi, G.; Cudlín, O.; Včeláková, R.; Plch, R.; Cudlín, P. Envisioning present and future land-use change under varying ecological regimes and their influence on landscape stability. Sustainability 2019, 11, 4654. [Google Scholar] [CrossRef]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef]
- Jantz, S.M.; Barker, B.; Brooks, T.M.; Chini, L.P.; Huang, Q.; Moore, R.M.; Noel, J.; Hurtt, G.C. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv. Biol. 2015, 29, 1122–1131. [Google Scholar] [CrossRef]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Bailey, T.E. Investigating the Effect of Multitemporal Land Use Changes to the Middle Magdalena River Valley on the Abundance and Distribution of Important Plant Species. Master’s Thesis, University of Exeter, Exeter, UK, 2022. Available online: https://bit.ly/40B1Vzo (accessed on 11 December 2024).
- Bax, V.; Castro-Nunez, A.; Francesconi, W. Assessment of potential climate change impacts on montane forests in the peruvian andes: Implications for conservation prioritization. Forests 2021, 12, 375. [Google Scholar] [CrossRef]
- Giudicelli, G.C.; Turchetto, C.; Silva-Arias, G.A.; Freitas, L.B. Influence of climate changes on the potential distribution of a widespread grassland species in South America. Perspect. Plant Ecol. Evol. Syst. 2019, 41, 125496. [Google Scholar] [CrossRef]
Code | Variable—Unit | Range | Average |
---|---|---|---|
B1 | Annual mean temperature (°C) | 9.4–19.9 | 12.5 |
B2 | Mean diurnal range (mean of monthly (max temp–min temp)) (°C) | 9.0–11.6 | 10.3 |
B3 | Isothermality (BIO2/BIO7) (×100) (%) | 81.5–88 | 83.9 |
B4 | Temperature seasonality (standard deviation ×100) (°C) | 20.4–65.3 | 42.9 |
B5 | Max temperature of warmest month (°C) | 15.5–24.9 | 18.7 |
B6 | Min temperature of coldest month (°C) | 3.5–14.6 | 6.5 |
B7 | Temperature annual range (BIO5-BIO6) (°C) | 10.3–13.6 | 12.2 |
B8 | Mean temperature of wettest quarter (°C) | 9.7–20.4 | 12.7 |
B9 | Mean temperature of driest quarter (°C) | 8.7–19.4 | 12.1 |
B10 | Mean temperature of warmest quarter (°C) | 9.9–20.4 | 12.9 |
B11 | Mean temperature of coldest quarter (°C) | 8.6–19.5 | 11.9 |
B12 | Annual precipitation (mm) | 717–1687 | 903.1 |
B13 | Precipitation of wettest month (mm) | 103–351 | 143 |
B14 | Precipitation of driest month (mm) | 1–79 | 27.1 |
B15 | Precipitation seasonality (coefficient of variation) (%) | 13.8–96.1 | 56.2 |
B16 | Precipitation of wettest quarter (mm) | 277–962 | 386.4 |
B17 | Precipitation of driest quarter (mm) | 12–263 | 97.5 |
B18 | Precipitation of warmest quarter (mm) | 147–782 | 309.5 |
B19 | Precipitation of coldest quarter (mm) | 12–346 | 120.4 |
Level | Methods | AUC | TSS | Sensitivity | Specificity | Score |
---|---|---|---|---|---|---|
Regional | Maxent | 0.99 | 0.74 | 0.66 | 0.77 | 5.91 |
GLM | 0.59 | −0.03 | 0.62 | 0.33 | 2.66 | |
RF | 0.49 | 0 | 0 | 1 | 2.47 | |
Ecuador (Historical) | Maxent | 0.95 | 0.69 | 0.20 | 0.29 | 4.3 |
GLM | 0.87 | −0.34 | 0.60 | 0.06 | 1.38 | |
RF | 0.76 | 0.41 | 0.45 | 0.96 | 3.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedillo, H.; García-Montero, L.G.; Cabrera, O.; Rocano, M.; Arciniegas, A.; Jadán, O. Modeling the Potential Distribution of Aulonemia queko: Historical, Current, and Future Scenarios in Ecuador and Other Andean Countries. Diversity 2025, 17, 167. https://doi.org/10.3390/d17030167
Cedillo H, García-Montero LG, Cabrera O, Rocano M, Arciniegas A, Jadán O. Modeling the Potential Distribution of Aulonemia queko: Historical, Current, and Future Scenarios in Ecuador and Other Andean Countries. Diversity. 2025; 17(3):167. https://doi.org/10.3390/d17030167
Chicago/Turabian StyleCedillo, Hugo, Luis G. García-Montero, Omar Cabrera, Mélida Rocano, Andrés Arciniegas, and Oswaldo Jadán. 2025. "Modeling the Potential Distribution of Aulonemia queko: Historical, Current, and Future Scenarios in Ecuador and Other Andean Countries" Diversity 17, no. 3: 167. https://doi.org/10.3390/d17030167
APA StyleCedillo, H., García-Montero, L. G., Cabrera, O., Rocano, M., Arciniegas, A., & Jadán, O. (2025). Modeling the Potential Distribution of Aulonemia queko: Historical, Current, and Future Scenarios in Ecuador and Other Andean Countries. Diversity, 17(3), 167. https://doi.org/10.3390/d17030167