The Chloroplast Genome of the Endemic Species Abrus bottae Deflers: Comparative and Phylogenetic Analysis with Closely Related Species of Abreae Hutch
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction of DNA
2.3. Genomic Library Development
2.4. Genome Sequencing
2.5. Genome Sequence and Annotation
2.6. Sequence Examination
2.7. Examination of Repetitive Sequences in the Chloroplast Genome
2.8. Comparative Chloroplast Genomics
2.9. Nucleoside Diversity Statistics
2.10. Characterization of the Substitution Rate
2.11. Phylogenetic Analysis
3. Results
3.1. Characteristics of the Chloroplast Genome of Abrus Bottae
3.2. Relative Synonymous Codon Usage (RSCU)
3.3. RNA Editing Sites
3.4. Repeat Analysis
3.4.1. Prolonged Repetitions
3.4.2. Simple-Sequence Repeats (SSRs)
3.5. Comparative Genomes
3.6. LSC/SSC and IR Boundaries
3.7. Nucleoside Variability
3.8. Analysis of the Rate of Substitution
3.9. Phylogenetic Relationships
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, D.-P.; Choi, I.-S.; Choi, B.-H. Plastid genome evolution in tribe Desmodieae (Fabaceae: Papilionoideae). PLoS ONE 2019, 14, e0218743. [Google Scholar] [CrossRef]
- Somaratne, Y.; Guan, D.-L.; Wang, W.-Q.; Zhao, L.; Xu, S.-Q. The Complete Chloroplast Genomes of Two Lespedeza Species: Insights into Codon Usage Bias, RNA Editing Sites, and Phylogenetic Relationships in Desmodieae (Fabaceae: Papilionoideae). Plants 2020, 9, 51. [Google Scholar] [CrossRef]
- Qin, Q.; Dong, Y.; Chen, J.; Wang, B.; Peng, Y.; Zh, X.; Wang, X.; Zeng, J.; Zhong, G.; Zhang, S.; et al. Comparative analysis of chloroplast genomes reveals molecular evolution and phylogenetic relationships within the Papilionoideae of Fabaceae. BMC Plant Biol. 2025, 25, 157. [Google Scholar] [CrossRef] [PubMed]
- Prenner, G. Flower development in Abrus precatorius (Leguminosae: Papilionoideae: Abreae) and a review of androecial characters in Papilionoideae. S. Afr. J. Bot. 2013, 89, 210–218. [Google Scholar] [CrossRef]
- Royal Botanic Gardens & Plants of the World Online. Abrus Adans. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:21549-1 (accessed on 28 June 2025).
- Munsuk, W.; Chantaranothai, P.; Kongsook, B. The Genus Abrus Adans. (Leguminosae-Papilionoideae) in Thailand. Trop. Nat. Hist. 2016, 16, 67–77. [Google Scholar] [CrossRef]
- Hu, J.M.; Lavin, M.; Wojciechowski, M.F.; Sanderson, M.J. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on trnK/matK sequences, and implications for evolutionary patterns in Papilionoideae. Am. J. Bot. 2000, 87, 418–430. [Google Scholar] [CrossRef]
- Mondal, A.K.; Parui, S.M. The Phylogenetic Relations and Biogeography of Three Indian and Two African Species of Abrus Adanson. Ann. Plant Sci. 2014, 3, 726–733. [Google Scholar]
- Zhang, R.; Wang, Y.-H.; Jin, J.-J.; Stull, G.W.; Bruneau, A.; Cardoso, D.; De Queiroz, L.P.; Moore, M.J.; Zhang, S.-D.; Chen, S.-Y.; et al. Exploration of Plastid Phylogenomic Conflict Yields New Insights into the Deep Relationships of Leguminosae. Syst. Biol. 2020, 69, 613–622. [Google Scholar] [CrossRef]
- Choi, I.-S.; Cardoso, D.; de Queiroz, L.P.; de Lima, H.C.; Lee, C.; Ruhlman, T.A.; Jansen, R.K.; Wojciechowski, M.F. Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics. Front. Plant Sci. 2022, 13, 823190. [Google Scholar] [CrossRef]
- Bretler, F.J. Revision of Abrus Adanson (Pap.) with special reference to Africa. Blumea 1960, 10, 607–624. [Google Scholar]
- Breteler, F.; Seyani, J.; Chikuni, A. The use of the subspecies concept in African plant taxonomy with particular reference to Abrus (Leguminosae–Papilionoideae). In Proceedings of the XIIIth Plenary Meeting of AETFAT, Zomba, Malawi, 2–11 April 1991; Volume 1, pp. 309–314. [Google Scholar]
- Agbagwa, I.O. Evaluation of Diagnostic Vegetative and Reproductive Characters Among Abrus Species in Nigeria. Aust. J. Basic Appl. Sci. 2007, 1, 841–852. [Google Scholar]
- Zhang, C.-Y.; Qiu, W.-F.; Chen, Y.-Z.; Mo, X.-L.; Yan, H.-F. The complete plastid genome of Abrus pulchellus subsp. Mollis (Leguminosae): A medicinal plant in Southern China. Mitochondrial DNA B Resour. 2024, 9, 943–947. [Google Scholar] [CrossRef]
- Rahman, A.A.; Samoylenko, V.; Jain, S.K.; Tekwani, B.L.; Khana, S.I.; Jacob, M.R.; Midiwob, J.O.; Hester, J.P.; Walker, L.A.; Muhammad, I. Antiparasitic and Antimicrobial Isoflavanquinones from Abrus schimperi. Nat. Prod. Commun. 2011, 6, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Meng, M.; Wu, F.; Zhang, J. A comparative plastome approach enhances the assessment of genetic variation in the Melilotus genus. BMC Genom. 2024, 25, 556. [Google Scholar] [CrossRef]
- Bhatia, M.; NA, S.; Gupta, S. Abrus precatorius (L.): An Evaluation of Traditional Herb. J. Pharm. Res. 2013, 3, 3295–3315. [Google Scholar]
- Verdcourt, B. Studies in the Leguminosae-Papilionoïdeae for the “Flora of Tropical East Africa”: II. Kew Bull. 1970, 24, 235–307. [Google Scholar] [CrossRef]
- Collenette, S. Wildflowers of Saudi Arabia. National Commission for Wildlife Conservation and Development, (NCWCD), Riyadh. 1999. Available online: https://www.persee.fr/doc/revec_0249-7395_2000_num_55_2_2513_t1_0198_0000_2 (accessed on 1 August 2025).
- Royal Botanic Gardens & Plants of the World Online. Abrus bottae Deflers. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:469587-1 (accessed on 26 June 2025).
- Alsweber, A.M.M. Red List of Threatened Plants in Al Dhale Governorate, Yemen. J. Educ. Fac. 2023, 17, 502–515. [Google Scholar]
- Liu, W.; Kong, H.; Zhou, J.; Fritsch, P.W.; Hao, G.; Gong, W. Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae. Int. J. Mol. Sci. 2018, 19, 1286. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.M.; Al-Kahtani, M.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Badry, M.O. Floristic Diversity and Phytogeography of JABAL Fayfa: A Subtropical Dry Zone, South-West Saudi Arabia. Diversity 2020, 12, 345. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Biol. Bull. 1987, 19, 11–15. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B.; Notes, A. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2212. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genom. Bioinform. 2020, 2, lqz011. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Chan, P.C.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In Gene Prediction: Methods and Protocols; Springer: New York, NY, USA, 2019; pp. 1–14. [Google Scholar]
- Greiner, S.; Lehwark, P.; Bock, R. Organellar Genome DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- McInerney, J.O. GCUA: General codon usage analysis. Bioinformatics 1998, 14, 372–373. [Google Scholar] [CrossRef]
- Lenz, H.; Hein, A.; Knoop, V. Plant organelle RNA editing and its specificity factors: Enhancements of analyses and new database features in PREPACT 3.0. BMC Bioinform. 2018, 19, 255. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Mayor, C.; Brudno, M.; Schwartz, J.R.; Poliakov, A.; Rubin, E.M.; Frazer, K.A.; Pachter, L.S.; Dubchak, I. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16, 1046–1047. [Google Scholar] [CrossRef]
- Brudno, M.; Do, C.B.; Cooper, G.M.; Kim, M.F.; Davydov, E.; Green, E.D.; Sidow, A.; Batzoglou, S. LAGAN and multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 2003, 13, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-Delbarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Emms, D.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F.; Nielsen, R.; Bollback, J.P. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2010, 8, 77–80. [Google Scholar] [CrossRef]
- Oyebanji, O.; Zhang, R.; Chen, S.-Y.; Yi, T.-S. New Insights into the Plastome Evolution of the Millettioid/Phaseoloid Clade (Papilionoideae, Leguminosae). Front. Plant Sci. 2020, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Lin, F.; Zheng, Y.; Huang, P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022, 10, e13570. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, X.-F.; Zhang, J.-Y.; Jiang, L.-S.; Li, X.; Deng, H.-N.; Liao, M.; Xu, B. Complete Chloroplast Genomes Provide Insights into Evolution and Phylogeny of Campylotropis (Fabaceae). Front. Plant Sci. 2022, 13, 895543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, L.; Quan, H.; Yang, J.B.; Zhang, Z.; Liao, Z.; Lan, X. Comparative analyses of chloroplast genomes from 14 Zanthoxylum species: Identification of variable DNA markers and phylogenetic relationships within the genus. Front. Plant Sci. 2020, 11, 605793. [Google Scholar] [CrossRef]
- AL-Juhani, W.S.; Alharbi, S.A.; Al Aboud, N.M.; Aljohani, A.Y. Complete chloroplast genome of the desert date (Balanites aegyptiaca (L.) Del. comparative analysis, and phylogenetic relationships among the members of Zygophyllaceae. BMC Genom. 2022, 23, 626. [Google Scholar] [CrossRef]
- Yan, C.; Du, J.; Gao, L.; Li, Y.; Hou, X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene 2019, 699, 24–36. [Google Scholar] [CrossRef]
- Zhou, M.; Long, W.; Li, X. Analysis of synonymous codon usage in chloroplast genome of Populus alba. J. For. Res. 2008, 19, 293–297. [Google Scholar] [CrossRef]
- Lang, B.F.; Nedelcu, A.M. Plastid Genomes of Algae. In Genomics of Chloroplasts and Mitochondria; Bock, R., Knoop, V., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 59–87. [Google Scholar]
- Moghaddam, M.; Ohta, A.; Shimizu, M.; Ryohei, T.; Kazempour-Osaloo, S. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): Comparative analysis with related IR-lacking clade species. BMC Plant Biol. 2022, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Shi, W.; Wang, H.; Zhang, Z.; Tao, R.; Liu, J.; Wang, S.; Engel, M.S.; Shi, C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. Mar. Life Sci. Technol. 2024, 6, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Xue, X.; Wang, D.; Zhang, L.; Liu, W.; Wang, E.; Cui, X.; Hou, X. Genetic diversity and population genetic structure of Paeonia suffruticosa by chloroplast DNA simple sequence repeats (cpSSRs). Hortic. Plant J. 2025, 11, 367–376. [Google Scholar] [CrossRef]
- Götz, J.; Caré, O.; Beck, W.; Gailing, O.; Hosius, B.; Leinemann, L. A Novel Set of Chloroplast SSR Markers for the Genus Juglans Reveals Within Species Differentiation. Genetica 2024, 73, 120–125. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, J.; Huang, L.; Ye, Y.; Xu, Y. Assessing Genetic Diversity in Endangered Plant Orchidantha chinensis: Chloroplast Genome Assembly and Simple Sequence Repeat Marker-Based Evaluation. Int. J. Mol. Sci. 2024, 25, 11137. [Google Scholar] [CrossRef]
- Hladnik, M.; Arbeiter, A.; Gabrovšek, P.; Tomi, F.; Gibernau, M.; Brana, S.; Bandelj, D. New Chloroplast Microsatellites in Helichrysum italicum (Roth) G. Don: Their Characterization and Application for the Evaluation of Genetic Resources. Plants 2024, 13, 2740. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Xie, J.; Gu, Y.; Guo, H.; Zhang, S.; Huang, X.; Luo, X.; Qian, J.; Liu, M.; Wan, X.; et al. Assessing population genetic structure and diversity and their driving factors in Phoebe zhennan populations. BMC Plant Biol. 2024, 24, 1091. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Huang, X.; Sun, H.; Sun, J.; Li, J.; Zhang, Y.; Qian, Y.; Wu, J.; Yang, Y.; Xia, C. Comparative analysis of the complete chloroplast genome of Pueraria provides insights for species identification, phylogenetic relationships, and taxonomy. BMC Plant Biol. 2024, 24, 1196. [Google Scholar] [CrossRef] [PubMed]
- Lavin, M.; Herendeen, P.S.; Wojciechowski, M.F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst. Biol. 2005, 54, 575–594. [Google Scholar] [CrossRef] [PubMed]
- Koenen, E.J.M.; Kidner, C.; Souza, E.R.; Simon, M.F.; Iganci, J.R.; Nicholls, J.A.; Brown, G.K.; de Queiroz, L.P.; Luckow, M.; Lewis, G.P.; et al. Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation. Am. J. Bot. 2020, 107, 1710–1735. [Google Scholar] [CrossRef]
- Cannon, S.B.; McKain, M.R.; Harkess, A.; Nelson, M.N.; Dash, S.; Deyholos, M.K.; Peng, Y.; Joyce, B.; Stewart, C.N.; Rolf, M. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 2015, 32, 193–210. [Google Scholar] [CrossRef]
- LPWG, The Legume Phylogeny Working Group. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogen. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef]
- Wojciechowski, M.F.; Lavin, M.; Sanderson, M.J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 2004, 91, 1846–1862. [Google Scholar] [CrossRef]
- The Abreae in Thailand. Available online: https://abrusinthailand.myspecies.info/ (accessed on 1 August 2025).
Characteristics | Number |
---|---|
Genome size (bp) | 152,540 |
IRA (bp) | 25,676 |
IRB (bp) | 25,676 |
LSC (bp) | 83,507 |
SSC (bp) | 17,681 |
Total genes | 130 |
Total unique genes | 111 |
rRNA | 4 |
tRNA | 28 |
Protein-coding genes | 79 |
A% | 30.73 |
T (U) % | 31.54 |
G% | 18.56 |
C% | 19.17 |
GC% | 37.72 |
SSR Type | Repeat Unit | Abrus bottae | Abrus pulchellus subsp. Mollis | Abrus pulchellus subsp. Cantoniensis | Abrus precatorius |
---|---|---|---|---|---|
Mono | A | 116 | 113 | 130 | 128 |
C | 12 | 11 | 8 | 7 | |
G | 12 | 8 | 8 | 8 | |
T | 146 | 130 | 131 | 131 | |
Di | AG/CT | 10 | 1 | 2 | 2 |
AC/GT | 2 | 1 | 1 | 1 | |
AT/AT | 25 | 40 | 42 | 46 | |
Tri | AAG/CTT | 1 | 2 | 1 | 1 |
AAT/ATT | 0 | 4 | 5 | 7 | |
Tetra | AAAG/CTTT | 1 | 0 | 1 | 0 |
AAAT/ATTT | 4 | 4 | 2 | 3 | |
ACAG/CTGT | 1 | 0 | 0 | 0 | |
AATT/AATT | 2 | 0 | 1 | 1 | |
AATC/ATTG | 1 | 0 | 0 | 0 | |
AAAC/GTTT | 1 | 2 | 1 | 1 | |
AGAT/ATCT | 1 | 3 | 4 | 4 | |
AATG/ATTC | 0 | 2 | 2 | 2 | |
Penta | AATAG/ATTCT | 0 | 1 | 0 | 0 |
AATAT/ATATT | 0 | 1 | 0 | 0 | |
Hexa | ACAGAT/ATCTGT | 0 | 0 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljuhani, W.S. The Chloroplast Genome of the Endemic Species Abrus bottae Deflers: Comparative and Phylogenetic Analysis with Closely Related Species of Abreae Hutch. Diversity 2025, 17, 571. https://doi.org/10.3390/d17080571
Aljuhani WS. The Chloroplast Genome of the Endemic Species Abrus bottae Deflers: Comparative and Phylogenetic Analysis with Closely Related Species of Abreae Hutch. Diversity. 2025; 17(8):571. https://doi.org/10.3390/d17080571
Chicago/Turabian StyleAljuhani, Widad S. 2025. "The Chloroplast Genome of the Endemic Species Abrus bottae Deflers: Comparative and Phylogenetic Analysis with Closely Related Species of Abreae Hutch" Diversity 17, no. 8: 571. https://doi.org/10.3390/d17080571
APA StyleAljuhani, W. S. (2025). The Chloroplast Genome of the Endemic Species Abrus bottae Deflers: Comparative and Phylogenetic Analysis with Closely Related Species of Abreae Hutch. Diversity, 17(8), 571. https://doi.org/10.3390/d17080571