Mitogenome Diversity and Phylogeny of Felidae Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. Mitogenomic Characteristics Analysis
- (1)
- Nucleotide Composition and Variability Analysis
- (2)
- Selection Pressure Analysis
2.3. Mitogenomic Phylogenetic Analysis
3. Results and Discussion
3.1. Nucleotide Composition and Bias
3.2. Nucleotide Variability
3.3. Selection Pressure
3.4. Matrilineal Molercular Phylogeny
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN. The IUCN Red List of Threatened Species. Version 2025-1. Available online: https://www.iucnredlist.org (accessed on 15 July 2025).
- Sunquist, M.E.; Sunquist, F. Wild Cats of the World; University of Chicago Press: Chicago, IL, USA, 2002; p. 452. [Google Scholar]
- Johnson, W.E.; Eizirik, E.; Pecon-Slattery, J.; Murphy, W.J.; Antunes, A.; Teeling, E.; O’Brien, S.J. The late miocene radiation of modern Felidae: A genetic assessment. Science 2006, 311, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Yu, L. Summary of phylogeny in family Felidae of Carnivora. Hereditas 2012, 34, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Torres-Romero, E.J.; Eppley, T.M.; Ripple, W.J.; Newsome, T.M.; Krofel, M.; Carter, N.H.; Ordiz, A.; de Oliveira, T.G.; Selva, N.; Penteriani, V. Global scale assessment of the human-induced extinction crisis of terrestrial carnivores. Sci. Adv. 2025, 11, eadq2853. [Google Scholar] [CrossRef]
- Janczewski, D.N.; Modi, W.S.; Stephens, J.C.; O’Brien, S.J. Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Mol. Biol. Evol. 1995, 12, 690–707. [Google Scholar] [CrossRef]
- Wei, L.; Wu, X.; Zhu, L.; Jiang, Z. Mitogenomic analysis of the genus Panthera. Sci. China Life Sci. 2011, 54, 917–930. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y. Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-fibrinogen intron 7 to carnivores. Mol. Phylogenet. Evol. 2005, 35, 483–495. [Google Scholar] [CrossRef]
- Ramos, B.; González-Acuña, D.; Loyola, D.E.; Johnson, W.E.; Parker, P.G.; Massaro, M.; Dantas, G.P.M.; Miranda, M.D.; Vianna, J.A. Landscape genomics: Natural selection drives the evolution of mitogenome in penguins. BMC Genom. 2018, 19, 53. [Google Scholar] [CrossRef]
- He, K.; Chen, X.; Qiu, Y.-B.; Liu, Z.; Wang, W.-Z.; Woodman, N.; Maldonado, J.E.; Pan, X. Mitogenome and phylogenetic analyses support rapid diversification among species groups of small-eared shrews genus Cryptotis (Mammalia: Eulipotyphla: Soricidae). Zool. Res. 2021, 42, 739–745. [Google Scholar] [CrossRef]
- Ding, H.; Bi, D.; Han, S.; Yi, R.; Zhang, S.; Ye, Y.; Gao, J.; Yang, J.; Kan, X. Mitogenomic codon usage patterns of superfamily Certhioidea (Aves, Passeriformes): Insights into asymmetrical bias and phylogenetic implications. Animals 2023, 13, 96. [Google Scholar] [CrossRef]
- Fiteha, Y.G.; Rashed, M.A.; Ali, R.A.; Abd El-Moneim, D.; Alshanbari, F.A.; Magdy, M. Mitogenomic features and evolution of the Nile River dominant Tilapiine species (Perciformes: Cichlidae). Biology 2023, 12, 40. [Google Scholar] [CrossRef]
- Xu, D.; Sun, M.; Gao, Z.; Zhou, Y.; Wang, Q.; Chen, L. Comparison and phylogenetic analysis of mitochondrial genomes of Talpidae animals. Animals 2023, 13, 186. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Jia, F.-F.; Hu, L.; Wu, C.; Tian, T.; Li, T.-J.; Chen, B. Comparative mitogenome research revealed the phylogenetics and evolution of the superfamily Tenebrionoidea (Coleoptera: Polyphage). Ecol. Evol. 2024, 14, e11520. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Zhou, H.; Zhou, R.; Cui, S.; Zheng, G. Mitogenomics reveals extremely low genetic diversity in the endangered Jilin clawed salamander: Implications for its conservation. Ecol. Evol. 2024, 14, e11132. [Google Scholar] [CrossRef]
- Patil, M.P.; Kim, J.-O.; Yoo, S.H.; Shin, J.; Yang, J.-Y.; Kim, K.; Kim, G.-D. Complete mitochondrial genome of Niphon spinosus (Perciformes: Niphonidae): Genome characterization and phylogenetic analysis. Biomolecules 2025, 15, 52. [Google Scholar] [CrossRef]
- Pereira, S.L. Mitochondrial genome organization and vertebrate phylogenetics. Genet. Mol. Biol. 2000, 23, 745–752. [Google Scholar] [CrossRef]
- Montaña-Lozano, P.; Moreno-Carmona, M.; Ochoa-Capera, M.; Medina, N.S.; Boore, J.L.; Prada, C.F. Comparative genomic analysis of vertebrate mitochondrial reveals a differential of rearrangements rate between taxonomic class. Sci. Rep. 2022, 12, 5479. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.V.; Cevario, S.; O’Brien, S.J. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (numt) in the nuclear genome. Genomics 1996, 33, 229–246. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, T.; Jiang, Z.; Wei, L. The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome 2007, 50, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wu, X.; Jiang, Z. The complete mitochondrial genome structure of snow leopard Panthera uncia. Mol. Biol. Rep. 2009, 36, 871–878. [Google Scholar]
- Zhang, W.; Yue, B.; Wang, X.; Zhang, X.; Xie, Z.; Liu, N.; Fu, W.; Yuan, Y.; Chen, D.; Fu, D.; et al. Analysis of variable sites between two complete South China tiger (Panthera tigris amoyensis) mitochondrial genomes. Mol. Biol. Rep. 2011, 38, 4257–4264. [Google Scholar] [CrossRef]
- Kitpipit, T.; Linacre, A. The complete mitochondrial genome analysis of the tiger (Panthera tigris). Mol. Biol. Rep. 2012, 39, 5745–5754. [Google Scholar] [CrossRef] [PubMed]
- Tabasum, W.; Sreenivas, A.; Bheemavarapu, K.K.; Golla, T.R.; Gaur, A. Complete mitochondrial genome sequence of the Indian clouded leopard (Neofelis nebulosa). Mitochondrial DNA Part B 2016, 1, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, A.; Onorato, D.P.; Fitak, R.R.; Roelke-Parker, M.E.; Culver, M. Evolutionary and functional mitogenomics associated with the genetic restoration of the Florida panther. J. Hered. 2017, 108, 449–455. [Google Scholar] [CrossRef]
- Patel, R.P.; Wutke, S.; Lenz, D.; Mukherjee, S.; Ramakrishnan, U.; Veron, G.; Fickel, J.; Wilting, A.; Förster, D.W. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes. J. Hered. 2017, 108, 349–360. [Google Scholar] [CrossRef]
- Paijmans, J.L.A.; Barlow, A.; Förster, D.W.; Henneberger, K.; Meyer, M.; Nickel, B.; Nagel, D.; Worsøe Havmøller, R.; Baryshnikov, G.F.; Joger, U.; et al. Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations. BMC Evol. Biol. 2018, 18, 156. [Google Scholar] [CrossRef]
- Patterson, E.C.; Lall, G.M.; Neumann, R.; Ottolini, B.; Batini, C.; Sacchini, F.; Foster, A.P.; Wetton, J.H.; Jobling, M.A. Mitogenome sequences of domestic cats demonstrate lineage expansions and dynamic mutation processes in a mitochondrial minisatellite. BMC Genom. 2023, 24, 690. [Google Scholar] [CrossRef]
- Alqahtani, F.H.; Măndoiu, I.I.; Al-Shomrani, B.M.; Al-Hashmi, S.; Jamshidi-Adegani, F.; Al-Kindi, J.; Golachowski, A.; Golachowska, B.; Al-Jabri, A.K.; Manee, M.M. First mitogenome of the critically endangered Arabian leopard (Panthera pardus nimr). Animals 2025, 15, 1562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-J.; Liang, Y.-K.; Ren, Z.-M. Complete mitochondrial genome of Prionailurus bengalensis (Carnivora: Felidae), a protected species in China. Mitochondrial DNA Part B 2019, 4, 3072–3074. [Google Scholar] [CrossRef]
- Agnarsson, I.; Kuntner, M.; May-Collado, L.J. Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Mol. Phylogenet. Evol. 2010, 54, 726–745. [Google Scholar] [CrossRef]
- Masuda, R.; Lopez, J.V.; Slattery, J.P.; Yuhki, N.; O’Brien, S.J. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: Ocelot and domestic cat lineages. Mol. Phylogenet. Evol. 1996, 6, 351–365. [Google Scholar] [CrossRef]
- Johnson, W.E.; O’Brien, S.J. Phylogenetic reconstruction of the felidae using 16S rRNA and NADH-5 mitochondrial genes. J. Mol. Evol. 1997, 44, S98–S116. [Google Scholar] [CrossRef]
- Mattern, M.Y.; McLennan, D.A. Phylogeny and speciation of felids. Cladistics 2000, 16, 232–253. [Google Scholar] [CrossRef]
- Li, G.; Davis, B.W.; Eizirik, E.; Murphy, W.J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 2016, 26, 1–11. [Google Scholar] [CrossRef]
- Paijmans, J.L.A.; Barnett, R.; Gilbert, M.T.P.; Zepeda-Mendoza, M.L.; Reumer, J.W.F.; de Vos, J.; Zazula, G.; Nagel, D.; Baryshnikov, G.F.; Leonard, J.A.; et al. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 2017, 27, 3330–3336.e5. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.; Veron, G.; Ropiquet, A.; Jansen van Vuuren, B.; Lécu, A.; Goodman, S.M.; Haider, J.; Nguyen, T.T. Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS ONE 2021, 16, e0240770. [Google Scholar] [CrossRef]
- Rodrigues-Oliveira, I.H.; Iuri, B.d.S.; Rodrigues, R.R.; Silva, S.R.A.; Bezerra, M.F.; Caroline, G.; Rubens, P.; Kavalco, K.F. When paleontology meets genomics: Complete mitochondrial genomes of two saber-toothed cats’ species (Felidae: Machairodontinae). Mitochondrial DNA Part A 2025, 35, 102–110. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Xiang, C.; Gao, F.; Jakovlić, I.; Lei, H.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Ranwez, V.; Douzery, E.J.P.; Cambon, C.; Chantret, N.; Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 2018, 35, 2582–2584. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef]
- Kundu, S.; Manokaran, K.; Kaomud, T.; Kumar, V. Complete mitochondrial genome of critically endangered Crocidura nicobarica (Soricidae: Eulipotyphla) from the Great Nicobar Island, India. Mitochondrial DNA Part B 2021, 6, 3418–3422. [Google Scholar] [CrossRef]
- Bernt, M.; Braband, A.; Schierwater, B.; Stadler, P.F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 2013, 69, 328–338. [Google Scholar] [CrossRef]
- Dong, S.; Tang, L.; Yang, S.; Chen, X.; Feng, Y.; Wang, X.; Su, W.; Xing, X. Mitochondrial PCGs provide novel insights into subspecies classification, codon usage and selection of Cervus canadensis distributed in Qinghai and Gansu, China. Animals 2025, 15, 1486. [Google Scholar] [CrossRef]
- Zhang, J.; Kan, X.; Miao, G.; Hu, S.; Sun, Q.; Tian, W. qMGR: A new approach for quantifying mitochondrial genome rearrangement. Mitochondrion 2020, 52, 20–23. [Google Scholar] [CrossRef]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. In International Review of Cytology; Wolstenholme, D.R., Jeon, K.W., Eds.; Academic Press: Cambridge, MA, USA, 1992; Volume 141, pp. 173–216. [Google Scholar]
- Li, J.; Xie, M.; Zhang, F.; Shu, J.; Zhang, J.; Zhang, Z.; Xiang, H.; Jiang, W. Insights into phylogenetic relationships and gene rearrangements: Complete mitogenomes of two sympatric species in the genus Rana (Anura, Ranidae). Zookeys 2024, 1216, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Liu, J.; Wang, S.; Guo, X. Comparative analysis of mitochondrial genomes in two subspecies of the sunwatcher toad-headed agama (Phrynocephalus helioscopus): Prevalent intraspecific gene rearrangements in Phrynocephalus. Genes 2022, 13, 203. [Google Scholar] [CrossRef]
- Yu, J.; Liu, J.; Li, C.; Wu, W.; Feng, F.; Wang, Q.; Ying, X.; Qi, D.; Qi, G. Characterization of the complete mitochondrial genome of Otus lettia: Exploring the mitochondrial evolution and phylogeny of owls (Strigiformes). Mitochondrial DNA Part B 2021, 6, 3443–3451. [Google Scholar] [CrossRef]
- Lan, G.; Yu, J.; Liu, J.; Zhang, Y.; Ma, R.; Zhou, Y.; Zhu, B.; Wei, W.; Liu, J.; Qi, G. Complete mitochondrial genome and phylogenetic analysis of Tarsiger indicus (Aves: Passeriformes: Muscicapidae). Genes 2024, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.; Léger, N.; Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst. Biol. 2005, 54, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-X.; Lan, X.-Y.; Luo, Q.-H.; Gu, Z.-R.; Zhou, Q.; Zhang, M.-Y.; Zhang, Y.-X.; Jiang, W.-S. Characterization, comparison of two new mitogenomes of crocodile newts Tylototriton (Caudata: Salamandridae), and phylogenetic implications. Genes 2022, 13, 1878. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Xu, S.; Liu, L.; Chen, Z.; Zou, K. Complete mitogenomes of three Carangidae (Perciformes) fishes: Genome description and phylogenetic considerations. Int. J. Mol. Sci. 2020, 21, 4685. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xia, J.; Zhang, J.-E.; Yang, J.; Zhao, H.; Wang, Q.; Sun, J.; Xue, H.; Wu, Y.; Chen, J.; et al. Characterization of the complete mitochondrial genome sequences of three croakers (Perciformes, Sciaenidae) and novel Insights into the phylogenetics. Int. J. Mol. Sci. 2018, 19, 1741. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Hou, S.-B.; Yuan, Z.-Y.; Jiang, K.; Huang, R.-Y.; Wang, K.; Liu, Q.; Yu, Z.-B.; Zhao, H.-P.; Zhang, B.-L.; et al. DNA barcoding of Chinese snakes reveals hidden diversity and conservation needs. Mol. Ecol. Resour. 2023, 23, 1124–1141. [Google Scholar] [CrossRef]
- Liu, H.; Wang, D.; Zhang, C.; Pu, T.; Xiong, L.; Wei, F.; Hu, Y. Development of short-target primers for species identification in biological studies of Carnivora. Ecol. Evol. 2023, 13, e10135. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-H.; Yang, S.; Yang, W.; Si, Y.-Y.; Xu, R.-W.; Fan, B.; Wang, L.; Meng, Z.-N. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: Mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam. Zool. Res. 2020, 41, 61–69. [Google Scholar] [CrossRef]
- Wang, G.; Du, S.; Wei, G.; Wang, B.; Li, S.; Lu, N. Mitochondrial DNA revealed the validation of Quasipaa robertingeri (Amphibia: Anura: Dicroglossidae) and its population genetic diversity. Mitochondrial DNA Part B 2021, 6, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Tantrawatpan, C.; Thongnetr, W.; Pilap, W.; Suksavate, W.; Agatsuma, T.; Tawong, W.; Petney, T.N.; Saijuntha, W. Genetic diversity and population structure of the Oriental garden lizard, Calotes versicolor Daudin, 1802 (Squamata: Agamidae) along the Mekong River in Thailand and Lao PDR. Asian Herpetol. Res. 2021, 12, 49–57. [Google Scholar]
- Cai, Y.; Zhang, L.; Shen, F.; Zhang, W.; Hou, R.; Yue, B.; Li, J.; Zhang, Z. DNA barcoding of 18 species of Bovidae. Chin. Sci. Bull. 2011, 56, 164–168. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, T.; Meng, Y.; Shi, H.; Liang, H.; Yang, C.; Song, F.; Zhou, J.; Huang, W. Comparative and phylogenetic analyses of mitochondrial genomes in Carabidae (Coleoptera: Adephaga). Ecol. Evol. 2025, 15, e71707. [Google Scholar] [CrossRef]
- Li, J.-N.; Liang, D.; Wang, Y.-Y.; Guo, P.; Huang, S.; Zhang, P. A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Mol. Phylogenet. Evol. 2020, 148, 106807. [Google Scholar] [CrossRef]
- Delsuc, F.; Brinkmann, H.; Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 2005, 6, 361–375. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Liu, J.; Zhou, M.; Li, B.; Ouyang, B. Three new Ranidae mitogenomes and the evolution of mitochondrial gene rearrangements among Ranidae species. Asian Herpetol. Res. 2018, 9, 85–98. [Google Scholar]
- Liu, Q.; Liu, Y.; Liu, Q.; Tian, L.; Li, H.; Song, F.; Cai, W. Exploring the mitogenomes of Mantodea: New insights from structural diversity and higher-level phylogenomic analyses. Int. J. Mol. Sci. 2023, 24, 10570. [Google Scholar] [CrossRef]
- Deng, M.-X.; Xiao, B.; Yuan, J.-X.; Hu, J.-M.; Kim, K.S.; Westbury, M.V.; Lai, X.-L.; Sheng, G.-L. Ancient mitogenomes suggest stable mitochondrial clades of the Siberian roe deer. Genes 2022, 13, 114. [Google Scholar] [CrossRef]
- Guan, D.; Huang, X.; Huang, G.; Zhou, J.; Yang, L.; Yu, W.; Guo, W.; Feng, J.; Wu, Y.; Hu, Y.; et al. Unraveling phylogenetic conflicts and adaptive evolution in Chiroptera using large-scale mitogenomes and nuclear genes. Sci. China-Life Sci. 2025, 68, 2503–2515. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zheng, Y.; Miura, I.; Wong, P.B.Y.; Murphy, R.W.; Zeng, X. The evolution of mitochondrial genomes in modern frogs (Neobatrachia): Nonadaptive evolution of mitochondrial genome reorganization. BMC Genom. 2014, 15, 691. [Google Scholar] [CrossRef][Green Version]
- Camacho, M.A.; Cadar, D.; Horváth, B.; Merino-Viteri, A.; Murienne, J. Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification. Zool. J. Linn. Soc. 2022, 196, 1591–1607. [Google Scholar] [CrossRef]
- Collier, G.E.; O’Brien, S.J. A molecular phylogeny of the Felidae: Immunological distance. Evolution 1985, 39, 473–487. [Google Scholar] [CrossRef]
- Pecon Slattery, J.; Johnson, W.E.; Goldman, D.; O’Brien, S.J. Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J. Mol. Evol. 1994, 39, 296–305. [Google Scholar] [CrossRef][Green Version]
- Bininda-Emonds, O.R.P.; Decker-Flum, D.M.; Gittleman, J.L. The utility of chemical signals as phylogenetic characters: An example from the Felidae. Biol. J. Linn. Soc. 2001, 72, 1–15. [Google Scholar] [CrossRef]
- Slattery, J.P.; O’Brien, S.J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 1998, 148, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Pecon-Slattery, J.; Pearks Wilkerson, A.J.; Murphy, W.J.; O’Brien, S.J. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree. Mol. Biol. Evol. 2004, 21, 2299–2309. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Werdelin, L.; Yamaguchi, N.; Johnson, W.E.; O’Brien, S.J. Phylogeny and evolution of cats (Felidae). In Biology and Conservation of Wild Felids; Macdonald, D.W., Loveridge, A.J., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 59–82. [Google Scholar]
Species | Accession ID | Species | Accession ID |
---|---|---|---|
Acinonyx jubatus | NC_005212 | Lynx pardinus | NC_028319 |
Caracal caracal | NC_028306 | Lynx rufus | NC_014456 |
Catopuma badia | NC_028300 | Neofelis nebulosa | NC_008450 |
Catopuma temminckii | NC_027115 | Otocolobus manul | NC_028323 |
Felis catus | NC_001700 | Panthera leo | NC_028302 |
Felis chaus | NC_028307 | Panthera onca | KM236783 |
Felis margarita | NC_028308 | Panthera pardus | KP001507 |
Felis nigripes | NC_028309 | Panthera tigris | NC_010642 |
Felis silvestris | NC_028310 | Panthera uncia | PP646745 |
Leopardus colocolo | NC_028314 | Pardofelis marmorata | NC_028303 |
Leopardus geoffroyi | NC_028320 | Prionailurus bengalensis | NC_028301 |
Leopardus guigna | NC_028321 | Prionailurus iriomotensis | LC375963 |
Leopardus jacobita | NC_028322 | Prionailurus planiceps | NC_028312 |
Leopardus pardalis | NC_028315 | Prionailurus rubiginosus | NC_028304 |
Leopardus tigrinus | NC_028317 | Prionailurus viverrinus | NC_028305 |
Leopardus wiedii | NC_028318 | Profelis aurata | NC_028299 |
Leptailurus serval | NC_028316 | Puma concolor | NC_016470 |
Lynx canadensis | NC_028313 | Puma yagouaroundi | NC_028311 |
Lynx lynx | NC_027083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yu, X.; Bi, W.; Li, Z.; Zhou, Y.; Ma, R.; Feng, F.; Huang, C.; Gu, J.; Wu, W.; et al. Mitogenome Diversity and Phylogeny of Felidae Species. Diversity 2025, 17, 634. https://doi.org/10.3390/d17090634
Yu J, Yu X, Bi W, Li Z, Zhou Y, Ma R, Feng F, Huang C, Gu J, Wu W, et al. Mitogenome Diversity and Phylogeny of Felidae Species. Diversity. 2025; 17(9):634. https://doi.org/10.3390/d17090634
Chicago/Turabian StyleYu, Jiaojiao, Xiang Yu, Wenlei Bi, Zusheng Li, Yanshan Zhou, Rui Ma, Feifei Feng, Chong Huang, Jiang Gu, Wei Wu, and et al. 2025. "Mitogenome Diversity and Phylogeny of Felidae Species" Diversity 17, no. 9: 634. https://doi.org/10.3390/d17090634
APA StyleYu, J., Yu, X., Bi, W., Li, Z., Zhou, Y., Ma, R., Feng, F., Huang, C., Gu, J., Wu, W., Lan, G., Zhang, L., Chen, C., Xue, F., & Liu, J. (2025). Mitogenome Diversity and Phylogeny of Felidae Species. Diversity, 17(9), 634. https://doi.org/10.3390/d17090634