Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites
Abstract
1. Introduction
2. Materials and Methods
2.1. Film Deposition and Test Sample Preparation
2.2. Film Characterization and Electric Measurement
3. Results and Discussion
3.1. Characterization of the Nano-Crystallited Carbon Film
3.2. Magnetic Sensing Performances in Magnetic Field with Different Intensities
3.3. Magnetic Sensing Performances in Magnetic Field with Different Angles
3.4. The Enhancement of MR Performance by n-Si Substrate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xue, P.; Chen, C.; Diao, D. Highly sensitive flexible strain sensor based on wribkled graphene nanocrystallite carbon film. Carbon 2019, 147, 227–235. [Google Scholar] [CrossRef]
- Zhai, W.; Srikanth, N.; Kong, L.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Park, H.; Park, D.; Jeong, Y.; Kim, D. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 2017, 27, 4178–4185. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.-R.; Govindhan, M.; Chen, A. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors 2015, 15, 22490–22508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Zhang, J.; Han, X.; Li, Q.F.; Wang, Z.L.; Wei, R. Corrosion and salt scale resistance of multilayered diamond-like carbon film in CO2 saturated solutions. Corros. Sci. 2014, 86, 261–267. [Google Scholar] [CrossRef]
- Wang, F.; Liu, S.; Shu, L.; Tao, X.-M. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 2017, 121, 353–367. [Google Scholar] [CrossRef]
- Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010, 49, 2114–2138. [Google Scholar] [CrossRef] [PubMed]
- Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater. 2005, 6, 312–318. [Google Scholar] [CrossRef]
- Wanekaya, A.K. Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Anal. 2011, 136, 4383–4391. [Google Scholar] [CrossRef] [PubMed]
- Obitayo, W.; Liu, T. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors. J. Sens. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.-K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Huang, H.; Liu, Y.; Yang, L.; Wang, F.; Xie, H.; Zhang, Y.; Wei, F.; Wang, S.; Peng, L. Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Res. 2016, 9, 1470–1479. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Colombo, L.; Wallace, R.M.; Ruoff, R.S. Graphene Growth and Device Integration. IEEE Proc. 2013, 101, 1536–1556. [Google Scholar] [CrossRef]
- Kataria, S.; Wagner, S.; Ruhkopf, J.; Gahoi, A.; Pandey, H.; Bornemann, R.; Vaziri, S.; Smith, A.D.; Östling, M.; Lemme, M.C. Chemical vapor deposited graphene: From synthesis to applications. Phys. Status Solidi A 2014, 211, 2439–2449. [Google Scholar] [CrossRef]
- Wang, C.; Diao, D.; Fan, X.; Chen, C. Graphene sheets embedded carbon film prepared by electron irradiation in electron cyclotron resonance plasma. Appl. Phys. Lett. 2012, 100, 231909. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Diao, D. Top surface modification of carbon film on its structure, morphology and electrical resistivity using electron-ion hybrid irradiation in ECR plasma. Surf. Coat. Technol. 2016, 308, 50–56. [Google Scholar] [CrossRef]
- Wang, C.; Diao, D. Magnetic behavior of graphene sheet embedded carbon film originated from graphene crystallite. Appl. Phys. Lett. 2013, 102, 052402. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Diao, D. Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale 2015, 7, 4475–4481. [Google Scholar] [CrossRef]
- Chen, C.; Xue, P.; Fan, X.; Wang, C.; Diao, D. Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sliding surfaces: Short run-in period. Carbon 2018, 130, 215–221. [Google Scholar] [CrossRef]
- Wang, P.; Diao, D. Low friction of graphene nanocrystalline embedded carbon nitride coatings prepared with MCECR plasma sputtering. Surf. Coat. Technol. 2017, 332, 153–160. [Google Scholar] [CrossRef]
- Wang, C.; Diao, D. Self-magnetism induced large magnetoresistance at room temperature region in graphene nanocrystallited carbon film. Carbon 2017, 112, 162–168. [Google Scholar] [CrossRef]
- Wang, C.; Diao, D. Cross-linked graphene layer embedded carbon film prepared using electron irradiation in ECR plasma sputtering. Surf. Coatings Technol. 2011, 206, 1899–1904. [Google Scholar] [CrossRef]
- Liao, Z.-M.; Kumar, S.; Duesberg, G.S.; Cross, G.L.W.; Shvets, I.V.; Wu, H.-C.; Wu, H.-C.; Zhou, Y.-B.; Yu, D.-P.; Wu, H.; et al. Large Magnetoresistance in Few Layer Graphene Stacks with Current Perpendicular to Plane Geometry. Adv. Mater. 2012, 24, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, H.; Shi, W.; Wang, Z.; Zheng, Y.; Zhang, T.; Wang, N.; Tang, Z.; Sheng, P. Graphene magnetoresistance device in van der Pauw geometry. Nano Lett. 2011, 11, 2973–2977. [Google Scholar] [CrossRef] [PubMed]
0 T | 9 T | MR | |
---|---|---|---|
C-film/n-Si device Rd | 380.09 | 684.92 | 80.1% |
n-Si substrate Rsi | 683.15 | 689.83 | 1% |
C-film (calculated) Rc | 856.79 | 92630 | 10711.28% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Guo, J.; Huang, T.; Ding, D.; Wang, C. Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites. Sensors 2019, 19, 4248. https://doi.org/10.3390/s19194248
Dai X, Guo J, Huang T, Ding D, Wang C. Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites. Sensors. 2019; 19(19):4248. https://doi.org/10.3390/s19194248
Chicago/Turabian StyleDai, Xingze, Jing Guo, Tongbin Huang, Dong Ding, and Chao Wang. 2019. "Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites" Sensors 19, no. 19: 4248. https://doi.org/10.3390/s19194248
APA StyleDai, X., Guo, J., Huang, T., Ding, D., & Wang, C. (2019). Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites. Sensors, 19(19), 4248. https://doi.org/10.3390/s19194248