Deep-Learning-Based Adaptive Symbol Decision for Visual MIMO System with Variable Channel Modeling
Abstract
:1. Introduction
2. Deep-Learning Neural Networks for Adaptive Symbol Decision
2.1. Deep-Learning Neural Network Architecture
2.2. Channel Identification Module
2.3. Symbol Decision Module
3. Variable Channel Modeling
3.1. Limitations of Existing Channel Modeling Methods
3.2. Proposed Channel Modeling Method
3.3. Channel Modeling Verification
4. Simulation and Experimental Results
4.1. Experimental Environment
4.2. SER Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Sugiyama, H.; Haruyama, S.; Nakagawa, M. Experimental Investigation of Modulation Method for Visible-Light Communications. IEICE Trans. Commun. 2006, E89-B, 3393–3400. [Google Scholar] [CrossRef]
- Yokoi, A. Color multiplex coding for VLC. In IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs); Samsung Yokohama Research Institute: Yokohama, Japan, 2008. [Google Scholar]
- Cevik, T.; Yilmaz, S. An Overview of Visible Light Communication Systems. Int. J. Comput. Netw. Commun. 2015, 7, 139–150. [Google Scholar] [CrossRef]
- Katz, M.D.; O’Brien, D. Exploiting novel concepts for visible light communications: From light-based IoT to living surfaces. Optik 2019, 195, 163176. [Google Scholar] [CrossRef]
- Warmerdam, K.; Pandharipande, A.; Caicedo, D. Connectivity in IoT indoor lighting systems with visible light communications. In Proceedings of the 2015 IEEE Online Conference on Green Communications (OnlineGreenComm), Piscataway, NJ, USA, 10–12 November 2015; pp. 47–52. [Google Scholar]
- Das, P.; Kim, B.-Y.; Park, Y.; Kim, K.-D. Color-independent VLC based on a color space without sending target color information. Opt. Commun. 2013, 286, 69–73. [Google Scholar] [CrossRef]
- Yuan, W.; Dana, K.; Varga, M.; Ashok, A.; Gruteser, M.; Mandayam, N. Computer vision methods for visual MIMO optical system. In Proceedings of the CVPR 2011 Workshops, Colorado Springs, CO, USA, 20–25 June 2011; pp. 37–43. [Google Scholar]
- Das, P.; Park, Y.; Kim, K.-D. Performance analysis of color-independent visible light communication using a color-space-based constellation diagram and modulation scheme. Wirel. Pers. Commun. 2014, 74, 665–682. [Google Scholar] [CrossRef]
- Das, P.; Park, Y.; Kim, K.-D. Performance improvement of color space based VLC modulation schemes under color and intensity variation. Opt. Commun. 2013, 303, 1–7. [Google Scholar] [CrossRef]
- Ashokz, A.; Gruteserz, M.; Mandayamz, N.; Dana, K. Characterizing Multiplexing and Diversity in Visual MIMO. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [Google Scholar]
- Hu, W.; Gu, H.; Pu, Q. Lightsync: Unsynchronizedvisual communication over screen-camera links. In Proceedings of the 19th Annual International Conference on Mobile Computing Networking, MobiCom’13, New York, NY, USA, 30 September–4 October 2013; pp. 15–26. [Google Scholar]
- Hu, W.; Mao, J.; Huang, Z.; Xue, Y.; She, J.; Bian, K.; Shen, G. Strata: Layered coding for scalablevisual communication. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom’14, New York, NY, USA, 7–11 September 2014; pp. 79–90. [Google Scholar]
- Kim, J.-E.; Kim, J.-W.; Park, Y.; Kim, K.-D. Color-Space-Based Visual-MIMO for V2X Communication. Sensors 2016, 16, 591. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.-H.; Kim, J.-E.; Kim, Y.-H.; Kim, K.-D. Color-Independent Visible Light Communications Based on Color Space: State of the Art and Potentials. Electronics 2018, 7, 190. [Google Scholar] [CrossRef]
- Kim, J.-E.; Kim, J.-W.; Park, Y.; Kim, K.-D. Applicability of color-independent visual-MIMO for V2X communication. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks (ICUFN), Sapporo, Japan, 7–10 July 2015. [Google Scholar]
- Kim, J.-E.; Kim, K.-D. Symbol decision method of color-independent visual-MIMO system using a dynamic palette. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 11–13 December 2017; pp. 1–4. [Google Scholar]
- Aldhahi, W.; Kim, J.-E.; Kim, K.-D. Performance Improvement of Color-Independent Visual-MIMO System Using Color Quantization Based Palette. JKICS 2017, 42, 2418–2424. [Google Scholar]
- Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: A Benchmark. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Kim, J.-W.; Kim, K.-D. LEA Detection and Tracking Method for Color-Independent Visual-MIMO. Sensors 2016, 16, 1027. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E. The Performance Analysis of Color Independent Visual-MIMO based on Color Space. Master’s Thesis, Kookmin University, Seoul, Korea, 2015. [Google Scholar]
- Joblove, G.H.; Greenberg, D. Color spaces for computer graphics. ACM SIGGRAPH Comput. Graph. 1978, 12, 20–25. [Google Scholar] [CrossRef]
- Berns, R.S. Principles of Color Technology; John Wiley&Sons: New York, NY, USA, 2000. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
Figure 9 | HSV Model | RGB Model | CIE 1931 Model | ||||||
---|---|---|---|---|---|---|---|---|---|
H (°) | S (%) | V (%) | R | G | B | x | y | Y | |
Figure 9a | 246 | 100 | 100 | 26 | 0 | 255 | 0.1691 | 0.0099 | 0.0120 |
Figure 9b | 240 | 100 | 23.5 | 0 | 0 | 60 | 0.1670 | 0.0090 | 0.0004 |
Figure 9c | 180 | 9.4 | 100 | 231 | 255 | 255 | 0.3151 | 0.3364 | 0.9656 |
Figure 9d | 344 | 87.1 | 39.6 | 101 | 13 | 37 | 0.6353 | 0.2302 | 0.0243 |
Figure 9e | 352 | 90.6 | 12.5 | 32 | 3 | 7 | 0.6972 | 0.2537 | 0.0019 |
Figure 9f | 0 | 0 | 100 | 255 | 255 | 255 | 0.3333 | 0.3333 | 1.0000 |
0.01 | 0.01 | 0.2 | 0.2 | 0.01 | 0.01 | 0.01 |
Parameter | Value |
---|---|
Color space | CIE 1931 |
RGB model | CIE RGB |
Reference white | E |
LED array size | 16 (4 × 4) |
Number of constellation points | 4 |
Intensity (Y value) | 0.165 |
Three positions of RGB LEDs in CIE 1931 space | R: (0.735, 0.265) G: (0.274, 0.717) B: (0.167, 0.009) |
Target Color | Symbol | x | y | R | G | B | |
---|---|---|---|---|---|---|---|
x | y | ||||||
0.40 | 0.33 | s1 | 0.50 | 0.33 | 168 | 96 | 82 |
s2 | 0.40 | 0.43 | 118 | 112 | 72 | ||
s3 | 0.30 | 0.33 | 97 | 115 | 117 | ||
s4 | 0.40 | 0.23 | 168 | 95 | 138 |
Channel Distortion | Channel Environment ID | ||||
---|---|---|---|---|---|
0 | 1 | … | 19 | 20 | |
Std. of x, y noise distribution | 0.0 | 0.02 | … | 0.38 | 0.40 |
Std. of S, V noise distribution | 0.0 | 0.02 | … | 0.38 | 0.40 |
Std. of AWGN | 0.0 | 0.02 | … | 0.38 | 0.40 |
Number of frames | 200 | 200 | … | 200 | 200 |
Sample frames |
Channel Distortion | Channel Environment ID | ||||
---|---|---|---|---|---|
0 | 1 | … | 19 | 20 | |
Std. of x, y noise distribution | 0.01 | 0.03 | … | 0.39 | 0.41 |
Std. of S, V noise distribution | 0.01 | 0.03 | … | 0.39 | 0.41 |
Std. of AWGN | 0.01 | 0.03 | … | 0.39 | 0.41 |
Number of frames | 200 | 200 | … | 200 | 200 |
Sample frames |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-E.; Kwon, T.-H.; Kim, K.-D. Deep-Learning-Based Adaptive Symbol Decision for Visual MIMO System with Variable Channel Modeling. Sensors 2022, 22, 7176. https://doi.org/10.3390/s22197176
Kim J-E, Kwon T-H, Kim K-D. Deep-Learning-Based Adaptive Symbol Decision for Visual MIMO System with Variable Channel Modeling. Sensors. 2022; 22(19):7176. https://doi.org/10.3390/s22197176
Chicago/Turabian StyleKim, Jai-Eun, Tae-Ho Kwon, and Ki-Doo Kim. 2022. "Deep-Learning-Based Adaptive Symbol Decision for Visual MIMO System with Variable Channel Modeling" Sensors 22, no. 19: 7176. https://doi.org/10.3390/s22197176
APA StyleKim, J. -E., Kwon, T. -H., & Kim, K. -D. (2022). Deep-Learning-Based Adaptive Symbol Decision for Visual MIMO System with Variable Channel Modeling. Sensors, 22(19), 7176. https://doi.org/10.3390/s22197176