Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm
Abstract
:1. Introduction
2. The Principle of the MDARFICS
3. Proposed Variable-Step-Size LMS Algorithm
3.1. Convergence of Step Size
3.2. Performance of IHVSS-LMS Algorithm
3.2.1. Stability
3.2.2. Steady-State Error
4. MDARFICS Based on the IHVSS-LMS Algorithm
4.1. Convergence Speed
4.2. ICR
4.3. Complexity Analysis
5. Simulations and Discussions
5.1. Analysis of the Influence of Parameters on the IHVSS-LMS Algorithm
5.2. Robustness Analysis of the IHVSS-LMS Algorithm
5.3. Comparison of Different Algorithms of the MDARFICS
6. Experiment Verification
6.1. Influence of Algorithm Parameters on the MDARFICS
6.2. Convergence Speed
6.3. ICR
7. Conclusions
- Compared with the four existing VSSLMS algorithms, the IHVSS-LMS algorithm has a faster convergence speed, lower steady-state error, and stronger robustness. The IHVSS-LMS algorithm has low computational complexity.
- The IHVSS-LMS algorithm is applied to the MDARFICS. The convergence speed can be improved by adjusting parameter k of the IHVSS-LMS algorithm, and the steady-state performance can be improved by adjusting parameter α. Compared with existing algorithms, the IHVSS-LMS algorithm can improve the convergence speed of the MDARFICS by at least three times and the ICR by more than 3 dB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.C.; Cheng, C.H.; Wu, T.L. A synthesized method for common-mode noise suppression filters with specified common-mode and differential mode response. IEEE Trans. Electromagn. Compat. 2019, 61, 893–902. [Google Scholar] [CrossRef]
- Elsayed, A.; Ahmed, M.E. All-Digital self-interference cancellation technique for full-duplex systems. IEEE Trans. Wirel. Commun. 2015, 14, 3519–3532. [Google Scholar]
- Korpi, D.; Anttila, L.; Valkama, M. Nonlinear Self-Interference Cancellation in MIMO Full-Duplex Transceivers Under Crosstalk. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 24. [Google Scholar] [CrossRef]
- Ge, S.; Meng, J.; Xing, J.; Tang, J.; Gou, C. Digital-domain assisted RF cancellation of nonlinear wideband self-interference for co-site wireless communication systems. In Proceedings of the 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Singapore, 14–18 May 2018; pp. 98–103. [Google Scholar]
- Ge, S.; Meng, J.; Xing, J.; Liu, Y.; Gou, C. A digital-domain controlled nonlinear rf interference cancellation scheme for co-site wideband radios. IEEE Trans. Electromagn. Compat. 2018, 61, 1647–1654. [Google Scholar] [CrossRef]
- Le, A.T.; Huang, X.; Guo, Y.J.; Vardaxoglou, J.Y.C. Frequency-domain characterization and performance bounds of ALMS loop for RF self-interference cancellation. IEEE Trans. Commun. 2018, 67, 682–692. [Google Scholar] [CrossRef]
- Lu, H.; Huang, C.; Shao, S.; Tang, Y. Novel multi-tap analog self-interference cancellation architecture with shared phase-shifter for full-duplex communications. Sci. China Inf. Sci. 2017, 60, 139–154. [Google Scholar] [CrossRef]
- Spencer, Q.H.; Jeffs, B.D.; Jensen, M.A.; Swindlehurst, A.L. Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE J. Sel. Areas Commun. 2000, 18, 347–360. [Google Scholar] [CrossRef]
- Hwang, I.; Song, B.; Nguyen, C.; Soliman, S.S. Digitally controlled analog wideband interference cancellation for in-device spectrum sharing and aggregation. IEEE J. Sel. Areas Commun. 2016, 34, 2838–2850. [Google Scholar] [CrossRef]
- King, B.; Xia, J.; Boumaiza, S. Digitally assisted RF-analog self interference cancellation for wideband full-duplex radios. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 336–340. [Google Scholar] [CrossRef]
- Tamminen, J.; Turunen, M.; Korpi, D.; Huusari, T.; Choi, Y.S.; Talwar, S.; Valkama, M. Digitally-controlled RF self-interference canceller for full-duplex radios. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 783–787. [Google Scholar]
- Kang, Y.Y.; Kwak, B.J.; Cho, J.H. An Optimal Full-Duplex AF Relay for Joint Analog and Digital Domain Self-Interference Cancellation. IEEE Trans. Commun. 2014, 62, 2758–2772. [Google Scholar] [CrossRef]
- Qin, H.; Meng, J.; He, F.; Wang, Q.; Li, B. Design and analysis of digital-to-analog hybrid RF interference cancellation system based on multitap structure. IEEE Trans. Microw. Theory Techn. 2021, 69, 4300–4314. [Google Scholar] [CrossRef]
- Widrow, B.; Glover, J.R.; McCool, J.M.; Kaunitz, J.; Williams, C.S.; Hearn, R.H.; Zeidler, J.R.; Dong, E., Jr.; Goodlin, R.C. Adaptive noise cancelling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Seo, B.; Ahn, W.G.; Jeong, C.; Kim, H.M. Fast convergent LMS adaptive receiver for MC-CDMA systems with space-time block coding. IEEE Commun. Lett. 2010, 14, 737–739. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chin, F.P. Coherent LMS algorithms. IEEE Commun. Lett. 2000, 4, 92–94. [Google Scholar] [CrossRef]
- Jalal, B.; Yang, X.; Wu, X.; Long, T.; Sarkar, T.K. Efficient direction of arrival estimation method based on variable step size LMS algorithm. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1576–1580. [Google Scholar] [CrossRef]
- Luo, X.; Jia, Z.; Wang, Q. A new variable step size LMS adaptive filtering algorithm. Acta Electron. Sin. 2006, 34, 1123–1126. [Google Scholar]
- Jalal, B.; Yang, X.; Liu, Q.; Long, T.; Sarkar, T.K. Fast and robust variable step size LMS algorithm for adaptive beamforming. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1206–1210. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H.; Zhang, Q. Improved variable step-size LMS algorithm based on hyperbolic tangent function. J. Commun. 2020, 41, 1–8. [Google Scholar]
- Tian, F.Q.; Luo, R.; Li, K.Y.; Ding, Q.X. New variable step-size LMS algorithm based on modified hyperbolic tangent function. Syst. Eng. Electron. 2012, 34, 1758–1763. [Google Scholar]
- Huang, H.C.; Lee, J. A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. Signal Process. 2012, 60, 2055–2060. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, H.; Quan, H. Iteration-based variable step-size LMS algorithm and its performance analysis. J. Electron. Inf. Technol. 2015, 37, 1674–1680. [Google Scholar]
- Lu, B.; Feng, C.; Long, G. A new variable step-size LMS adaptive algorithm based on marr function. In Proceedings of the 2013 International Conference on Information Technology and Applications, Chengdu, China, 16–17 November 2013; pp. 212–217. [Google Scholar]
- He, D.; Wang, M.; Han, Y.; Hui, S. Variable step size LMS adaptive algorithm based on exponential function. In Proceedings of the 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP), Weihai, China, 28–30 September 2019; pp. 473–477. [Google Scholar]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-Based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2085–2088. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; De Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Qin, H.; He, F.; Meng, J.; Wang, Q. Analysis and optimal design of radio-frequency interference adaptive cancellation system with delay mismatch. IEEE Trans. Electromagn. Compat. 2019, 61, 2015–2023. [Google Scholar] [CrossRef]
- He, F.; Liu, F.; Tang, J.; Li, Y. Modeling and performance analysis of wireless communication devices for a ship. Mar. Electr. Electron. Eng. 2014, 34, 5–8. [Google Scholar]
- Wu, X.; Shen, Y.; Tang, Y.; Zhou, J.; Xiao, S. Measurement and modeling of co-time co-frequency single antenna full-duplex self-interference channel in indoor environment. Syst. Eng. Electron. 2015, 37, 2148–2155. [Google Scholar]
- Bershad, N.J.; Eweda, E.; Bermudez, J.C. Stochastic analysis of the LMS and NLMS algorithms for cyclostationary white gaussian inputs. IEEE Trans. Signal Process. 2014, 62, 2238–2249. [Google Scholar] [CrossRef]
- Choi, Y.S.; Shirani-Mehr, H. Simultaneous transmission and reception: Algorithm, design and system level performance. IEEE Trans. Wirel. Commun. 2013, 12, 5992–6010. [Google Scholar] [CrossRef]
- Simon, H. LMS algorithm. In Adaptive Filter Theory, 5th ed.; Publishing House of Electronics Industry: Beijing, China, 2010; pp. 206–212. [Google Scholar]
- Aboulnasr, T.; Mayyas, K. A robust variable step-size LMS-type algorithm: Analysis and simulations. IEEE Trans. Signal Process. 1997, 45, 631–639. [Google Scholar] [CrossRef]
Algorithms | Step Size | Parameters | SNR (30 dB) | Multiplication | Additions |
---|---|---|---|---|---|
[19] | 0° | 2N + 5 | 2N + 4 | ||
[21] | 0.2, 1000 100, 1000 | 2N + 3 | 2N + 8 | ||
[22] | 0.99, 30 | 3N + 4 | 5N + 12 | ||
[23] | 85 | 2N + 4 | 2N + 6 | ||
Proposed | 0.8, 100, 0.98 | 2N + 4 | 2N + 1 |
Iteration Number | Weight Coefficient |
---|---|
0 | [0.227, 0.460, 0.688, 0.460, 0.227]T |
500 | [−0.298, 0.225, 0.849, 0.225, −0.298]T |
1000 | [1.49, −1.125, −4.245, −1.125, 1.49]T |
1500 | [−2.98, 2.25, 8.49, 2.25, −2.98]T |
Parameter | Value |
---|---|
Tap number | 3 |
Transmitter power | −10 dBm |
Frequency | 2.4 GHz |
Interference signal bandwidth | 30 MHz |
ADC bit | 14 bit |
DAC bit | 16 bit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Qin, H.; He, F.; Zhang, Y.; Wang, Q.; Meng, J. Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm. Sensors 2023, 23, 7871. https://doi.org/10.3390/s23187871
Lu Q, Qin H, He F, Zhang Y, Wang Q, Meng J. Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm. Sensors. 2023; 23(18):7871. https://doi.org/10.3390/s23187871
Chicago/Turabian StyleLu, Qiaran, Huanding Qin, Fangmin He, Yunshuo Zhang, Qing Wang, and Jin Meng. 2023. "Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm" Sensors 23, no. 18: 7871. https://doi.org/10.3390/s23187871
APA StyleLu, Q., Qin, H., He, F., Zhang, Y., Wang, Q., & Meng, J. (2023). Wideband Interference Cancellation System Based on a Fast and Robust LMS Algorithm. Sensors, 23(18), 7871. https://doi.org/10.3390/s23187871