Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy
Abstract
:1. Introduction
2. Methods
2.1. Gated Recurrent Unit with Attention Mechanism
2.2. Deep Learning Attention Model for EMG Analysis
2.3. Data Collection and Pre-Processing
2.3.1. Data Collection
2.3.2. Preprocessing
2.4. Experimental Design
2.4.1. Experiment 1: Comparative Analysis and Sensitivity Study
2.4.2. Experiment 2: Transfer Learning
- Initial training: The GRU-AM model was trained using all trials from the four healthy participants in the open-source dataset.
- Usage by NIH Subject No. 1: The GRU-AM model was further trained with one trial of subject-specific data involving the same number of strides as used in the open-source dataset participants’ trials (10 strides). Subsequently, the remaining data from each individual were used for knee angle estimation, with sequential training conducted every 3 strides. The evaluation of this process included monitoring the CC and RMSE for each stride.
- The same procedure as Step 2, but applied to NIH Subject No. 2 after the initial training in Step 1.
- The same procedure as Step 2, but applied to NIH Subject No. 3 after the initial training in Step 1.
- The same procedure as Step 2, but applied to NIH Subject No. 4 after the initial training in Step 1.
2.4.3. Experiment 3: Progressive Adaptation in a Participant with CP
3. Results
3.1. Experiment 1: Comparative Analysis and Sensitivity Study
3.2. Experimental 2: Transfer Learning
3.3. Experiment 3: Progressive Adaptation in Participants with CP
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teramae, T.; Noda, T.; Morimoto, J. EMG-based model predictive control for physical human–robot interaction: Application for assist-as-needed control. IEEE Robot. Autom. Lett. 2017, 3, 210–217. [Google Scholar] [CrossRef]
- Xiong, D.; Zhang, D.; Chu, Y.; Zhao, Y.; Zhao, X. Intuitive Human-Robot-Environment Interaction with EMG Signals: A Review. IEEE/CAA J. Autom. Sin. 2024, 11, 1075–1091. [Google Scholar] [CrossRef]
- Lu, C.; Qi, Q.; Liu, Y.; Li, D.; Xian, W.; Wang, Y.; Chen, C.; Xu, X. Exoskeleton Recognition of Human Movement Intent based on Surface Electromyographic Signals. IEEE Access 2024, 12, 53986–54004. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Ma, K.; Huang, S.; Li, G.; Cai, S.; Xie, L. A continuous estimation model of upper limb joint angles by using surface electromyography and deep learning method. IEEE Access 2019, 7, 174940–174950. [Google Scholar] [CrossRef]
- Molinaro, D.D.; Kang, I.; Young, A.J. Estimating human joint moments unifies exoskeleton control, reducing user effort. Sci. Robot. 2024, 9, eadi8852. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Hudgins, B.; Parker, P.; Scott, R.N. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 1993, 40, 82–94. [Google Scholar] [CrossRef]
- Billot, M.; Simoneau, E.M.; Van Hoecke, J.; Martin, A. Age-related relative increases in electromyography activity and torque according to the maximal capacity during upright standing. Eur. J. Appl. Physiol. 2010, 109, 669–680. [Google Scholar] [CrossRef]
- Lencioni, T.; Carpinella, I.; Rabuffetti, M.; Marzegan, A.; Ferrarin, M. Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks. Sci. Data 2019, 6, 309. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef]
- Koike, Y. Motion Estimation from Surface EMG Signals Using Multi-Array Electrodes. In Biomedical Engineering; Jenny Stanford Publishing: New Delhi, India, 2024; pp. 133–151. [Google Scholar]
- Toledo-Perez, D.C.; Rodriguez-Resendiz, J.; Gomez-Loenzo, R.A. A study of computing zero crossing methods and an improved proposal for EMG signals. IEEE Access 2020, 8, 8783–8790. [Google Scholar] [CrossRef]
- Aviles, M.; Sánchez-Reyes, L.-M.; Fuentes-Aguilar, R.Q.; Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J. A Novel Methodology for Classifying EMG Movements Based on SVM and Genetic Algorithms. Micromachines 2022, 13, 2108. [Google Scholar] [CrossRef] [PubMed]
- Aviles, M.; Rodríguez-Reséndiz, J.; Ibrahimi, D. Optimizing EMG classification through metaheuristic algorithms. Technologies 2023, 11, 87. [Google Scholar] [CrossRef]
- Aviles, M.; Alvarez-Alvarado, J.M.; Robles-Ocampo, J.-B.; Sevilla-Camacho, P.Y.; Rodríguez-Reséndiz, J. Optimizing RNNs for EMG Signal Classification: A Novel Strategy Using Grey Wolf Optimization. Bioengineering 2024, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Pérez, D.C.; Aviles, M.; Toledo-Pérez, R.A.; Rodríguez-Reséndiz, J. Feature set to sEMG classification obtained with Fisher Score. IEEE Access 2024, 12, 13962–13970. [Google Scholar] [CrossRef]
- Han, J.; Ding, Q.; Xiong, A.; Zhao, X. A state-space EMG model for the estimation of continuous joint movements. IEEE Trans. Ind. Electron. 2015, 62, 4267–4275. [Google Scholar] [CrossRef]
- Pang, M.; Guo, S.; Huang, Q.; Ishihara, H.; Hirata, H. Electromyography-based quantitative representation method for upper-limb elbow joint angle in sagittal plane. J. Med. Biol. Eng. 2015, 35, 165–177. [Google Scholar] [CrossRef]
- Yeo, S.-H.; Verheul, J.; Herzog, W.; Sueda, S. Numerical instability of Hill-type muscle models. J. R. Soc. Interface 2023, 20, 20220430. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guan, X.; Zou, K.; Xu, C. Estimation of knee movement from surface EMG using random forest with principal component analysis. Electronics 2019, 9, 43. [Google Scholar] [CrossRef]
- Jiang, N.; Englehart, K.; Parker, P. Estimating forces at multiple degrees of freedom from surface EMG using non-negative matrix factorization for myoelectric control. In Proceedings of the 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25–28 October 2008; pp. 1–5. [Google Scholar]
- Tanzarella, S.; Di Domenico, D.; Forsiuk, I.; Boccardo, N.; Chiappalone, M.; Bartolozzi, C.; Semprini, M. Arm muscle synergies enhance hand posture prediction in combination with forearm muscle synergies. J. Neural Eng. 2024, 21, 026043. [Google Scholar] [CrossRef]
- Di, A.; Benjamin, J.F. Comparison of Synergy Extrapolation and Static Optimization for Estimating Multiple Unmeasured Muscle Activations during Walking. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Shone, F.; Li, Z.; Frangi, A.F.; Xie, S.Q.; Zhang, Z.-Q. Physics-informed deep learning for musculoskeletal modeling: Predicting muscle forces and joint kinematics from surface EMG. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Zhang, D.; Zhao, X.; Zhao, Y. Deep learning for EMG-based human-machine interaction: A review. IEEE/CAA J. Autom. Sin. 2021, 8, 512–533. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Li, Q.; Song, Y.; Hou, Z. Estimation of lower limb periodic motions from sEMG using least squares support vector regression. Neural Process. Lett. 2015, 41, 371–388. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, Y.; Gao, Y.; Zhu, Y.; Zhao, J. Continuous estimation of joint angle from electromyography using multiple time-delayed features and random forests. Biomed. Signal Process. Control 2018, 39, 303–311. [Google Scholar] [CrossRef]
- Zhang, F.; Li, P.; Hou, Z.-G.; Lu, Z.; Chen, Y.; Li, Q.; Tan, M. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing 2012, 78, 139–148. [Google Scholar] [CrossRef]
- Li, W.; Liu, K.; Sun, Z.; Wang, G.; Li, F.; Zhang, X.; Zhou, Y. Continuous estimation of human knee-Joint angles from SEMG using wavelet neural network. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 606–611. [Google Scholar]
- Tahamipour-Z, S.M.; Kardan, I.; Kalani, H.; Akbarzadeh, A. A PSO-MLPANN hybrid approach for estimation of human joint torques from sEMG signals. In Proceedings of the 2020 8th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Mashhad, Iran, 2–4 September 2020; pp. 186–190. [Google Scholar]
- Huang, Y.; He, Z.; Liu, Y.; Yang, R.; Zhang, X.; Cheng, G.; Yi, J.; Ferreira, J.P.; Liu, T. Real-time intended knee joint motion prediction by deep-recurrent neural networks. IEEE Sens. J. 2019, 19, 11503–11509. [Google Scholar] [CrossRef]
- Zangene, A.R.; Abbasi, A.; Nazarpour, K. Estimation of lower limb kinematics during squat task in different loading using sEMG activity and deep recurrent neural networks. Sensors 2021, 21, 7773. [Google Scholar] [CrossRef]
- Sohane, A.; Agarwal, R. A single platform for classification and prediction using a hybrid bioinspired and deep neural network (PSO-LSTM). Mapan 2022, 37, 47–58. [Google Scholar] [CrossRef]
- Wang, X.; Dong, D.; Chi, X.; Wang, S.; Miao, Y.; Gavrilov, A.I. sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network. Biomed. Signal Process. Control 2021, 68, 102781. [Google Scholar] [CrossRef]
- Zangene, A.R.; Samuel, O.W.; Abbasi, A.; McEwan, A.A.; Asogbon, M.G.; Li, G.; Nazarpour, K. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomed. Signal Process. Control 2023, 86, 105103. [Google Scholar] [CrossRef]
- Geng, Y.; Yu, Z.; Long, Y.; Qin, L.; Chen, Z.; Li, Y.; Guo, X.; Li, G. A CNN-attention network for continuous estimation of finger kinematics from surface electromyography. IEEE Robot. Autom. Lett. 2022, 7, 6297–6304. [Google Scholar] [CrossRef]
- Li, J.; Liang, T.; Zeng, Z.; Xu, P.; Chen, Y.; Guo, Z.; Liang, Z.; Xie, L. Motion intention prediction of upper limb in stroke survivors using sEMG signal and attention mechanism. Biomed. Signal Process. Control 2022, 78, 103981. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Abdelhady, M.; Damiano, D.L.; Bulea, T.C. Attention-based deep recurrent neural network to estimate knee angle dur-ing walking from lower-limb EMG. In Proceedings of the International Consortium for Rehabilitation Robotics, Singapore, 24–28 September 2023. [Google Scholar]
- Camargo, J.; Ramanathan, A.; Flanagan, W.; Young, A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. J. Biomech. 2021, 119, 110320. [Google Scholar] [CrossRef]
- Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocomputing 2020, 388, 269–279. [Google Scholar] [CrossRef]
- Chandra, R.; Goyal, S.; Gupta, R. Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access 2021, 9, 83105–83123. [Google Scholar] [CrossRef]
- Luong, M.-T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025. [Google Scholar]
- Rémy, P. Keras Attention Mechanis. 2023. Available online: https://github.com/philipperemy/keras-attention-mechanism (accessed on 13 March 2023).
- Zarzycki, K.; Ławryńczuk, M. Advanced predictive control for GRU and LSTM networks. Inf. Sci. 2022, 616, 229–254. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Bulea, T.C.; Molazadeh, V.; Thurston, M.; Damiano, D.L. Interleaved Assistance and Resistance for Exoskeleton Mediated Gait Training: Validation, Feasibility and Effects. In Proceedings of the 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Republic of Korea, 21–24 August 2022; pp. 1–8. [Google Scholar]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Soselia, D.; Wang, R.; Gutierrez-Farewik, E.M. Lower-limb joint torque prediction using LSTM neural networks and transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 600–609. [Google Scholar] [CrossRef] [PubMed]
Number of Strides | Step Length 1 (m) | Gait Speed (m/s) | ||
---|---|---|---|---|
HV | 1 | 60 2 | 0.52 ± 0.02 | 0.91 ± 0.04 |
2 | 60 | 0.49 ± 0.02 | 0.88 ± 0.03 | |
3 | 60 | 0.51 ± 0.01 | 0.87 ± 0.02 | |
4 | 60 | 0.56 ± 0.02 | 1.00 ± 0.05 | |
CP 3 | V1 | 15 | 0.20 ± 0.04 | 0.14 ± 0.03 |
V2 | 30 | 0.19 ± 0.02 | 0.37 ± 0.16 | |
V3 | 30 | 0.17 ± 0.04 | 0.52 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhady, M.; Damiano, D.L.; Bulea, T.C. Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy. Sensors 2024, 24, 4217. https://doi.org/10.3390/s24134217
Abdelhady M, Damiano DL, Bulea TC. Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy. Sensors. 2024; 24(13):4217. https://doi.org/10.3390/s24134217
Chicago/Turabian StyleAbdelhady, Mohamed, Diane L. Damiano, and Thomas C. Bulea. 2024. "Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy" Sensors 24, no. 13: 4217. https://doi.org/10.3390/s24134217
APA StyleAbdelhady, M., Damiano, D. L., & Bulea, T. C. (2024). Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy. Sensors, 24(13), 4217. https://doi.org/10.3390/s24134217