Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Experimental Methods
2.3.1. Electrode Modification
2.3.2. SWASV Determination of Pb2+ and Cu2+
2.4. Real Sample Analysis
3. Results and Discussion
3.1. Investigation of NPG/SPCE Preparation
3.1.1. Study on Cyclic Voltammetry Characteristics of SPCE in Deposition Solution
3.1.2. Optimization of Deposition Potential and Deposition Time
3.2. Morphological Characterization and Element Analysis of SPCE
3.3. Electrochemical Characterization of NPG/SPCE
3.3.1. Electrode Evaluation with Cyclic Voltammetry
3.3.2. Comparison of Electrode Performance for Heavy Metal Detection
3.4. Optimization of Experimental Parameters in SWASV
3.4.1. Supporting Electrolyte
3.4.2. Deposition Potential and Deposition Time
3.4.3. Stirring Rate
3.5. Analytical Performance of NPG/SPCE for the Detection of Pb2+ and Cu2+
3.6. Recovery Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Aneta, Z.; Magdalena, S.; Ewa, S.; Kinga, S. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Poll. 2019, 230, 164. [Google Scholar]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.M.S.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Env. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef]
- Karim, N. Copper and human health—A review. J. Bahria Univ. Med. Dent. Coll. 2018, 8, 117–122. [Google Scholar] [CrossRef]
- Musikavanhu, B.; Pan, T.; Ma, Q.; Liang, Y.; Xue, Z.; Feng, L.; Zhao, L. Dual detection of Hg2+ and Pb2+ by a coumarin-functionalized Schiff base in environmental and biosystems. Spectrochim. Acta A 2024, 313, 124101. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, X.; Zhao, S. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem. J. 2021, 170, 106726. [Google Scholar] [CrossRef]
- Wang, W.; Yi, Z.; Liang, Q.; Zhen, J.; Wang, R.; Li, M.; Zeng, L.; Li, Y. In situ deposition of gold nanoparticles and L-Cysteine on screen-printed carbon electrode for rapid electrochemical determination of As(III) in water and tea. Biosensors 2023, 13, 130. [Google Scholar] [CrossRef]
- Chen, X.; Yi, Z.; Peng, G.; Yuan, Z.; Wang, R.; Li, Y. In-situ deposition of gold nanoparticles on screen-printed carbon electrode for rapid determination of Hg2+ in water samples. Int. J. Electrochem. Sci. 2024, 19, 100544. [Google Scholar] [CrossRef]
- Lu, Z.; Lin, X.; Zhang, J.; Dai, W.; Liu, B.; Mo, G.; Ye, J.; Ye, J. Ionic liquid/poly-lcysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim. Acta 2019, 295, 514–523. [Google Scholar] [CrossRef]
- Hwang, J.H.; Pathak, P.; Wang, X.; Rodriguez, K.L.; Park, J.; Cho, H.J.; Lee, W.H. A novel Fe-Chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate. Sens. Actuat. B Chem. 2019, 294, 89–97. [Google Scholar] [CrossRef]
- Gu, H.; Yang, Y.; Chen, F.; Liu, T.; Jin, J.; Pan, Y.; Miao, P. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ(f) exonuclease-mediated amplification. Chem. Eng. J. 2018, 353, 305–310. [Google Scholar] [CrossRef]
- Lu, Z.; Dai, W.; Liu, B.; Mo, G.; Zhang, J.; Ye, J.; Ye, J. One pot synthesis of dandelionlike polyaniline coated gold nanoparticles composites for electrochemical sensing applications. J. Colloid Interface Sci. 2018, 525, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yang, F.; Yao, Y.; Li, J.; Cheng, S.; Dong, H.; Zhang, H.; Xiang, Y.; Sun, X. Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. J. Hazard. Mater. 2021, 401, 123794. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Kumar, A.; Da Silva, M.I.; Toma, H.E.; Martins, P.R.; Araki, K.; Bertotti, M.; Angnes, L. Nanoporous Gold-Based Materials for Electrochemical Energy Storage and Conversion. Energy Technol. 2021, 9, 2000927. [Google Scholar] [CrossRef]
- Bhattarai, J.K.; Neupane, D.; Nepal, B.; Mikhaylov, V.; Demchenko, A.V.; Stine, K.J. Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. Nanomaterials 2018, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Saravia, L.P.; Sukeri, A.; Bertotti, M. Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. Int. J. Hydrogen Energy 2019, 44, 15001–15008. [Google Scholar] [CrossRef]
- Sukeri, A.; Bertotti, M. Electrodeposited honeycomb-like dendritic porous gold surface: An efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. J. Electroanal. Chem. 2017, 805, 18–23. [Google Scholar] [CrossRef]
- He, F.; Qiao, Z.; Qin, X.; Chao, L.; Tan, Y.; Xie, Q.; Yao, S. Dynamic gas bubble template electrodeposition mechanisms and amperometric glucose sensing performance of three kinds of three-dimensional honeycomb like porous nano-golds. Sens. Actuat. B Chem. 2019, 296, 126679. [Google Scholar] [CrossRef]
- Zaki, M.H.M.; Mohd, Y.; Chin, L.Y. Surface Properties of Nanostructured Gold Coatings Electrodeposited at Different Potentials. Int. J. Electrochem. Sci. 2020, 15, 11401–11415. [Google Scholar] [CrossRef]
- Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J. Electroanal. Chem. 2012, 664, 46–52. [Google Scholar] [CrossRef]
- Komsiyska, L.; Staikov, G. Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4]−. Electrochim. Acta 2008, 54, 168–172. [Google Scholar] [CrossRef]
- Plowman, B.J.; Jones, L.A.; Bhargava, S.K. Building with bubbles: The formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem. Commun. 2015, 51, 4331–4346. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zalm, J.; Chen, S.; Huang, W.; Chen, A. Review—Recent Advances in the Development of Nanoporous Au for Sensing Applications. J. Electrochem. Soc. 2020, 167, 037532. [Google Scholar] [CrossRef]
- Nikolić, N.D.; Popov, K.I.; Pavlović, L.J.; Pavlović, M.G. The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential. J. Electroanal. Chem. 2006, 588, 88–98. [Google Scholar]
- Babar, N.U.A.; Joya, K.S.; Tayyab, M.A.; Ashiq, M.N.; Sohail, M. Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega 2019, 4, 13645–13657. [Google Scholar] [CrossRef]
- Bollella, P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. Nanomaterials 2020, 10, 722. [Google Scholar] [CrossRef]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Tasca, F.; Antiochia, R. Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid. Catalysts 2019, 9, 580. [Google Scholar] [CrossRef]
- Trasatti, S.; Petrii, O.A. Real surface area measurements in electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376. [Google Scholar] [CrossRef]
- Kumar, A.; Gonçalves, J.M.; Sukeri, A.; Araki, K.; Bertotti, M. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sens. Actuat. B Chem. 2018, 263, 237–247. [Google Scholar] [CrossRef]
- Regiart, M.; Ledo, A.; Fernandes, E.; Messina, G.A.; Brett, C.M.A.; Bertotti, M.; Barbosa, R.M. Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens. Bioelectron. 2022, 199, 113874. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740. [Google Scholar] [CrossRef]
- Alexey, Y.; Dirk, M.; Johan, B.; Andreas, O.; Bernhard, W. Electrochemical artifacts originating from nanoparticle contamination by Ag/AgCl quasi-reference electrodes. Lab Chip 2014, 14, 602–607. [Google Scholar]
- Lu, Y.; Liang, X.; Christophe, N.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Chen, X.; Yi, Z.; Wang, R. In situ deposition of bismuth on pre-anodized screen-printed electrode for sensitive determination of Cd2+ in water and rice with a portable device. Sci. Rep. 2024, 14, 18433. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuat. B Chem. 2015, 209, 336–342. [Google Scholar] [CrossRef]
- Singh, S.; Pankaj, A.; Mishra, S.; Tewari, K.; Singh, S.P. Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb(II) and Cu(II). J. Environ. Chem. Eng. 2019, 7, 103250. [Google Scholar] [CrossRef]
- Adarakatti, P.S.; Foster, C.W.; Banks, C.E.; Arun Kumar, N.S.; Malingappa, P. Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environmental samples. Sens. Actuat. A Phys. 2017, 267, 517–525. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Panigrahy, B.; Sahoo, S.; Satpati, A.K.; Li, D.; Bahadur, D. In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: As an electroactive material for analysis of heavy metals. Biosens. Bioelectron. 2013, 43, 293–296. [Google Scholar] [CrossRef]
- Luciano, M.; Luciano, V.; Ploêncio, L.A.; Santos, J.N.; Heitor, D. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam. J. Sci. Food Agric. 2016, 96, 3109–3113. [Google Scholar]
- Raquel, S.; Burkhard, H.; Kateřina, F.; Hana, S.; Salvador, M.; Manuel, M.; Jose-Luis, T. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid–Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase. Anal. Chem. 2017, 89, 3787–3794. [Google Scholar]
- Fang, L.; Zhao, N.; Ma, M.; Meng, D.; Jia, Y.; Huang, X.; Liu, W.; Liu, J. Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes. Plasma Sci. Technol. 2019, 21, 034002. [Google Scholar] [CrossRef]
Electrode Substrate | Electrode Modification | Linear Range (μg/L) | Limit of Detection | Applications | References | ||
---|---|---|---|---|---|---|---|
Pb2+ | Cu2+ | Pb2+ | Cu2+ | ||||
Screen-printed gold electrode | GNP 1 | 20–200 | 20–200 | 2.2 | 1.6 | - | [36] |
Glassy carbon electrode | Ce-CNFs 2 | 0.9–2.1 | 0.6–1.8 | 0.6 | 0.3 | River water | [37] |
SPCE | Calixarene | 100–2400 | 100–2400 | 38 | 40 | Waste water | [38] |
Carbon paste electrode | RGO/Bi 3 | 20–120 | 20–100 | 0.55 | 26 | Ground-water | [39] |
Atomic Absorption Spectrometry (AAS) | 250–1500 | 250–1500 | 28.4 | 3.7 | Fish | [40] | |
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) | / | / | 0.4 | 0.5 | Seawater | [41] | |
Laser-Induced Breakdown Spectroscopy (LIBS) | / | / | 125 | 12 | water | [42] | |
SPCE | NPG | 1–100 | 10–100 | 0.4 | 5.4 | Tap-water | This work |
Sample | Spiked (μg/L) | Found (μg/L) | Recovery Rate (%) | RSD * (%) | Found by ICP-MS (μg/L) | |Error| (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb2+ | Cu2+ | Pb2+ | Cu2+ | Pb2+ | Cu2+ | Pb2+ | Cu2+ | Pb2+ | Cu2+ | Pb2+ | Cu2+ | |
Bottled water | 0 | - | - | - | - | - | - | 0.18 | 0.46 | - | - | |
30 | 29.2 | 29.6 | 97.4 | 98.5 | 1.01 | 1.04 | 29.6 | 30.9 | 1.35 | 4.21 | ||
60 | 56.7 | 58.9 | 94.5 | 98.1 | 2.78 | 2.12 | 61.2 | 58.8 | 7.35 | 0.17 | ||
Tap water | 0 | - | - | - | - | - | - | 0.32 | 1.32 | - | - | |
30 | 30.8 | 32.3 | 102.8 | 107.5 | 2.90 | 3.20 | 31.0 | 31.7 | 0.65 | 1.89 | ||
60 | 60.2 | 63.3 | 100.3 | 105.5 | 3.82 | 3.68 | 60.5 | 61.9 | 0.50 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chen, X.; Yuan, Z.; Yi, Z.; Wang, Z.; Wang, R. Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water. Sensors 2024, 24, 5745. https://doi.org/10.3390/s24175745
Li Y, Chen X, Yuan Z, Yi Z, Wang Z, Wang R. Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water. Sensors. 2024; 24(17):5745. https://doi.org/10.3390/s24175745
Chicago/Turabian StyleLi, Yongfang, Xuan Chen, Zhiyong Yuan, Zhijian Yi, Zijun Wang, and Rui Wang. 2024. "Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water" Sensors 24, no. 17: 5745. https://doi.org/10.3390/s24175745
APA StyleLi, Y., Chen, X., Yuan, Z., Yi, Z., Wang, Z., & Wang, R. (2024). Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb2+ and Cu2+ in Water. Sensors, 24(17), 5745. https://doi.org/10.3390/s24175745