Employing Eye Trackers to Reduce Nuisance Alarms
Abstract
:1. Introduction
1.1. Two Complementary Approaches to Advanced Alarm Management
1.2. Eye Movements and Parameter Behaviors for Alarm Management
1.3. Overview of This Study
- How do the GBA methods support parallel tasks of controlling process parameters and monitoring a set of parameters for alarms?
- How does the compatibility between visual sampling and parameter behaviors affect the frequency of gaze acknowledgements for user-centric alarm management?
2. Materials and Methods
2.1. Participants
2.2. Experimental Apparatus and Tasks
2.3. Experimental Manipulations
2.3.1. Gaze-Based Acknowledgment (GBA) Method
- 1.
- The proximity-based method acknowledged an alarm when the parameter value exceeded the acknowledgement thresholds set at 10% and 90% of the range between high and low alarm setpoints. Figure 6a presents instances of a parameter activating (blue line) and not activating (red line) alarm acknowledgement through the proximity-based GBA method.
- 2.
- The entropy-based method acknowledged an alarm when the parameter values of the past 15 s window exceeded an entropy value of 1.2. Entropy was calculated using Equation (2) and a histogram estimator of the parameter value frequencies in 15 s batches, which represented the amount of history visible in the trendline graph [84,85]. The entropy threshold of 1.2 was determined specific for this simulator based on the maximum entropy that could be displayed on the parameter trend graph in the plant simulator. Maximum displayable entropy was a suitable choice for the initial assessment of GBA to minimize the risk of the participants being confused from not being able to discern small fluctuation on the display. Figure 6b shows a graphical representation of the entropy-based method.
- 3.
- The prediction-based method acknowledged an alarm when the predicted value of the parameter exceeded the alarm thresholds. The predicted value was calculated using a second-degree polynomial curve fitted to parameter values recorded over the past 15 s. The predicted value three seconds ahead of the simulator was compared to the actual value during the fixation window. Figure 6c shows a graphical representation of the prediction-based method.
2.3.2. Scenario Type
- Near-threshold scenarios—a parameter stabilizing near the alarm threshold and thereby presenting an imminent risk of crossing the threshold.
- Trending scenarios—a parameter increasing or decreasing towards the alarm thresholds continuously for four or more seconds and thereby presenting an increasing risk of crossing the alarm thresholds.
- Fluctuation scenarios—a parameter having entropy greater than one based on the past 15 s of parameter values and thereby presenting a risk of crossing the threshold in an unexpected manner.
2.4. Experimental Design
2.5. Procedure
2.6. Measurements
2.7. Hypotheses
- A main effect that any GBA method would yield better parameter control task performance (less time out of range for the feedwater tank level; Table 1) than no acknowledgement because of the reduced salience associated with GBA and minimized distraction from the parameter control task.
- A main effect that GBA methods would yield higher subjective usability ratings than no acknowledgement because the alarms would be less disruptive.
- An interaction effect between GBA methods and scenario types on parameter control task performance because each GBA method was designed for specific parameter behaviors. In other words, there should be less time out of range for the feedwater tank level and more alarm acknowledgments (Table 1) when the parameter behavior of a scenario type matched the intended method. Specifically, it is predicted that the proximity-based method would yield the best performance in terms of the most alarm prediction hits and the least misses for near-threshold scenarios, the prediction-based method for trending scenarios, and the entropy-based method for fluctuation scenarios (Table 4).
3. Results
3.1. Analysis
3.2. Parameter Control Task Performance
3.3. Subjective Usability
3.4. Associations with Alarm Prediction Performance
3.5. Association with Acknowledgement Frequency/Usage
4. Discussion
4.1. Impact of Gaze-Based Acknowledgement on Parallel Tasks
4.2. Compatibility Between Visual Sampling and Parameter Behaviors for Gaze-Based Management
4.3. Relevance to the Alarm Literature
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area of interest |
EEG | Electroencephalogram |
GBA | Gaze-based acknowledgement |
HRV | Heart rate variability |
References
- ANSI/ISA-18.2-2016; Management of Alarm Systems for the Process Industries. ISA: Research Triangle Park, NC, USA, 2008; 82p.
- Goel, P.; Datta, A.; Mannan, M.S. Industrial alarm systems: Challenges and opportunities. J. Loss Prev. Process Ind. 2017, 50, 23–36. [Google Scholar] [CrossRef]
- Lau, N.; Jamieson, G.A.; Skraaning, G. Situation awareness acquired from monitoring process plants—The Process Overview concept and measure. Ergonomics 2016, 59, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Mumaw, R.J.; Roth, E.M.; Vicente, K.J.; Burns, C.M. There is more to monitoring a nuclear power plant than meets the eye. Hum. Factors 2000, 42, 36–55. [Google Scholar] [CrossRef]
- Woods, D.D. The alarm problem and directed attention in dynamic fault management. Ergonomics 1995, 38, 2371–2393. [Google Scholar] [CrossRef]
- Simonson, E.; Brozek, J. Flicker Fusion Frequency: Background and Applications. Physiol. Rev. 1952, 32, 349–378. [Google Scholar] [CrossRef]
- Carrasco, M.; McElree, B.; Denisova, K.; Giordano, A.M. Speed of visual processing increases with eccentricity. Nat. Neurosci. 2003, 6, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Stanton, N.A.; Edworthy, J. Human Factors in Auditory Warnings; Ashgate: Brookfield, VT, USA, 1999. [Google Scholar]
- Wickens, C.D.; Dixon, S.R.; Seppelt, B. Auditory Preemption versus Multiple Resources: Who Wins in Interruption Management? Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2005, 49, 463–466. [Google Scholar] [CrossRef]
- Wickens, C.; Colcombe, A. Dual-Task Performance Consequences of Imperfect Alerting Associated With a Cockpit Display of Traffic Information. Hum. Factors 2007, 49, 839–850. [Google Scholar] [CrossRef]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef]
- Xiao, Y.; Seagull, F.J. An analysis of problems with auditory alarms: Defining the roles of alarms in process monitoring tasks. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1999, 43, 256–260. [Google Scholar] [CrossRef]
- McNicol, D. A Primer of Signal Detection Theory; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 2005. [Google Scholar]
- Johnson, K.R.; Hagadorn, J.I.; Sink, D.W. Alarm Safety and Alarm Fatigue. Clin. Perinatol. 2017, 44, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, F.; Chen, T.; Shah, S.L. An Overview of Industrial Alarm Systems: Main Causes for Alarm Overloading, Research Status, and Open Problems. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1045–1061. [Google Scholar] [CrossRef]
- O’Hara, J.M.; Fledger, S.A. Human-System Interface Design Review Guidelines; NUREG-0700, Rev. 3; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2019.
- Noda, M.; Higuchi, F.; Takai, T.; Nishitani, H. Event correlation analysis for alarm system rationalization. Asia-Pac. J. Chem. Eng. 2011, 6, 497–502. [Google Scholar] [CrossRef]
- Izadi, I.; Shah, S.L.; Shook, D.S.; Chen, T. An Introduction to Alarm Analysis and Design. IFAC Proc. Vol. 2009, 42, 645–650. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J. Design of multivariate alarm systems based on online calculation of variational directions. Chem. Eng. Res. Des. 2017, 122, 11–21. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, D.; Wang, J.; Zhao, Y. Abnormal data detection for multivariate alarm systems based on correlation directions. J. Loss Prev. Process Ind. 2017, 45, 43–55. [Google Scholar] [CrossRef]
- Rodrigo, V.; Chioua, M.; Hagglund, T.; Hollender, M. Causal analysis for alarm flood reduction. IFAC-PapersOnLine 2016, 49, 723–728. [Google Scholar] [CrossRef]
- Hu, W.; Chen, T.; Shah, S.L. Discovering Association Rules of Mode-Dependent Alarms From Alarm and Event Logs. IEEE Trans. Control Syst. Technol. 2018, 26, 971–983. [Google Scholar] [CrossRef]
- Simeu-Abazi, Z.; Lefebvre, A.; Derain, J.-P. A methodology of alarm filtering using dynamic fault tree. Reliab. Eng. Syst. Saf. 2011, 96, 257–266. [Google Scholar] [CrossRef]
- Bauer, M.; Thornhill, N.F. A practical method for identifying the propagation path of plant-wide disturbances. J. Process Control 2008, 18, 707–719. [Google Scholar] [CrossRef]
- Dorgo, G.; Abonyi, J. Sequence Mining Based Alarm Suppression. IEEE Access 2018, 6, 15365–15379. [Google Scholar] [CrossRef]
- Izadi, I.; Shah, S.L.; Shook, D.S.; Kondaveeti, S.R.; Chen, T. A Framework for Optimal Design of Alarm Systems. IFAC Proc. Vol. 2009, 42, 651–656. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T. An online method to remove chattering and repeating alarms based on alarm durations and intervals. Comput. Chem. Eng. 2014, 67, 43–52. [Google Scholar] [CrossRef]
- Hollifield, B.R.; Habibi, E. Alarm Management: A Comprehensive Guide, 2nd ed.; International Society of Automation: Research Triangle Park, NC, USA, 2011; p. 260. [Google Scholar]
- Kim, I.S.; Modarres, M.; Hunt, R.N.M. A model-based approach to on-line process disturbance management: The models. Reliab. Eng. Syst. Saf. 1990, 28, 265–305. [Google Scholar] [CrossRef]
- Hravnak, M.; Pellathy, T.; Chen, L.; Dubrawski, A.; Wertz, A.; Clermont, G.; Pinsky, M.R. A call to alarms: Current state and future directions in the battle against alarm fatigue. J. Electrocardiol. 2018, 51, S44–S48. [Google Scholar] [CrossRef]
- Poole, S.; Shah, N. Addressing vital sign alarm fatigue using personalized alarm thresholds. In Biocomputing 2018; World Scientific: Singapore, 2017; pp. 472–483. [Google Scholar]
- van Rossum, M.C.; Vlaskamp, L.B.; Posthuma, L.M.; Visscher, M.J.; Breteler, M.J.M.; Hermens, H.J.; Kalkman, C.J.; Preckel, B. Adaptive threshold-based alarm strategies for continuous vital signs monitoring. J. Clin. Monit. Comput. 2022, 36, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Guerlain, S.; Bullemer, P. User-initiated notification: A concept for aiding the monitoring activities or process control operators. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1996, 40, 283–287. [Google Scholar] [CrossRef]
- Lehto, M.R.; Papastavrou, J.D.; Giffen, W.J. An empirical study of adaptive warnings: Human- versus computer-adjusted warning thresholds. Int. J. Cogn. Ergon. 1998, 2, 19–33. [Google Scholar]
- Vicente, K.J. Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1999. [Google Scholar]
- Miller, C.A.; Parasuraman, R. Designing for flexible interaction between humans and automation: Delegation interfaces for supervisory control. Hum. Factors 2007, 49, 57–75. [Google Scholar] [CrossRef]
- Watson, M.; Sanderson, P.; Russell, J.W. Tailoring reveals information requirements: The case of anaesthesia alarms. Interact. Comput. 2004, 16, 271–293. [Google Scholar] [CrossRef]
- Botzer, A.; Meyer, J.; Bak, P.; Parmet, Y. User settings of cue thresholds for binary categorization decisions. J. Exp. Psychol. Appl. 2010, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Sheridan, T.B. The Intricacies of User Adjustments of Alerting Thresholds. Hum. Factors 2017, 59, 901–910. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Merat, N.; Louw, T.; Gonçalves, R.C.; Torrao, G.; Lyu, W.; Puente Guillen, P.; Lenné, M.G. Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2022, 87, 149–163. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Louw, T.; Cirino Gonçalves, R.; Torrao, G.; Lenné, M.G.; Merat, N. Using pupillometry and gaze-based metrics for understanding drivers’ mental workload during automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2023, 94, 254–267. [Google Scholar] [CrossRef]
- Hultman, M.; Johansson, I.; Lindqvist, F.; Ahlström, C. Driver sleepiness detection with deep neural networks using electrophysiological data. Physiol. Meas. 2021, 42, 034001. [Google Scholar] [CrossRef]
- Riener, A.; Jeon, M.; Alvarez, I.; Frison, A.K. Driver in the Loop: Best Practices in Automotive Sensing and Feedback Mechanisms. In Automotive User Interfaces: Creating Interactive Experiences in the Car; Meixner, G., Müller, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 295–323. [Google Scholar]
- Seagull, F.J.; Xiao, Y.; Mackenzie, C.F.; Wickens, C.D. Auditory alarms: From alerting to informing. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2000, 44, 223–226. [Google Scholar] [CrossRef]
- Meyer, J.; Bitan, Y. Why Better Operators Receive Worse Warnings. Hum. Factors J. Hum. Factors Ergon. Soc. 2002, 44, 343–353. [Google Scholar] [CrossRef]
- Lees, M.N.; Lee, J.D. The influence of distraction and driving context on driver response to imperfect collision warning systems. Ergonomics 2007, 50, 1264–1286. [Google Scholar] [CrossRef]
- Wickens, C.D.; Rice, S.; Keller, D.; Hutchins, S.; Hughes, J.; Clayton, K. False Alerts in Air Traffic Control Conflict Alerting System: Is There a “Cry Wolf” Effect? Hum. Factors 2009, 51, 446–462. [Google Scholar] [CrossRef]
- Endsley, M.R. Situation Awareness. In Handbook of Human Factors AND Ergonomics, 5th ed.; Salvendy, G., Karwowski, W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 434–455. [Google Scholar]
- Niwa, Y.; Hollnagel, E. Enhancing Operator Control by Adaptive Alarm Presentation. Int. J. Cogn. Ergon. 2001, 5, 367–384. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Li, H.; Yang, B. An Adaptive Optimization Approach Based on the Human factors and Its Application to Process Alarm Thresholds. In Proceedings of the 2019 12th Asian Control Conference (ASCC), Kitakyushu, Japan, 9–12 June 2019; pp. 823–828. [Google Scholar]
- Yang, W.; Wang, S.; Sahri, N.M.; Karie, N.M.; Ahmed, M.; Valli, C. Biometrics for Internet-of-Things Security: A Review. Sensors 2021, 21, 6163. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, K.; Nystrom, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford University Press: Oxford, UK; New York, NY, USA, 2011. [Google Scholar]
- Deng, S.; Kulkarni, C.; Oh, J.; Parker, S.H.; Lau, N. Comparison Between Scene-Independent and Scene-Dependent Eye Metrics in Assessing Psychomotor Skills. Hum. Factors 2024, 00187208241302475. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Frensch, P.A. Eye movement during skill acquisition: More evidence for the information-reduction hypothesis. J. Exp. Psychol. Learn. Mem. Cogn. 1999, 25, 172–190. [Google Scholar] [CrossRef]
- Just, M.A.; Carpenter, P.A. A theory of reading: From eye fixations to comprehension. Psychol. Rev. 1980, 87, 329–354. [Google Scholar] [CrossRef]
- Ericsson, K.A.; Kintsch, W. Long-term working memory. Psychol. Rev. 1995, 102, 211–245. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, D.; Scerbo, M.W.; Korndorffer, J.R., Jr.; Scott, D.J. Redefining simulator proficiency using automaticity theory. Am. J. Surg. 2007, 193, 502–506. [Google Scholar] [CrossRef]
- Shi, C.; Noah, B.; Rothrock, L.; Kim, J.-H. Potential benefits of eye tracking within process control monitoring tasks. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 316–326. [Google Scholar] [CrossRef]
- Das, L.; Iqbal, M.U.; Bhavsar, P.; Srinivasan, B.; Srinivasan, R. Toward Preventing Accidents in Process Industries by Inferring the Cognitive State of Control Room Operators through Eye Tracking. ACS Sustain. Chem. Eng. 2018, 6, 2517–2528. [Google Scholar] [CrossRef]
- Shahab, M.A.; Iqbal, M.U.; Srinivasan, B.; Srinivasan, R. Metrics for objectively assessing operator training using eye gaze patterns. Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B 2021, 156, 508–520. [Google Scholar] [CrossRef]
- Shahab, M.A.; Srinivasan, B.; Srinivasan, R. Analysis of Control Room Operators’ Competence using Cognitive Engineering Approaches to Improve Process Safety. In Proceedings of the 2021 International Conference on Maintenance and Intelligent Asset Management (ICMIAM), Ballarat, Australia, 12–15 December 2021; pp. 1–6. [Google Scholar]
- Kashevnik, A.; Kovalenko, S.; Mamonov, A.; Hamoud, B.; Bulygin, A.; Kuznetsov, V.; Shoshina, I.; Brak, I.; Kiselev, G. Intelligent Human Operator Mental Fatigue Assessment Method Based on Gaze Movement Monitoring. Sensors 2024, 24, 6805. [Google Scholar] [CrossRef]
- Gooris, M.; Peres, S.C.; Hernandez, O.; Fru, F.A.; Idehen, I.; Mao, Z.; Jang, W.; Overbye, T. The Use of Eye Tracking as a Measure of Situation Awareness in Power System Control Rooms. In Proceedings of the 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 28 February–1 March 2022; pp. 1–6. [Google Scholar]
- Kulkarni, C.S.; Deng, S.; Wang, T.; Hartman-Kenzler, J.; Barnes, L.E.; Parker, S.H.; Safford, S.D.; Lau, N. Scene-dependent, feedforward eye gaze metrics can differentiate technical skill levels of trainees in laparoscopic surgery. Surg. Endosc. 2023, 37, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, E.; Lappi, O.; Koirikivi, I.; Summala, H. Effect of driving experience on anticipatory look-ahead fixations in real curve driving. Accid. Anal. Prev. 2014, 70, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Tuhkanen, S.; Pekkanen, J.; Wilkie, R.M.; Lappi, O. Visual anticipation of the future path: Predictive gaze and steering. J. Vis. 2021, 21, 25. [Google Scholar] [CrossRef]
- Crossman, E.R.W.; Cooke, J.E.; Beishon, J. Visual attention and the sampling of displayed informaiton in process control. In The Human Operator in Process Control; Edwards, E., Lees, F.P., Eds.; Taylor & Francis Ltd.: London, UK, 1974. [Google Scholar]
- Kvålseth, T.O. A Decision-Theoretic Model of the Sampling Behavior of the Human Process Monitor: Experimental Evaluation. Hum. Factors 1979, 21, 671–686. [Google Scholar] [CrossRef]
- de Jong, J.; Koster, E.P. The Human Operator in the Computer-Controlled Refinery. In Proceedings of the 8th World Petroleum Congress, Moscow, USSR, 13–18 June 1971. WPC-14339. [Google Scholar]
- Paternotte, P.H. The Control Performance of Operators Controlling a Continuous Distillation Process. Ergonomics 1978, 21, 671–679. [Google Scholar] [CrossRef]
- Vicente, K.J.; Roth, E.M.; Mumaw, R.J. How do operators monitor a complex, dynamic work domain? The impact of control room technology. Int. J. Hum.-Comput. Stud. 2001, 54, 831–856. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Senders, J.W. The Human Operator as a Monitor and Controller of Multidegree of Freedom Systems. IEEE Trans. Hum. Factors Electron. 1964, HFE-5, 2–5. [Google Scholar] [CrossRef]
- Bitan, Y.; Meyer, J. Self-initiated and respondent actions in a simulated control task. Ergonomics 2007, 50, 763–788. [Google Scholar] [CrossRef]
- Kvålseth, T.O. Human Information Processing in Visual Sampling. Ergonomics 1978, 21, 439–454. [Google Scholar] [CrossRef]
- Sheridan, T.B. On How Often the Supervisor Should Sample. IEEE Trans. Syst. Sci. Cybern. 1970, 6, 140–145. [Google Scholar] [CrossRef]
- Burns, C.M.; Hajdukiewicz, J.R. Ecological Interface Design; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Robinson, D.N. Visual Discrimination of Temporal Order. Science 1967, 156, 1263–1264. [Google Scholar] [CrossRef]
- Eisma, Y.B.; Cabrall, C.D.D.; Winter, J.C.F.d. Visual Sampling Processes Revisited: Replicating and Extending Senders (1983) Using Modern Eye-Tracking Equipment. IEEE Trans. Hum.-Mach. Syst. 2018, 48, 526–540. [Google Scholar] [CrossRef]
- LeBlanc, K.; Spielman, Z.; Bower, G.; Oxstrand, J.; Bly, A. Enabling Situation Awareness Under High Levels of Automation: Results from an Experimental Study; INL/EXT-15-35791; Idaho National Laboratory: Idaho Falls, ID, USA, 2015; p. 39. [Google Scholar]
- Hildebrandt, M.; Nguyen, H.T.; Langstrand, J.-P. Synquesticon: An Environment for Authoring and Conducting Micro Task Studies. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 475–478. [Google Scholar] [CrossRef]
- Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, Palm Beach Gardens, FL, USA; 2000; pp. 71–78. [Google Scholar]
- Lethaus, F.; Harris, R.M.; Baumann, M.R.K.; Köster, F.; Lemmer, K. Windows of Driver Gaze Data: How Early and How Much for Robust Predictions of Driver Intent? In Proceedings of the Adaptive and Natural Computing Algorithms, Lausanne, Switzerland, 4–6 April 2013; pp. 446–455. [Google Scholar]
- Hall, P.; Morton, S.C. On the estimation of entropy. Ann. Inst. Stat. Math. 1993, 45, 69–88. [Google Scholar] [CrossRef]
- Wallis, K. A Note on the Calculation of Entropy from Histograms; Munich Personal RePEc Archive: Munich, Germany, 2006. [Google Scholar]
- Franz, V.H.; Loftus, G.R. Standard errors and confidence intervals in within-subjects designs: Generalizing Loftus and Masson (1994) and avoiding the biases of alternative accounts. Psychon. Bull. Rev. 2012, 19, 395–404. [Google Scholar] [CrossRef]
- Bradley, J.V. Robustness? Br. J. Math. Stat. Psychol. 1978, 31, 144–152. [Google Scholar] [CrossRef]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid option? Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef]
- Wickens, C.D. Multiple Resources and Mental Workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef]
- Wickens, C.D.; Hollands, J.G.; Parasuraman, R.; Banbury, S. Engineering Psychology and Human Performance, 4th ed.; Pearsons: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Schwerd, S.; Schulte, A. Triggering Cockpit Alerts Using an Eye-Tracking-Based Measure of Monitoring Performance. Aviat. Psychol. Appl. Hum. Factors 2024, 14, 22–37. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Aghazadeh, F.; Zheng, B. Early Eye Disengagement Is Regulated by Task Complexity and Task Repetition in Visual Tracking Task. Sensors 2024, 24, 2984. [Google Scholar] [CrossRef] [PubMed]
- Bristol, E.H. Improved process control alarm operation. ISA Trans. 2001, 40, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Stanton, N.A.; Baber, C. Alarm-initiated activities: An analysis of alarm handlingby operators using text-based alarm systems in supervisory control systems. Ergonomics 1995, 38, 2414–2431. [Google Scholar] [CrossRef]
- Hvelplund, K.T. Eye tracking and the translation process: Reflections on the analysis and interpretation of eye-tracking data. MonTI Monogr. Transl. Interpret. 2015, 201–223. [Google Scholar] [CrossRef]
- Yang, H.; Wu, J.; Hu, Z.; Lv, C. Real-Time Driver Cognitive Workload Recognition: Attention-Enabled Learning With Multimodal Information Fusion. IEEE Trans. Ind. Electron. 2024, 71, 4999–5009. [Google Scholar] [CrossRef]
- DeGuzman, C.A.; Kanaan, D.; Donmez, B. Attentive User Interfaces: Adaptive Interfaces that Monitor and Manage Driver Attention. In User Experience Design in the Era of Automated Driving; Riener, A., Jeon, M., Alvarez, I., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 305–334. [Google Scholar]
- Tavares, A.; Silva, J.L.; Ventura, R. Physiologically Attentive User Interface for Improved Robot Teleoperation. In Proceedings of the 28th International Conference on Intelligent User Interfaces, Sydney, NSW, Australia; 2023; pp. 776–789. [Google Scholar]
- Subramanian, M.; Park, S.; Orlov, P.; Shafti, A.; Faisal, A.A. Gaze-contingent decoding of human navigation intention on an autonomous wheelchair platform. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy, 4–6 May 2021; pp. 335–338. [Google Scholar]
- Dondi, P.; Porta, M.; Donvito, A.; Volpe, G. A gaze-based interactive system to explore artwork imagery. J. Multimodal User Interfaces 2022, 16, 55–67. [Google Scholar] [CrossRef]
- Fichtel, E.; Lau, N.; Park, J.; Henrickson Parker, S.; Ponnala, S.; Fitzgibbons, S.; Safford, S.D. Eye tracking in surgical education: Gaze-based dynamic area of interest can discriminate adverse events and expertise. Surg. Endosc. 2019, 33, 2249–2256. [Google Scholar] [CrossRef]
- Klaib, A.F.; Alsrehin, N.O.; Melhem, W.Y.; Bashtawi, H.O.; Magableh, A.A. Eye tracking algorithms, techniques, tools, and applications with an emphasis on machine learning and Internet of Things technologies. Expert Syst. Appl. 2021, 166, 114037. [Google Scholar] [CrossRef]
- Zhang, X.; Mahadevan, S.; Lau, N.; Weinger, M.B. Multi-source information fusion to assess control room operator performance. Reliab. Eng. Syst. Saf. 2020, 194, 106287. [Google Scholar] [CrossRef]
Category | Measure |
---|---|
Control Task Performance | Time out of permissible range for the feedwater tank level in a trial |
Alarm Prediction Performance | Prediction hits and misses in a trial |
Acknowledgement Usage | Gaze-based acknowledgment (occurred) in a trial |
Usability | 3-item subjective questionnaire (Table 2) |
Signal Detection Theory | Alarm Prediction Performance |
---|---|
Miss | No click on target AOI within 4 s prior to an alarm |
False Alarm | Clicks on target AOI, inaccurate time (t > 4 s or time < 1 s); clicks on incorrect AOI any time |
Hit | Clicks on target AOI with alarm incurring within 4 s prior to alarm |
Correct Rejection | Not Applicable all trials have an alarm present |
No. | Statement (1 = Strongly Disagree, 5 = Strongly Agree) |
---|---|
1 | Gaze-based acknowledgment anticipated my needs. |
2 | Gaze-based acknowledgement was correct in assuming I anticipated the alarm. |
3 | Gaze-based acknowledgement was not effective in minimizing alarms I was aware of. |
Effects | Eff df | Error df | F-Value | p-Value | Partial η2 |
---|---|---|---|---|---|
Gaze-Based Acknowledgement Method | 3 | 69 | 1.357 | 0.263 | 0.056 |
Scenario Type | 2 | 46 | 5.075 | 0.011 * | 0.181 |
Gaze-Based Acknowledgement Method × Scenario Type | 6 | 138 | 1.597 | 0.152 | 0.065 |
Trial Count of Alarm Prediction | ||||
---|---|---|---|---|
Hit | Miss | Total | ||
Acknowledgement Usage | Acknowledged | 36 | 29 | 65 |
Not Acknowledged | 89 | 278 | 367 | |
Total | 125 | 307 | 432 |
Trial Count of Alarm Prediction | ||||
---|---|---|---|---|
Hit | Miss | Total | ||
Scenario Types | Fluctuation | 28 | 164 | 192 |
Near-threshold | 43 | 149 | 192 | |
Trending | 20 | 172 | 192 | |
Total | 91 | 485 | 576 |
Trial Count of Alarm Acknowledgement by Gaze | ||||
---|---|---|---|---|
Acknowledged | Not Acknowledged | Total | ||
Gaze-Based Acknowledgement Method | Entropy | 33 | 111 | 144 |
Prediction | 41 | 103 | 144 | |
Proximity | 51 | 93 | 144 | |
Total | 125 | 307 | 432 |
Trial Count of Alarm Acknowledgement (by Gaze) | ||||
---|---|---|---|---|
Acknowledged | Not Acknowledged | Total | ||
Scenario Types | Fluctuation | 66 | 78 | 144 |
Near-threshold | 28 | 116 | 144 | |
Trending | 31 | 113 | 144 | |
Total | 125 | 307 | 432 |
Count of Trials Acknowledged Across Scenario Type | |||||
---|---|---|---|---|---|
Fluctuation | Near-Threshold | Trending | Total | ||
Acknowledgement Method | Entropy | 28 | 0 | 5 | 33 |
Prediction | 18 | 8 | 15 | 41 | |
Proximity | 20 | 20 | 11 | 51 | |
Total | 66 | 28 | 31 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herdt, K.; Hildebrandt, M.; LeBlanc, K.; Lau, N. Employing Eye Trackers to Reduce Nuisance Alarms. Sensors 2025, 25, 2635. https://doi.org/10.3390/s25092635
Herdt K, Hildebrandt M, LeBlanc K, Lau N. Employing Eye Trackers to Reduce Nuisance Alarms. Sensors. 2025; 25(9):2635. https://doi.org/10.3390/s25092635
Chicago/Turabian StyleHerdt, Katherine, Michael Hildebrandt, Katya LeBlanc, and Nathan Lau. 2025. "Employing Eye Trackers to Reduce Nuisance Alarms" Sensors 25, no. 9: 2635. https://doi.org/10.3390/s25092635
APA StyleHerdt, K., Hildebrandt, M., LeBlanc, K., & Lau, N. (2025). Employing Eye Trackers to Reduce Nuisance Alarms. Sensors, 25(9), 2635. https://doi.org/10.3390/s25092635