Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention
Abstract
:1. Introduction
2. Relevant Theories
2.1. Empirical Mode Decomposition
2.2. Improved Multi-Scale Convolutional Neural Networks
2.3. LCAEncoder
2.4. Dynamic Learning Rate
3. Proposed Method
4. Experimental Verification
4.1. Troubleshooting Open-Source Datasets
4.2. Generalizability Experiments
4.3. Comparison Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronym List
References
- Bai, Y.; Cheng, W.; Wen, W.; Liu, Y. Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis. Shock Vib. 2023, 2023, 9878228. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Wan, Z.; Zang, D.; Jiang, D. Rotor fault diagnosis using domain-adversarial neural network with time-frequency analysis. Machines 2022, 10, 610. [Google Scholar] [CrossRef]
- Shi, J.; Peng, D.; Peng, Z.; Zhang, Z.; Goebel, K.; Wu, D. Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks. Mech. Syst. Signal Process. 2022, 162, 107996. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, J.; Dong, Z.; She, H.; Xu, W. Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM. Meas. Sci. Technol. 2024, 35, 095003. [Google Scholar] [CrossRef]
- Zare, S.; Ayati, M. Simultaneous fault diagnosis of wind turbine using multichannel convolutional neural networks. ISA Trans. 2021, 108, 230–239. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Coombs, T.; Chu, F. The first-kind flexible tensor SVD: Innovations in multi-sensor data fusion processing. Nonlinear Dyn. 2024, 113, 6541–6559. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Safaei, B.; Qin, Z.; Chu, F. The flexible tensor singular value decomposition and its applications in multisensor signal fusion processing. Mech. Syst. Signal Process. 2024, 220, 111662. [Google Scholar] [CrossRef]
- Djaballah, S.; Meftah, K.; Khelil, K.; Sayadi, M. Deep transfer learning for bearing fault diagnosis using CWT time–frequency images and convolutional neural networks. J. Fail. Anal. Prev. 2023, 23, 1046–1058. [Google Scholar] [CrossRef]
- Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [Google Scholar] [CrossRef]
- Liang, P.; Deng, C.; Wu, J.; Yang, Z.; Zhu, J.; Zhang, Z. Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform. Comput. Ind. 2019, 113, 103132. [Google Scholar] [CrossRef]
- He, C.; Yasenjiang, J.; Lv, L.; Xu, L.; Lan, Z. Gearbox Fault Diagnosis Based on MSCNN-LSTM-CBAM-SE. Sensors 2024, 24, 4682. [Google Scholar] [CrossRef]
- Qiao, M.; Yan, S.; Tang, X.; Xu, C. Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads. IEEE Access 2020, 8, 66257–66269. [Google Scholar] [CrossRef]
- Xie, F.Y.; Wang, G.; Zhu, H.; Sun, E.; Fan, Q.; Wang, Y. Rolling bearing fault diagnosis based on SVD-GST combined with vision transformer. Electronics 2023, 12, 3515. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Sarangi, S.; Singh, O.P. Gearbox fault diagnosis: A higher order moments approach. Measurement 2023, 210, 112489. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Y.; Wu, W.; Cheng, Z.; Su, X.; Lin, A. A diagnosis method for the compound fault of gearboxes based on multi-feature and BP-AdaBoost. Symmetry 2020, 12, 461. [Google Scholar] [CrossRef]
- Hu, N.; Chen, H.; Cheng, Z.; Zhang, L.; Zhang, Y. Fault diagnosis method of planetary gearbox based on Empirical Mode Decomposition and deep convolutional neural network. J. Mech. Eng. 2019, 55, 9–18. [Google Scholar] [CrossRef]
- Ali, J.B.; Fnaiech, N.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015, 89, 16–27. [Google Scholar]
- Han, S.; Zhong, X.; Shao, H.; Xu, T.A.; Zhao, R.; Cheng, J. Novel multi-scale dilated CNN-LSTM for fault diagnosis of planetary gearbox with unbalanced samples under noisy environment. Meas. Sci. Technol. 2021, 32, 124002. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, H.; Dai, X.; Shi, L.; Li, M.; Liu, Z.; Wang, R.; Xia, X. Data-Augmentation Based CBAM-ResNet-GCN Method for Unbalance Fault Diagnosis of Rotating Machinery. IEEE Access 2024, 12, 34785–34799. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, H.; Zhang, X.; Li, J.; Chen, L. Multiscale convolutional neural network based on channel space attention for gearbox compound fault diagnosis. Sensors 2023, 23, 3827. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bao, Y.; Liu, W.X.; Ji, P.; Wang, L.; Wang, Z. Twins transformer: Cross-attention based two-branch transformer network for rotating bearing fault diagnosis. Measurement 2023, 223, 113687. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.; Wang, T.; Lei, N. An improved MSCNN and GRU model for rolling bearing fault diagnosis. Stroj. Vestn.-J. Mech. Eng. 2023, 69, 261–274. [Google Scholar] [CrossRef]
- Bao, G.; Zhang, H.; Wei, Y.; Gu, D.; Liu, S. Fault diagnosis of reciprocating compressor based on group self-attention network. Meas. Sci. Technol. 2020, 31, 065014. [Google Scholar] [CrossRef]
- Tran, M.Q.; Liu, M.K.; Tran, Q.V.; Nguyen, T.K. Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors. IEEE Trans. Instrum. Meas. 2021, 71, 3501613. [Google Scholar] [CrossRef]
- Xie, F.; Lu, P.; Liu, X. Multi-scale convolutional attention network for lightweight image super-resolution. J. Vis. Commun. Image Represent. 2023, 95, 103889. [Google Scholar] [CrossRef]
- Wang, H.; Shen, X.; Tu, M.; Zhuang, Y.; Liu, Z. Improved transformer with multi-head dense collaboration. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 30, 2754–2767. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Li, M.; Yin, S. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Ind. Inform. 2020, 17, 1958–1967. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, M. Finger vein recognition based on lightweight convolutional attention model. IET Image Process. 2023, 17, 1864–1873. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, J.; Xiong, X.; Bi, S.; Deng, Z. Improved variational mode decomposition and one-dimensional CNN network with parametric rectified linear unit (PReLU) approach for rolling bearing fault diagnosis. Appl. Sci. 2022, 12, 9324. [Google Scholar] [CrossRef]
- Lin, M.C.; Han, P.Y.; Fan, Y.H.; Li, C.H.G. Development of compound fault diagnosis system for gearbox based on convolutional neural network. Sensors 2020, 20, 6169. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Tian, X.; Wei, Q.; Liu, Y. A self-attention based contrastive learning method for bearing fault diagnosis. Expert Syst. Appl. 2024, 238, 121645. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Wu, L.; Li, Y. Bearing fault diagnosis method based on a multi-head graph attention network. Meas. Sci. Technol. 2022, 33, 075012. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, T.; Luo, X.; Tan, J. DCKN: Multi-focus image fusion via dynamic convolutional kernel network. Signal Process. 2021, 189, 108282. [Google Scholar] [CrossRef]
Indicators | Multi-Head Self-Attention | LCA |
---|---|---|
Computational complexity | ) | |
Number of parameters | ||
Dynamic adaptation | Not have | Dynamic generation of convolutional kernel parameters |
Noise immunity | Easy diffusion of noise | Local convolution suppresses noise propagation |
Gear State | Training Set | Validation Set | Test Set | Category Labeling |
---|---|---|---|---|
Wellness | 815 | 233 | 117 | 1 |
Broken teeth | 815 | 233 | 117 | 2 |
Missing teeth | 815 | 233 | 117 | 3 |
Root crack | 815 | 233 | 117 | 4 |
Surface wear | 815 | 233 | 117 | 5 |
Structures | Parameters |
---|---|
Conv1 | IC = 56; OC = 64; k = 7\5\3; stride = 1; padding = 3\2\1 |
MaxPool1 | k = 2; stride = 2 |
Conv2 | IC = 64; OC = 128; k = 7\5\3; stride = 1; padding = 3\2\1 |
MaxPool2 | k = 2; stride = 2; padding = 1 |
Encoder1 | AT = 128; H = 4; K = 15 |
Encoder2 | AT = 128; H = 4; K = 15 |
Dropout | Discard rate: 0.2 |
Dynamic learning rate | Initial learning rate: 0.001; Attenuation factor: 0.95 |
Categorization | Precision | Recall | F1-Score |
---|---|---|---|
0 | 1 | 1 | 1 |
1 | 1 | 0.992 | 0.996 |
2 | 1 | 0.991 | 0.996 |
3 | 1 | 1 | 1 |
4 | 0.982 | 1 | 0.991 |
Categorization | Precision | Recall | F1-Score |
---|---|---|---|
0 | 1 | 1 | 1 |
1 | 0.9661 | 1 | 0.9828 |
2 | 0.9818 | 1 | 0.9908 |
3 | 1 | 1 | 1 |
4 | 1 | 0.9512 | 0.975 |
Model | Test Set Accuracy % | Training Time (s) |
---|---|---|
MSCNN-LCA-Transformer | 99.46 | 687 |
MSCNN-CBAM-Transformer | 97.95 | 890 |
CNN-LCA-Transformer | 96.69 | 693 |
MSCNN-BiLSTM | 96.26 | 824 |
MSCNN-Transformer | 94.29 | 893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, B.; Li, Y.; Chen, S. Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention. Sensors 2025, 25, 2636. https://doi.org/10.3390/s25092636
Yuan B, Li Y, Chen S. Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention. Sensors. 2025; 25(9):2636. https://doi.org/10.3390/s25092636
Chicago/Turabian StyleYuan, Bin, Yaoqi Li, and Suifan Chen. 2025. "Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention" Sensors 25, no. 9: 2636. https://doi.org/10.3390/s25092636
APA StyleYuan, B., Li, Y., & Chen, S. (2025). Efficient Gearbox Fault Diagnosis Based on Improved Multi-Scale CNN with Lightweight Convolutional Attention. Sensors, 25(9), 2636. https://doi.org/10.3390/s25092636