Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Drug Combination in Antiarrhythmic Therapy
3.2. Comparison of Both NCX-Inhibitors
3.3. Clinical Implications
3.4. Limitations
4. Methods
Experimental Protocol
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edvardsson, N.; Westlund, A.; Thimell, M.; Rise, K.; Todoran, A.; Aberg Kuren, T.; Kindblom, J.; Almgren, O. Pharmacological rhythm and rate control treatment for atrial fibrillation: Patient and physician satisfaction. Patient 2010, 3, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Voigt, N.; Heijman, J.; Dobrev, D. New antiarrhythmic targets in atrial fibrillation. Future Cardiol. 2015, 11, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Khera, S.; Kolte, D.; Aronow, W.S.; Iwai, S. Antiarrhythmic properties of ranolazine: A review of the current evidence. Int. J. Cardiol. 2015, 187, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Ratte, A.; Wiedmann, F.; Kraft, M.; Katus, H.A.; Schmidt, C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front. Pharmacol. 2019, 10, 1367. [Google Scholar] [CrossRef]
- Frommeyer, G.; Schmidt, M.; Clauss, C.; Kaese, S.; Stypmann, J.; Pott, C.; Eckardt, L.; Milberg, P. Further insights into the underlying electrophysiological mechanisms for reduction of atrial fibrillation by ranolazine in an experimental model of chronic heart failure. Eur. J. Heart Fail. 2012, 14, 1322–1331. [Google Scholar] [CrossRef]
- Miles, R.H.; Passman, R.; Murdock, D.K. Comparison of effectiveness and safety of ranolazine versus amiodarone for preventing atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 2011, 108, 673–676. [Google Scholar] [CrossRef]
- Ramirez, R.J.; Takemoto, Y.; Martins, R.P.; Filgueiras-Rama, D.; Ennis, S.R.; Mironov, S.; Bhushal, S.; Deo, M.; Rajamani, S.; Berenfeld, O.; et al. Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2019, 12, e005557. [Google Scholar] [CrossRef]
- Frommeyer, G.; Milberg, P.; Uphaus, T.; Kaiser, D.; Kaese, S.; Breithardt, G.; Eckardt, L. Antiarrhythmic effect of ranolazine in combination with class III drugs in an experimental whole-heart model of atrial fibrillation. Cardiovasc. Ther. 2013, 31, e63–e71. [Google Scholar] [CrossRef]
- Carstensen, H.; Kjaer, L.; Haugaard, M.M.; Flethoj, M.; Hesselkilde, E.Z.; Kanters, J.K.; Pehrson, S.; Buhl, R.; Jespersen, T. Antiarrhythmic Effects of Combining Dofetilide and Ranolazine in a Model of Acutely Induced Atrial Fibrillation in Horses. J. Cardiovasc. Pharmacol. 2018, 71, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Bogeholz, N.; Pauls, P.; Kaese, S.; Schulte, J.S.; Lemoine, M.D.; Dechering, D.G.; Frommeyer, G.; Goldhaber, J.I.; Seidl, M.D.; Kirchhefer, U.; et al. Triggered activity in atrial myocytes is influenced by Na(+)/Ca(2+) exchanger activity in genetically altered mice. J. Mol. Cell Cardiol. 2016, 101, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Christ, T.; Kovacs, P.P.; Acsai, K.; Knaut, M.; Eschenhagen, T.; Jost, N.; Varro, A.; Wettwer, E.; Ravens, U. Block of Na(+)/Ca(2+) exchanger by SEA0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation. Eur. J. Pharmacol. 2016, 788, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Lugenbiel, P.; Wenz, F.; Govorov, K.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLoS ONE 2015, 10, e0116395. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, V.J.; Vos, M.A.; Ozdemir, S.; Doisne, N.; Acsai, K.; Varro, A.; Sztojkov-Ivanov, A.; Zupko, I.; Rauch, E.; Kattner, L.; et al. Combined Na(+)/Ca(2+) exchanger and L-type calcium channel block as a potential strategy to suppress arrhythmias and maintain ventricular function. Circ. Arrhythmia Electrophysiol. 2013, 6, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, N.; Nagy, N.; Corici, C.; Kohajda, Z.; Horvath, A.; Acsai, K.; Biliczki, P.; Levijoki, J.; Pollesello, P.; Koskelainen, T.; et al. ORM-10103, a novel specific inhibitor of the Na+/Ca2+ exchanger, decreases early and delayed afterdepolarizations in the canine heart. Br. J. Pharmacol. 2013, 170, 768–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frommeyer, G.; Mittelstedt, A.; Wolfes, J.; Ellermann, C.; Kochhauser, S.; Leitz, P.; Dechering, D.G.; Eckardt, L. The anti-influenza drug oseltamivir reduces atrial fibrillation in an experimental whole-heart model. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, C.; Kohnke, A.; Dechering, D.G.; Kochhauser, S.; Reinke, F.; Fehr, M.; Eckardt, L.; Frommeyer, G. Ranolazine Prevents Levosimendan-Induced Atrial Fibrillation. Pharmacology 2018, 102, 138–141. [Google Scholar] [CrossRef]
- Frommeyer, G.; Ellermann, C.; Dechering, D.G.; Kochhauser, S.; Bogeholz, N.; Guner, F.; Leitz, P.; Pott, C.; Eckardt, L. Ranolazine and Vernakalant Prevent Ventricular Arrhythmias in an Experimental Whole-Heart Model of Short QT Syndrome. J. Cardiovasc. Electrophysiol. 2016, 27, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Zhang, Z.; Fragakis, N.; Korantzopoulos, P.; Letsas, K.P.; Li, G.; Yan, G.X.; Liu, T. Role of ranolazine in the prevention and treatment of atrial fibrillation: A meta-analysis of randomized clinical trials. Heart Rhythm. 2017, 14, 3–11. [Google Scholar] [CrossRef]
- Sossalla, S.; Kallmeyer, B.; Wagner, S.; Mazur, M.; Maurer, U.; Toischer, K.; Schmitto, J.D.; Seipelt, R.; Schondube, F.A.; Hasenfuss, G.; et al. Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J. Am. Coll. Cardiol. 2010, 55, 2330–2342. [Google Scholar] [CrossRef] [Green Version]
- Burashnikov, A. Late INa Inhibition as an Antiarrhythmic Strategy. J. Cardiovasc. Pharmacol. 2017, 70, 159–167. [Google Scholar] [CrossRef]
- Frommeyer, G.; Rajamani, S.; Grundmann, F.; Stypmann, J.; Osada, N.; Breithardt, G.; Belardinelli, L.; Eckardt, L.; Milberg, P. New insights into the beneficial electrophysiologic profile of ranolazine in heart failure: Prevention of ventricular fibrillation with increased postrepolarization refractoriness and without drug-induced proarrhythmia. J. Card Fail. 2012, 18, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Reiffel, J.A.; Camm, A.J.; Belardinelli, L.; Zeng, D.; Karwatowska-Prokopczuk, E.; Olmsted, A.; Zareba, W.; Rosero, S.; Kowey, P.; Investigators, H. The HARMONY Trial: Combined Ranolazine and Dronedarone in the Management of Paroxysmal Atrial Fibrillation: Mechanistic and Therapeutic Synergism. Circ. Arrhythmia Electrophysiol. 2015, 8, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Hove-Madsen, L.; Llach, A.; Bayes-Genis, A.; Roura, S.; Rodriguez Font, E.; Aris, A.; Cinca, J. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 2004, 110, 1358–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, N.; Li, N.; Wang, Q.; Wang, W.; Trafford, A.W.; Abu-Taha, I.; Sun, Q.; Wieland, T.; Ravens, U.; Nattel, S.; et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 2012, 125, 2059–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkowicz, P.E.; Grenett, H.E.; Huang, J.; Wu, H.C.; Ku, D.D.; Urthaler, F. A pharmacological model for calcium overload-induced tachycardia in isolated rat left atria. Eur. J. Pharmacol. 2007, 576, 122–131. [Google Scholar] [CrossRef]
- Heijman, J.; Voigt, N.; Nattel, S.; Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 2014, 114, 1483–1499. [Google Scholar] [CrossRef] [Green Version]
- Valentin, J.P.; Hoffmann, P.; De Clerck, F.; Hammond, T.G.; Hondeghem, L. Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J. Pharmacol. Toxicol. Methods 2004, 49, 171–181. [Google Scholar] [CrossRef]
- Sicouri, S.; Gianetti, B.; Zygmunt, A.C.; Cordeiro, J.M.; Antzelevitch, C. Antiarrhythmic effects of simvastatin in canine pulmonary vein sleeve preparations. J. Am. Coll. Cardiol. 2011, 57, 986–993. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolfes, J.; Ellermann, C.; Broer, N.; Rath, B.; Willy, K.; Leitz, P.R.; Lange, P.S.; Eckardt, L.; Frommeyer, G. Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation. Pharmaceuticals 2020, 13, 321. https://doi.org/10.3390/ph13100321
Wolfes J, Ellermann C, Broer N, Rath B, Willy K, Leitz PR, Lange PS, Eckardt L, Frommeyer G. Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation. Pharmaceuticals. 2020; 13(10):321. https://doi.org/10.3390/ph13100321
Chicago/Turabian StyleWolfes, Julian, Christian Ellermann, Niklas Broer, Benjamin Rath, Kevin Willy, Patrick Robert Leitz, Philipp Sebastian Lange, Lars Eckardt, and Gerrit Frommeyer. 2020. "Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation" Pharmaceuticals 13, no. 10: 321. https://doi.org/10.3390/ph13100321
APA StyleWolfes, J., Ellermann, C., Broer, N., Rath, B., Willy, K., Leitz, P. R., Lange, P. S., Eckardt, L., & Frommeyer, G. (2020). Antiarrhythmic Effect of Ranolazine in Combination with Selective NCX-Inhibition in an Experimental Model of Atrial Fibrillation. Pharmaceuticals, 13(10), 321. https://doi.org/10.3390/ph13100321