Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics
Abstract
:1. Introduction
2. Allosteric Modulation of GPCRs and Influence on Receptor Homo- and Heterodimerization
3. Dopamine and Serotonin Receptors in the Brain and Their Implication in Schizophrenia
4. Evidence for Endogenous Allosteric Modulators of Dopamine and Serotonin Receptors
5. Exogenous Allosteric Modulator of Dopamine Receptors
6. SB269652—a Prototypical Negative Allosteric Modulator of Dopamine D2 and D3 Receptors
7. Exogenous Allosteric Modulator of Serotonin Receptors
8. Allosteric Modulators as a New Class of Antipsychotics
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, A.; Singh, S.; Shukla, S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson’s disease. J. Exp. Neurosci. 2018, 12, 117906951877982. [Google Scholar] [CrossRef] [Green Version]
- Björklund, A.; Dunnett, S.B. Dopamine neuron systems in the brain: An update. Trends Neurosci. 2007, 30, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, G.; Esposito, E.; Di Matteo, V. Role of serotonin in central dopamine dysfunction. CNS Neurosci. Ther. 2010, 16, 179–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectrums 2018, 23, 187–191. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, F.; Alamo, C.; cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the Discovery and Clinical Introduction of Chlorpromazine. Ann. Clin. Psychiatry 2005, 17, 113–135. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Makman, M.H. Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina. Proc. Nat. Acad. Sci. USA 1972, 69, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Cools, A.R.; Van Rossum, J.M. Excitation-mediating and inhibition-mediating dopamine-receptors: A new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia 1976, 3, 243–254. [Google Scholar] [CrossRef]
- Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018, 555, 269–273. [Google Scholar] [CrossRef]
- Chien, E.Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 330, 1091–1095. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wacker, D.; Levit, A.; Che, T.; Betz, R.M.; McCorvy, J.D.; Venkatakrishnan, A.J.; Huang, X.P.; Dror, R.O.; Shoichet, B.K.; et al. D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 2017, 20, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keck, T.M.; Burzynski, C.; Shi, L.; Newman, A.H. Beyond small-molecule SAR: Using the dopamine D3 receptor crystal structure to guide drug design. Adv. Pharmacol. 2014, 69, 267–300. [Google Scholar]
- Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov. 2014, 13, 692–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Fasciani, I.; Marampon, F.; Maggio, R.; Scarselli, M. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs. Mol. Pharmacol. 2017, 91, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aringhieri, S.; Kolachalam, S.; Gerace, C.; Carli, M.; Verdesca, V.; Brunacci, M.G.; Rossi, C.; Ippolito, C.; Solini, A.; Corsini, G.U.; et al. Clozapine as the most efficacious antipsychotic for activating ERK 1/2 kinases: Role of 5-HT2A receptor agonism. Eur. Neuropsychopharmacol. 2017, 27, 383–398. [Google Scholar] [CrossRef]
- Engers, D.W.; Lindsley, C.W. Allosteric modulation of Class C GPCRs: A novel approach for the treatment of CNS disorders. Drug Discov. Today Technol. 2013, 10, e269–e276. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.J.; Conn, P.J. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017, 94, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Hood, S.D.; Norman, A.; Hince, D.A.; Melichar, J.K.; Hulse, G.K. Benzodiazepine dependence and its treatment with low dose flumazenil. Br. J. Clin Pharmacol. 2014, 77, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Kenakin, T. Pharmacology in Drug Discovery and Development: Understanding Drug Response, 2nd ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–326. [Google Scholar]
- Rook, J.M.; Abe, M.; Cho, H.P.; Nance, K.D.; Luscombe, V.B.; Adams, J.J.; Dickerson, J.W.; Remke, D.H.; Garcia-Barrantes, P.M.; Engers, D.W.; et al. Diverse Effects on M1 Signaling and Adverse Effect Liability within a Series of M1 Ago-PAMs. ACS Chem. Neurosci. 2017, 8, 866–883. [Google Scholar] [CrossRef] [Green Version]
- Kenakin, T.; Strachan, R.T. PAM-Antagonists: A Better Way to Block Pathological Receptor Signaling? Trends Pharmacol. Sci. 2018, 39, 748–765. [Google Scholar] [CrossRef]
- Zhang, Y.; Rodriguez, A.L.; Conn, P.J. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J. Pharmacol. Exp. Ther. 2005, 315, 1212–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengmany, K.; Gregory, K.J. Metabotropic glutamate receptor subtype 5: Molecular pharmacology, allosteric modulation and stimulus bias. Br. J. Pharmacol. 2016, 173, 3001–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Dimida, A.; Dell’anno, M.T.; Trincavelli, M.L.; Agretti, P.; Giorgi, F.; Corsini, G.U.; Pinchera, A.; Vitti, P.; Tonacchera, M.; et al. The thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane appears to be an uncompetitive inverse agonist for the thyrotropin receptor. J. Pharmacol. Exp. Ther. 2007, 320, 465–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picchietti, S.; Belardinelli, M.; Taddei, A.R.; Fausto, A.M.; Pellegrino, M.; Maggio, R.; Rossi, M.; Giorgi, F. Thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) prevents internalization of TSH receptor. Cell Tissue Res. 2009, 336, 31–40. [Google Scholar] [CrossRef]
- Gamage, T.F.; Anderson, J.C.; Abood, M.E. CB1 allosteric modulator Org27569 is an antagonist/inverse agonist of ERK1/2 signaling. Cannabis Cannabinoid Res. 2016, 1, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009, 8, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Novi, F.; Scarselli, M.; Corsini, G.U.; Maggio, R. The paired activation of the two components of the muscarinic M3 receptor dimer is required for induction of ERK1/2 phosphorylation. J. Biol. Chem. 2004, 279, 7476–7486. [Google Scholar] [CrossRef] [Green Version]
- Maggio, R.; Innamorati, G.; Parenti, M. G protein-coupled receptor oligomerization provides the framework for signal discrimination. J. Neurochem. 2007, 103, 1741–1752. [Google Scholar] [CrossRef]
- Carli, M.; Kolachalam, S.; Aringhieri, S.; Rossi, M.; Giovannini, L.; Maggio, R.; Scarselli, M. Dopamine D2 Receptors Dimers: How can we Pharmacologically Target Them? Curr. Neuropharmacol. 2018, 16, 222–230. [Google Scholar] [CrossRef]
- Carrillo, J.J.; Pediani, J.; Milligan, G. Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J. Biol. Chem. 2003, 278, 42578–42587. [Google Scholar] [CrossRef] [Green Version]
- Scarselli, M.; Armogida, M.; Chiacchio, S.; DeMontis, M.G.; Colzi, A.; Corsini, G.U.; Maggio, R. Reconstitution of functional dopamine D(2s) receptor by co-expression of amino- and carboxyl-terminal receptor fragments. Eur. J. Pharmacol. 2000, 397, 291–296. [Google Scholar] [CrossRef]
- Scarselli, M.; Novi, F.; Schallmach, E.; Lin, R.; Baragli, A.; Colzi, A.; Griffon, N.; Corsini, G.U.; Sokoloff, P.; Levenson, R.; et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J. Biol. Chem. 2001, 276, 30308–30314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.P.; So, C.H.; Rashid, A.J.; Varghese, G.; Cheng, R.; Lança, A.J.; O’Dowd, B.F.; George, S.R. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 2004, 279, 35671–35678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorentini, C.; Busi, C.; Gorruso, E.; Gotti, C.; Spano, P.; Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol. Pharmacol. 2008, 74, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloisi, G.; Silvano, E.; Rossi, M.; Millan, M.J.; Maggio, R. Differential induction of adenylyl cyclase supersensitivity by antiparkinson drugs acting as agonists at dopamine D1/D2/D3 receptors vs D2/D3 receptors only: Parallel observations from co-transfected human and native cerebral receptors. Neuropharmacology 2011, 60, 439–445. [Google Scholar] [CrossRef]
- Melancon, B.J.; Hopkins, C.R.; Wood, M.R.; Emmitte, K.A.; Niswender, C.M.; Christopoulos, A.; Conn, P.J.; Lindsley, C.W. Allosteric modulation of seven transmembrane spanning receptors: Theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem. 2012, 55, 1445–1464. [Google Scholar] [CrossRef] [Green Version]
- Fasciani, I.; Pietrantoni, I.; Rossi, M.; Mannoury la Cour, C.; Aloisi, G.; Marampon, F.; Scarselli, M.; Millan, M.J.; Maggio, R. Distinctive binding properties of the negative allosteric modulator, [(3)H]SB269,652, at recombinant dopamine D(3) receptors. Eur. J. Pharmacol. 2018, 819, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Burford, N.T.; Traynor, J.R.; Alt, A. Positive allosteric modulators of the μ-opioid receptor: A novel approach for future pain medications. Br. J. Pharmacol. 2015, 172, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [Green Version]
- Leach, K.; Sexton, P.M.; Christopoulos, A. Allosteric GPCR modulators: Taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 2007, 28, 382–389. [Google Scholar] [CrossRef]
- Leach, K.; Loiacono, R.E.; Felder, C.C.; McKinzie, D.L.; Mogg, A.; Shaw, D.B.; Sexton, P.M.; Christopoulos, A. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 2010, 35, 855–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koole, C.; Wootten, D.; Simms, J.; Valant, C.; Sridhar, R.; Woodman, O.L.; Miller, L.J.; Summers, R.J.; Christopoulos, A.; Sexton, P.M. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: Implications for drug screening. Mol. Pharmacol. 2010, 78, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenakin, T.; Christopoulos, A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013, 12, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, G.; Coyle, J.T. Glutamatergic mechanisms in schizophrenia. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Mun, H.C.; Lewis, N.C.; Crouch, M.F.; Culverston, E.L.; Mason, R.S.; Conigrave, A.D. Allosteric activation of the extracellular Ca2+-sensing receptor by L-amino acids enhances ERK1/2 phosphorylation. Biochem. J. 2007, 404, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Massot, O.; Rousselle, J.C.; Fillion, M.P.; Grimaldi, B.; Cloëz-Tayarani, I.; Fugelli, A.; Prudhomme, N.; Seguin, L.; Rousseau, B.; Plantefol, M.; et al. 5-hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotonergic activity via its specific interaction with 5-hydroxytryptamine1B/1D receptors. Mol. Pharmacol. 1996, 50, 752–762. [Google Scholar] [PubMed]
- Pamplona, F.A.; Ferreira, J.; Menezes de Lima, O., Jr.; Duarte, F.S.; Bento, A.F.; Forner, S.; Villarinho, J.G.; Bellocchio, L.; Wotjak, C.T.; Lerner, R.; et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc. Natl. Acad Sci. USA 2012, 109, 21134–21139. [Google Scholar] [CrossRef] [Green Version]
- Vallée, M.; Vitiello, S.; Bellocchio, L.; Hébert-Chatelain, E.; Monlezun, S.; Martin-Garcia, E.; Kasanetz, F.; Baillie, G.L.; Panin, F.; Cathala, A.; et al. Pregnenolone can protect the brain from cannabis intoxication. Science 2014, 343, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Grazzini, E.; Guillon, G.; Mouillac, B.; Zingg, H.H. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 1998, 392, 509–512. [Google Scholar] [CrossRef]
- Rossi, M.; Dimida, A.; Ferrarini, E.; Silvano, E.; De Marco, G.; Agretti, P.; Aloisi, G.; Simoncini, T.; Di Bari, L.; Tonacchera, M.; et al. Presence of a putative steroidal allosteric site on glycoprotein hormone receptors. Europ. J. Pharmac. 2009, 623, 155–159. [Google Scholar] [CrossRef]
- van der Westhuizen, E.T.; Valant, C.; Sexton, P.M.; Christopoulos, A. Endogenous allosteric modulators of G protein-coupled receptors. J. Pharmacol. Exp. Ther. 2015, 353, 246–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brill, H.; Cole, J.; Deniker, P.; Hippius, H.; Bradley, P.B.; Van Rossum, J. Neuropsychopharmacology, Proceedings Fifth Collegium Internationale Neuropsychopharmacologicum; Brill, H., Cole, P., Deniker, H., Hippius, H., Bradley, P.B., Eds.; Excerpta Medica: Amsterdam, The Netherlands, 1967; pp. 321–329. [Google Scholar]
- Seeman, P. Schizophrenia and dopamine receptors. Eur. Neuropsychopharmacol. 2013, 23, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.D.; Deutch, A.Y. Dopamine depletion of the prefrontal cortex induces dendritic spine loss: Reversal by atypical antipsychotic drug treatment. Neuropsychopharmacology 2008, 33, 1276–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, J.; Lévesque, D.; Lammers, C.H.; Griffon, N.; Martres, M.-P.; Schwartz, J.-C.; Sokoloff, P. Phenotypical characterization of neurons expressing the dopamine D3 receptor. Neuroscience 1995, 65, 731–745. [Google Scholar] [CrossRef]
- Kapur, S.; Zipursky, R.B.; Remington, G.; Jones, C.; DaSilva, J.; Wilson, A.A.; Houle, S. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: A PET investigation. Am, J. Psychiatry 1998, 155, 921–928. [Google Scholar] [CrossRef]
- Aringhieri, S.; Carli, M.; Kolachalam, S.; Verdesca, V.; Cini, E.; Rossi, M.; McCormick, P.J.; Corsini, G.U.; Maggio, R.; Scarselli, M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol. Ther. 2018, 192, 20–41. [Google Scholar] [CrossRef]
- Luedtke, R.R.; Rangel-Barajas, C.; Malik, M.; Reichert, D.E.; Mach, R.H. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics. Curr. Pharm. Des. 2015, 21, 3700–3724. [Google Scholar] [CrossRef]
- Gross, G.; Wicke, K.; Drescher, K.U. Dopamine D3 receptor antagonism–still a therapeutic option for the treatment of schizophrenia. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 155–166. [Google Scholar] [CrossRef]
- Egan, C.T.; Herrick-Davis, K.; Miller, K.; Glennon, R.A.; Teitler, M. Agonist activity of LSD and lisuride at cloned 5-HT2A and 5-HT2C receptors. Psychopharmacology 1998, 136, 409–414. [Google Scholar] [CrossRef]
- Sakaue, M.; Somboonthum, P.; Nishihara, B.; Koyama, Y.; Hashimoto, H.; Baba, A.; Matsuda, T. Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br. J. Pharmac. 2000, 129, 1028–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mombereau, C.; Arnt, J.; Mørk, A. Involvement of presynaptic 5-HT1A receptors in the low propensity of brexpiprazole to induce extrapyramidal side effects in rats. Pharmacol. Biochem. Behav. 2017, 153, 141–146. [Google Scholar] [CrossRef] [PubMed]
- López-Giménez, J.F.; Mengod, G.; Palacios, J.M.; Vilaró, M.T. Selective visualiza-tion of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedeberg’s Arch. Pharmacol. 1997, 356, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: Their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 1159–1172. [Google Scholar] [CrossRef]
- De Deurwaerdère, P.; Navailles, S.; Berg, K.A.; Clarke, W.P.; Spampinato, U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosc. 2004, 24, 3235–3241. [Google Scholar] [CrossRef]
- Richtand, N.M.; Welge, J.A.; Logue, A.D.; Keck, P.E., Jr.; Strakowski, S.M.; McNamara, R.K. Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 2007, 32, 1715–1726. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Mann, A.; Costain, W.; Pontoriero, G.; Castellano, J.M.; Skoblenick, K.; Gupta, S.K.; Pristupa, Z.; Niznik, H.B.; Johnson, R.L.; et al. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog. J. Pharmacol. Exp. Ther. 2005, 315, 1228–1236. [Google Scholar] [CrossRef]
- Agnati, L.F.; Ferré, S.; Genedani, S.; Leo, G.; Guidolin, D.; Filaferro, M.; Carriba, P.; Casadó, V.; Lluis, C.; Franco, R.; et al. Allosteric modulation of dopamine D2 receptors by homocysteine. J. Proteome Res. 2006, 5, 3077–3083. [Google Scholar] [CrossRef]
- Neve, K.A. Regulation of dopamine D2 receptors by sodium and pH. Mol. Pharmacol. 1991, 39, 570–578. [Google Scholar]
- Neve, K.A.; Cumbay, M.G.; Thompson, K.R.; Yang, R.; Buck, D.C.; Watts, V.J.; Durand, C.J.; Teeter, M.M. Modeling and Mutational Analysis of a Putative Sodium-Binding Pocket on the Dopamine D2 Receptor. Mol. Pharmacol. 2001, 60, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Schetz, J.A.; Sibley, D.R. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. J. Neurochem. 1997, 68, 1990–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, K.A.; Heinz, B.A.; Schaus, J.M.; Beck, J.P.; Hao, J.; Krushinski, J.H.; Reinhard, M.R.; Cohen, M.P.; Hellman, S.L.; Getman, B.G.; et al. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis. J. Pharmacol. Exp. Ther. 2017, 360, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.; Ates, A.; Andre, V.M.; Michel, A.; Barnaby, R.; Gillard, M. In Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor. Mol. Pharmacol. 2016, 89, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luderman, K.D.; Conroy, J.L.; Free, R.B.; Southall, N.; Ferrer, M.; Sanchez-Soto, M.; Moritz, A.E.; Willette, B.K.A.; Fyfe, T.J.; Jain, P.; et al. Identification of Positive Allosteric Modulators of the D1 Dopamine Receptor That Act at Diverse Binding Sites. Mol. Pharmacol. 2018, 94, 1197–1209. [Google Scholar] [CrossRef]
- Hao, J.; Beck, J.P.; Schaus, J.M.; Krushinski, J.H.; Chen, Q.; Beadle, C.D.; Vidal, P.; Reinhard, M.R.; Dressman, B.A.; Massey, S.M.; et al. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 S,3 R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1 H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J. Med. Chem. 2019, 62, 8711–8732. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Moritz, A.E.; Keck, T.M.; Bonifazi, A.; Ellenberger, M.P.; Sibley, C.D.; Free, R.B.; Shi, L.; Lane, J.R.; Sibley, D.; et al. Synthesis and Pharmacological Characterization of Novel trans-Cyclopropylmethyl-Linked Bivalent Ligands That Exhibit Selectivity and Allosteric Pharmacology at the Dopamine D3 Receptor (D3R). J. Med. Chem. 2017, 60, 1478–1494. [Google Scholar] [CrossRef] [Green Version]
- Silvano, E.; Millan, M.J.; Mannoury la Cour, C.; Han, Y.; Duan, L.; Griffin, S.A.; Luedtke, R.R.; Aloisi, G.; Rossi, M.; Zazzeroni, F.; et al. The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors. Mol. Pharmacol. 2010, 78, 925–934. [Google Scholar] [CrossRef] [Green Version]
- Kopinathan, A.; Draper-Joyce, C.; Szabo, M.; Christopoulos, A.; Scammells, P.J.; Lane, J.R.; Ben Capuano, B. Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator N-(( trans)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 H)-yl)ethyl)cyclohexyl)-1 H-indole-2-carboxamide (SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D 2 Receptor. J. Med. Chem. 2019, 62, 371–377. [Google Scholar] [CrossRef]
- Fyfe, T.J.; Kellam, B.; Mistry, S.N.; Scammells, P.J.; Lane, J.R.; Capuano, B. Subtle modifications to a thieno [2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor. Eur. J. Med. Chem. 2019, 168, 474–490. [Google Scholar] [CrossRef]
- Fyfe, T.J.; Zarzycka, B.; Lim, H.D.; Kellam, B.; Mistry, S.N.; Katrich, V.; Scammells, P.J.; Lane, J.R.; Capuano, B. A Thieno[2,3- d]pyrimidine Scaffold Is a Novel Negative Allosteric Modulator of the Dopamine D2 Receptor. J. Med. Chem. 2019, 62, 174–206. [Google Scholar] [CrossRef]
- Mistry, S.N.; Shonberg, J.; Draper-Joyce, C.J.; Herenbrink, C.K.; Michino, M.; Shi, L.; Christopoulos, A.; Capuano, B.; Scammells, P.J.; Lane, J.R. Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D2 Receptor Through Fragmentation of a Bitopic Ligand. J. Med. Chem. 2015, 58, 6819–6843. [Google Scholar] [CrossRef] [PubMed]
- Shonberg, J.; Draper-Joyce, C.; Mistry, S.N.; Christopoulos, A.; Scammells, P.J.; Lane, J.R.; Capuano, B. Structure-activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor. J. Med. Chem. 2015, 58, 5287–5307. [Google Scholar] [CrossRef] [PubMed]
- Hoare, S.R.; Coldwell, M.C.; Armstrong, D.; Strange, P.G. Regulation of human D(1), d(2(long)), d(2(short)), D(3) and D(4) dopamine receptors by amiloride and amiloride analogues. Br. J. Pharmacol. 2000, 130, 1045–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, A.; Vendrell, M.; Gonzalez, S.; Mallol, J.; Albericio, F.; Royo, M.; Lluís, C.; Canela, E.I.; Franco, R.; Cortés, A.; et al. A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors. J. Pharmacol. Exp. Ther. 2010, 332, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, B.; Hamblin, M.W.; Svenningsson, P. Cholesterol depletion reduces serotonin binding and signaling via human 5-HT(7(a)) receptors. Eur. J. Pharmacol. 2006, 552, 1–10. [Google Scholar] [CrossRef]
- Prasad, R.; Paila, Y.D.; Chattopadhyay, A. Membrane cholesterol depletion enhances ligand binding function of human serotonin1A receptors in neuronal cells. Biochem. Biophys. Res. Commun. 2009, 390, 93–96. [Google Scholar] [CrossRef]
- Thomas, E.A.; Carson, M.J.; Neal, M.J.; Sutcliffe, J.G. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc. Natl. Acad Sci. USA 1997, 94, 14115–14119. [Google Scholar] [CrossRef] [Green Version]
- Hedlund, P.B.; Carson, M.J.; Sutcliffe, J.G.; Thomas, E.A. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors. Biochem. Pharmacol. 1999, 58, 1807–1813. [Google Scholar] [CrossRef]
- Fillion, G.; Massot, O.; Rousselle, J.C.; Fillion, M.P.; Prudhomme, N. 5-HT-Moduline, an Endogenous Peptide Modulating Serotoninergic Activity via a Direct Interaction at 5-HT1B/1D Receptors. In Serotoninergic Neurons and 5-HT Receptors in the CNS; Handbook of Experimental Pharmacology; Baumgarten, H.G., Göthert, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 129, pp. 293–306. [Google Scholar]
- Satała, G.; Duszyńska, B.; Lenda, T.; Nowak, G.; Bojarski, A.J. Allosteric Inhibition of Serotonin 5-HT7 Receptors by Zinc Ions. Mol. Neurobiol. 2018, 55, 2897–2910. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.; Adhikari, P.; Naing, S.; Hoffman, A.F.; Baumann, M.H.; Lupica, C.R.; Shi, L. Positive Allosteric Modulation of the 5-HT1A Receptor by Indole-Based Synthetic Cannabinoids Abused by Humans. ACS Chem. Neurosci. 2020, 11, 1400–1405. [Google Scholar] [CrossRef]
- Heng, H.L.; Chee, C.F.; Thy, C.K.; Tee, J.T.; Chin, S.P.; Herr, D.R.; Buckle, M.J.C.; Paterson, I.C.; Doughty, S.W.; Abd Rahman, N.; et al. In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5-HT2 and α1 receptors. Chem. Biol. Drug Des. 2019, 93, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Sona, C.; Ojha, V.; Singh, M.; Mishra, A.; Kumar, A.; Siddiqi, M.I.; Tripathi, R.P.; Yadav, P.N. Identification of dual role of piperazine-linked phenyl cyclopropyl methanone as positive allosteric modulator of 5-HT2C and negative allosteric modulator of 5-HT2B receptors. Eur. J. Med. Chem. 2019, 164, 499–516. [Google Scholar] [CrossRef] [PubMed]
- García-Cárceles, J.; Decara, J.M.; Vázquez-Villa, H.; Rodríguez, R.; Codesido, E.; Cruces, J.; Brea, J.; Loza, M.I.; Alén, F.; Botta, J.; et al. A Positive Allosteric Modulator of the Serotonin 5-HT2C Receptor for Obesity. J. Med. Chem. 2017, 60, 9575–9584. [Google Scholar] [CrossRef] [PubMed]
- Wold, E.A.; Garcia, E.J.; Wild, C.T.; Miszkiel, J.M.; Soto, C.A.; Chen, J.; Pazdrak, K.; Fox, R.G.; Anastasio, N.C.; Cunningham, K.A.; et al. Discovery of 4-Phenylpiperidine-2-Carboxamide Analogues as Serotonin 5-HT(2C) Receptor-Positive Allosteric Modulators with Enhanced Drug-like Properties. J. Med. Chem. 2020, 63, 7529–7544. [Google Scholar] [CrossRef]
- Zhou, J.; Cunningham, K.A. Positive-allosteric modulation of the 5-HT(2C) receptor: Implications for neuropsychopharmacology and neurotherapeutics. Neuropsychopharmacology 2019, 44, 230–231. [Google Scholar] [CrossRef]
- Sharma, H.S.; Lundstedt, T.; Boman, A.; Lek, P.; Seifert, E.; Wiklund, L.; Ali, S.F. A potent serotonin-modulating compound AP-267 attenuates morphine withdrawal-induced blood-brain barrier dysfunction in rats. Ann. N Y Acad. Sci. 2006, 1074, 482–496. [Google Scholar] [CrossRef]
- Wild, C.T.; Miszkiel, J.M.; Wold, E.A.; Soto, C.A.; Ding, C.; Hartley, R.M.; White, M.A.; Anastasio, N.C.; Cunningham, K.A.; Zhou, J. Design, Synthesis, and Characterization of 4-Undecylpiperidine-2-carboxamides as Positive Allosteric Modulators of the Serotonin (5-HT) 5-HT(2C) Receptor. J. Med. Chem. 2019, 62, 288–305. [Google Scholar] [CrossRef]
- Son, P.; Lewis, L. Hyperhomocysteinemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Hu, X.W.; Qin, S.M.; Li, D.; Hu, L.F.; Liu, C.F. Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: A meta-analysis. Acta Neurol. Scand. 2013, 128, 73–82. [Google Scholar] [CrossRef]
- Barbeau, A. Potentiation of levodopa effect by intravenous L-prolyl-L-leucyl-glycine amide in man. Lancet 1975, 2, 683–684. [Google Scholar] [CrossRef]
- Caraceni, T.; Parati, E.A.; Girotti, F.; Celano, I.; Frigerio, C.; Cocchi, D.; Müller, E.E. Failure of MIF-I to affect behavioral responses in patients with Parkinson’s diseases under L-dopa therapy. Psychopharmacology 1979, 63, 217–222. [Google Scholar] [CrossRef]
- Katzenschlager, R.; Jackson, M.J.; Rose, S.; Stockwell, K.; Tayarani-Binazir, K.A.; Zubair, M.; Smith, L.A.; Jenner, P.; Lees, A.J. Antiparkinsonian activity of L-propyl-L-leucyl-glycinamide or melanocyte-inhibiting factor in MPTP-treated common marmosets. Mov. Disord. 2007, 22, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Katritch, V.; Fenalti, G.; Abola, E.E.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 2014, 39, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanini, E.; Marchisio, A.M.; Devoto, P.; Vernaleone, F.; Collu, R.; Spano, P.F. Sodium-dependent interaction of benzamides with dopamine receptors. Brain Res. 1980, 198, 229–233. [Google Scholar] [CrossRef]
- Draper-Joyce, C.J.; Verma, R.K.; Michino, M.; Shonberg, J.; Kopinathan, A.; Klein Herenbrink, C.; Scammells, P.J.; Capuano, B.; Abramyan, A.M.; Thal, D.M.; et al. The action of a negative allosteric modulator at the dopamine D(2) receptor is dependent upon sodium ions. Sci. Rep. 2018, 8, 1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillion, G.; Rousselle, J.C.; Massot, O.; Zifa, E.; Fillion, M.P.; Prudhomme, N. A new peptide, 5-HT-moduline, isolated and purified from mammalian brain specifically interacts with 5-HT1B/1D receptors. Behav. Brain Res. 1996, 73, 313–317. [Google Scholar] [CrossRef]
- Grimaldi, B.; Bonnin, A.; Fillion, M.P.; Prudhomme, N.; Fillion, G. 5-Hydroxytryptamine-moduline: A novel endogenous peptide involved in the control of anxiety. Neuroscience 1999, 93, 1223–1225. [Google Scholar] [CrossRef]
- Cravatt, B.F.; Prospero-Garcia, O.; Siuzdak, G.; Gilula, N.B.; Henriksen, S.J.; Boger, D.L.; Lerner, R.A. Chemical characterization of a family of brain lipids that induce sleep. Science 1995, 268, 1506–1509. [Google Scholar] [CrossRef] [Green Version]
- Prospéro-García, O.; Amancio-Belmont, O.; Becerril Meléndez, A.L.; Ruiz-Contreras, A.E.; Méndez-Díaz, M. Endocannabinoids and sleep. Neurosci. Biobehav. Rev. 2016, 71, 671–679. [Google Scholar] [CrossRef]
- Huidobro-Toro, J.P.; Harris, R.A. Brain lipids that induce sleep are novel modulators of 5-hydroxytrypamine receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 8078–8082. [Google Scholar] [CrossRef] [Green Version]
- Lerner, R.A. A hypothesis about the endogenous analogue of general anesthesia. Proc. Natl. Acad. Sci. USA 1997, 94, 13375–13377. [Google Scholar] [CrossRef] [Green Version]
- Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J. Med. Chem. 2019, 62, 88–127. [Google Scholar] [CrossRef] [PubMed]
- Massink, A.; Amelia, T.; Karamychev, A.; AP, I.J. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Med. Res. Rev. 2020, 40, 683–708. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, A.B.; Macdonald, D.; Benbow, L.L.; Smith-Torhan, A.; Zhang, H.; Weig, B.C.; Ho, G.; Tulshian, D.; Linder, M.E.; Graziano, M.P. SCH-202676: An allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors. Mol. Pharmacol. 2001, 59, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Lewandowicz, A.M.; Vepsäläinen, J.; Laitinen, J.T. The ’allosteric modulator’ SCH-202676 disrupts G protein-coupled receptor function via sulphydryl-sensitive mechanisms. Br. J. Pharmacol. 2006, 147, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.K.; Marcotte, E.R.; Chugh, A.; Barlas, C.; Whan, D.; Johnson, R.L. Modulation of dopamine receptor agonist-induced rotational behavior in 6-OHDA-lesioned rats by a peptidomimetic analogue of Pro-Leu-Gly-NH2 (PLG). Peptides 1997, 18, 1209–1215. [Google Scholar] [CrossRef]
- Dyck, B.; Guest, K.; Sookram, C.; Basu, D.; Johnson, R.; Mishra, R.K. PAOPA, a potent analogue of Pro-Leu-glycinamide and allosteric modulator of the dopamine D2 receptor, prevents NMDA receptor antagonist (MK-801)-induced deficits in social interaction in the rat: Implications for the treatment of negative symptoms in schizophrenia. Schizophr. Res. 2011, 125, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Paladino, P.; Gabriele, J.; Saeedi, H.; Henry, P.; Chang, M.; Mishra, R.K.; Johnson, R.L. Pro-Leu-glycinamide and its peptidomimetic, PAOPA, attenuate haloperidol induced vacuous chewing movements in rat: A model of human tardive dyskinesia. Peptides 2003, 24, 313–319. [Google Scholar] [CrossRef]
- Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology 2004, 174, 3–16. [Google Scholar] [CrossRef]
- Chen, L.; Yang, C.R. Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J. Neurophysiol. 2002, 87, 2324–2336. [Google Scholar] [CrossRef] [Green Version]
- Bruns, R.F.; Mitchell, S.N.; Wafford, K.A.; Harper, A.J.; Shanks, E.A.; Carter, G.; O’Neill, M.J.; Murray, T.K.; Eastwood, B.J.; Schaus, J.M.; et al. Preclinical profile of a dopamine D1 potentiator suggests therapeutic utility in neurological and psychiatric disorders. Neuropharmacology 2018, 128, 351–365. [Google Scholar] [CrossRef]
- Reavill, C.; Taylor, S.G.; Wood, M.D.; Ashmeade, T.; Austin, N.E.; Avenell, K.Y.; Boyfield, I.; Branch, C.L.; Cilia, J.; Coldwell, M.C.; et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D(3) receptor antagonist, SB-277011-A. J. Pharmacol. Exp. Ther. 2000, 294, 1154–1165. [Google Scholar] [PubMed]
- Stemp, G.; Ashmeade, T.; Branch, C.L.; Hadley, M.S.; Hunter, A.J.; Johnson, C.N.; Nash, D.J.; Thewlis, K.M.; Vong, A.K.; Austin, N.E.; et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): A potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 2000, 43, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.R.; Donthamsetti, P.; Shonberg, J.; Draper-Joyce, C.J.; Dentry, S.; Michino, M.; Shi, L.; López, L.; Scammells, P.J.; Capuano, B.; et al. A new mechanism of allostery in a G protein-coupled receptor dimer. Nat. Chem. Biol. 2014, 10, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, R.; Scarselli, M.; Capannolo, M.; Millan, M.J. Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation. Eur. Neuropsychopharmacol. 2015, 25, 1470–1479. [Google Scholar] [CrossRef]
- Maggio, R.; Rocchi, C.; Scarselli, M. Experimental strategies for studying G protein-coupled receptor homo- and heteromerization with radioligand binding and signal transduction methods. Methods Enzymol. 2013, 521, 295–310. [Google Scholar] [CrossRef]
- Jakubík, J.; Zimčík, P.; Randáková, A.; Fuksová, K.; El-Fakahany, E.E.; Doležal, V. Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol. Pharmacol. 2014, 86, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.R.; Sexton, P.M.; Christopoulos, A. Bridging the gap: Bitopic ligands of G-protein-coupled receptors. Trends Pharmacol. Sci. 2013, 34, 59–66. [Google Scholar] [CrossRef]
- Verma, R.K.; Abramyan, A.M.; Michino, M.; Free, R.B.; Sibley, D.R.; Javitch, J.A.; Lane, J.R.; Shi, L. The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors. PLoS Comput Biol. 2018, 14, e1005948. [Google Scholar] [CrossRef]
- Al Kury, L.T.; Mahgoub, M.; Howarth, F.C.; Oz, M. Natural Negative Allosteric Modulators of 5-HT3 Receptors. Molecules 2018, 23, 3186. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J. Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol. Sci. 2013, 34, 100–109. [Google Scholar] [CrossRef]
- Wacker, D.; Wang, C.; Katritch, V.; Han, G.W.; Huang, X.P.; Vardy, E.; McCorvy, J.D.; Jiang, Y.; Chu, M.; Siu, F.Y.; et al. Structural features for functional selectivity at serotonin receptors. Science 2013, 340, 615–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Jiang, Y.; Ma, J.; Wu, H.; Wacker, D.; Katritch, V.; Han, G.W.; Liu, W.; Huang, X.P.; Vardy, E.; et al. Structural basis for molecular recognition at serotonin receptors. Science 2013, 340, 610–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, A.C.; Ring, A.M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; Sexton, P.M.; et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013, 504, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCorvy, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 2015, 150, 129–142. [Google Scholar] [CrossRef] [Green Version]
- González-Maeso, J.; Ang, R.L.; Yuen, T.; Chan, P.; Weisstaub, N.V.; López-Giménez, J.F.; Zhou, M.; Okawa, Y.; Callado, L.F.; Milligan, G.; et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008, 452, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.L.; Muguruza, C.; Umali, A.; Mortillo, S.; Holloway, T.; Pilar-Cuéllar, F.; Mocci, G.; Seto, J.; Callado, L.F.; Neve, R.L.; et al. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. J. Biol. Chem. 2012, 287, 44301–44319. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.L.; Miranda-Azpiazu, P.; García-Bea, A.; Younkin, J.; Cui, M.; Kozlenkov, A.; Ben-Ezra, A.; Voloudakis, G.; Fakira, A.K.; Baki, L.; et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci. Signal. 2016, 9, ra5. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; McCorvy, J.D.; Harpsøe, K.; Lansu, K.; Yuan, S.; Popov, P.; Qu, L.; Pu, M.; Che, T.; Nikolajsen, L.F.; et al. 5-HT(2C) Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell 2018, 172, 719–730.e14. [Google Scholar] [CrossRef] [Green Version]
- Devroye, C.; Cathala, A.; Piazza, P.V.; Spampinato, U. The central serotonin 2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. Pharmacol. Ther. 2018, 181, 143–155. [Google Scholar] [CrossRef]
- Auclair, A.L.; Cathala, A.; Sarrazin, F.; Depoortère, R.; Piazza, P.V.; Newman-Tancredi, A.; Spampinato, U. The central serotonin 2B receptor: A new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J. Neurochem. 2010, 114, 1323–1332. [Google Scholar] [CrossRef]
- Devroye, C.; Cathala, A.; Haddjeri, N.; Rovera, R.; Vallée, M.; Drago, F.; Piazza, P.V.; Spampinato, U. Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia. Neuropharmacology 2016, 109, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Im, W.B.; Chio, C.L.; Alberts, G.L.; Dinh, D.M. Positive allosteric modulator of the human 5-HT2C receptor. Mol. Pharmacol. 2003, 64, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Bremer, N.M.; Smith, T.D.; Seitz, P.K.; Anastasio, N.C.; Cunningham, K.A.; Zhou, J. Exploration of synthetic approaches and pharmacological evaluation of PNU-69176E and its stereoisomer as 5-HT2C receptor allosteric modulators. ACS Chem. Neurosci. 2012, 3, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piersanti, M.; Capannolo, M.; Turchetti, M.; Serroni, N.; De Berardis, D.; Evangelista, P.; Costantini, P.; Orsini, A.; Rossi, A.; Maggio, R. Increase in mortality rate in patients with dementia treated with atypical antipsychotics: A cohort study in outpatients in Central Italy. Riv. Psichiatr. 2014, 49, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Maggio, R.; Riccardi, I.; Allegrini, F.; Stratta, P. A quantitative analysis of antidepressant and antipsychotic prescriptions following an earthquake in Italy. J. Trauma Stress 2011, 24, 129–132. [Google Scholar] [CrossRef]
- Alexander, G.C.; Gallagher, S.A.; Mascola, A.; Moloney, R.M.; Stafford, R.S. Increasing off-label use of antipsychotic medications in the United States, 1995–2008. Pharmacoepidemiol. Drug Saf. 2011, 20, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Sahli, Z.T.; Tarazi, F.I. Pimavanserin: Novel pharmacotherapy for Parkinson’s disease psychosis. Expert Opin. Drug Discov. 2018, 13, 103–110. [Google Scholar] [CrossRef]
- Fribourg, M.; Moreno, J.L.; Holloway, T.; Provasi, D.; Baki, L.; Mahajan, R.; Park, G.; Adney, S.K.; Hatcher, C.; Eltit, J.M.; et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 2011, 147, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Griebel, G.; Pichat, P.; Boulay, D.; Naimoli, V.; Potestio, L.; Featherstone, R.; Sahni, S.; Defex, H.; Desvignes, C.; Slowinski, F.; et al. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci. Rep. 2016, 6, 35320. [Google Scholar] [CrossRef] [Green Version]
- Möhler, H.; Fritschy, J.M.; Rudolph, U. A new benzodiazepine pharmacology. J. Pharmac. Exp. Ther. 2002, 300, 2–8. [Google Scholar] [CrossRef] [Green Version]
Allosteric Modulator | Description of the Effect |
---|---|
PAM (positive allosteric modulator) | Increases orthosteric ligand affinity and/or efficacy |
NAM (negative allosteric modulator) | Decreases orthosteric ligand affinity and/or efficacy |
SAM (silent allosteric modulator) | Does not affect orthosteric ligand activity, but prevents other modulators from binding to the allosteric site, thus inhibiting their modulation |
PAM agonist | Works like PAM, but also functions as an agonist with and without the orthosteric ligand it modulates |
PAM antagonist | Works like PAM, but also functions as an antagonist and lowers the efficacy of the orthosteric ligand |
NAM agonist | Works like NAM, but also as an agonist with and without the orthosteric ligand it modulates |
NAM inverse agonist | Works like NAM, but also functions as an inverse agonist without the orthosteric ligand it modulates |
Allosteric Modulators of Dopamine Receptors | |||
Endogenous Molecule | Effect | Target | Reference |
Melanostatin or PLG | PAM | D2 | [69] |
Homocysteine | NAM | D2 | [70] |
H+ | NAM | D2 | [71] |
Na+ | NAM | D2 | [72] |
Zn2+ | NAM | D1–D2 | [73] |
Exogenous Molecule | Effect | Target | Reference |
DETQ | PAM | D1 | [74] |
[5-Fluoro-4-(hydroxymethyl)-2-methoxyphenyl](4-fluoro-1hindol-1-yl)methanone | PAM | D2–D3 | [75] |
MLS6585 and MLS1082 | PAM | D1 | [76] |
LY3154207 | PAM agonist | D1 | [77] |
PAOPA | PAM | D2 | [69] |
Compounds 18a and 25a | NAM | D3 | [78] |
SB269652 | NAM | D2–D3 | [79] |
Compounds 2 and 11g | NAM | D2 | [80] |
Compounds 9d, 9i and 9h | NAM | D2 | [81] |
Compounds 14a, 14i, 17, 19, 39a, 43a, 47a,b | NAM | D2 | [82] |
Compounds 11d and 36 | NAM | D2 | [83] |
Compounds 18a, 18b, 18d and 25f | NAM | D2 | [84] |
Amiloride and amiloride analogues | NAM | D1–D2–D3–D4 | [85] |
Indoloquinolizidine-peptide 28 | NAM agonist | D1 | [86] |
Allosteric Modulators of Serotonin Receptors | |||
Endogenous Molecule | Effect | Target | Reference |
Cholesterol | PAM | 5-HT1A–5-HT7 | [87,88] |
Oleamide | PAM agonist NAM agonist | 5-HT1A–5-HT2A 5-HT2C–5-HT7 | [89,90] |
5-HT moduline | NAM | 5-HT1B | [91] |
Zn++ | NAM | 5-HT1A –5-HT7 | [92] |
Exogenous Molecule | Effect | Target | Reference |
AM2201 and JWH-018 | PAM | 5-HT1A | [93] |
(S)-glaucine | PAM | 5-HT2A | [94] |
Compound 58 | NAM PAM | 5-HT2B 5-HT2C | [95] |
VA012 | PAM | 5-HT2C | [96] |
CTW0415 | PAM | 5-HT2C | [97] |
CYD-1-79 | PAM | 5-HT2C | [98] |
AP-267 | PAM | 5-HT2C | [99] |
Compound 14 | NAM | 5-HT2C | [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasciani, I.; Petragnano, F.; Aloisi, G.; Marampon, F.; Carli, M.; Scarselli, M.; Maggio, R.; Rossi, M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals 2020, 13, 388. https://doi.org/10.3390/ph13110388
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals. 2020; 13(11):388. https://doi.org/10.3390/ph13110388
Chicago/Turabian StyleFasciani, Irene, Francesco Petragnano, Gabriella Aloisi, Francesco Marampon, Marco Carli, Marco Scarselli, Roberto Maggio, and Mario Rossi. 2020. "Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics" Pharmaceuticals 13, no. 11: 388. https://doi.org/10.3390/ph13110388
APA StyleFasciani, I., Petragnano, F., Aloisi, G., Marampon, F., Carli, M., Scarselli, M., Maggio, R., & Rossi, M. (2020). Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals, 13(11), 388. https://doi.org/10.3390/ph13110388