Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light
Abstract
:1. Introduction
1.1. Photodynamic Therapy (PDT)
1.2. Photothermal Therapy (PTT)
1.3. Photoacoustic Therapy (PAT)
2. Respiratory Viruses
3. Systemic Viruses and Sexually Transmitted Infections
4. Central Nervous System Viral Infections
5. Gastroenteric Infections
6. Eye Infections
7. Skin Infections
Respiratory Infections | Systemic & Sexually Transmitted Infections | ||
---|---|---|---|
Viral disease and causative virus | Phototherapy approach | Viral disease and causative virus | Phototherapy approach |
Coronavirus (HCoV) Common cold, Pneumonia | Blue light photoactivated curcumin-poly nanoparticles to treat plasma products contaminated by SARS-CoV-2 [30] White light irradiation photoactivated DTTPB to inactivate HCoV-OC43 and HCoV-229E in MRC-5 cells [34] Light irradiation NIR at a wavelength of 810 nm photoactivated ICG induces a decrease of SARS-CoV-2 virus attachment to the host cell surface [35] | Epstein–Barr Virus (EBV) EBV-associated cancer | NIR laser photoactivated CTL: PBNP agent, which can target and lyse EBV antigen expressing cells is a promising anticancer immuno-phototherapy approach [53]. |
Human papillomavirus (HPV) Recurrent respiratory papillomatosis (RRP), HPV-induced tumors | Photoactivated dihematoporphyrin ether (DHE) or aminolevulinic acid hydrochloride (5-ALA) can significantly decrease RRP growth in patients. PDT approach with m-tetra(hydroxyphenyl) chlorine is reported to be effective against HPV-induced tumors causing minimal tissue damage and less photosensitivity in rabbits. HPV-induced epithelial tumors can be treated with photodynamic therapy with the ALA molecule [37,38,39]. | Human papillomavirus (HPV) Condyloma acuminata | Treatment with topical aminolevulinic acid photodynamic therapy (ALA-PDT) following curettage was effectively applied for the treatment of condyloma acuminate [56,58] |
Influenza Respiratory infection | Visual light (400–850 nm) photoactivated crystalline fullerene C60 in allantoic fluid of chicken embryos decreased the titer of influenza A (H1N1) [32]. Visible light from compact fluorescent lamp photoactivated NT-P on NCI cells for influenza A (H3N2) inactivation [33]. | Human Herpesvirus 8 (HHV8) HHV8-induced tumor | The use of Photosens® (NIOPIK, Russia) as a photosensitizer, irradiated by laser at a wavelength of 675 nm, resulted in a decreased thickness of the tumor and the lesion area. After 4 months of treatment, the patient regained smooth skin [49]. |
CNS Infections | Skin Infections | ||
Viral disease and causative virus | Phototherapy approach | Viral disease and causative virus | Phototherapy approach |
Epstein–Barr Virus (EBV) EBV associated nasopharyngeal carcinoma | Zn-BC-AM PDT had a significant impact on proinflammatory cytokine production in HK-1-EBV cells [70]. | Human papillomavirus (HPV) Verrucae | Long-pulsed laser (1064 nm) had a verrucae vulgaris clearance rate of 96% [118]. PDT was successfully used in treatment of resistant verrucae plantaris [119]. Pulsed dye laser treatment (585 nm) had 60% clearance efficacy in children under 12 years [120]. Palmoplantar warts were cleared up to 97% upon treatment with moisturizing cream and irradiation with long-pulsed laser (1064 nm) [121]. Both conventional and daylight ALA-PDT cleared 70 to 80% facial flat warts in children [117]. |
Gastroenteric Infections | |||
Viral disease and causative virus | Phototherapy approach | ||
Norovirus (NoV) Gastroenteritis | UVB photoactivated curcumin showed an effect on NoV surrogates; it also altered the morphology and inactivated NoV in oysters [94,95]. There was an inactivation effect of high-intensity ultrasound on NoV surrogates noted [96]. |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1O2 | singlet oxygen radicals |
ACE2 | angiotensin-converting enzyme 2 |
AIDS | acquired immunodeficiency syndrome |
ALA | aminolevulinic acid hydrochloride |
AVUT | antivascular ultrasound therapy |
CMV | cytomegalovirus |
CNS | central nervous system |
CNV | choroidal neovascularization |
COVID-19 | coronavirus disease 2019 |
CTL | cytotoxic T lymphocytes |
DNA | deoxyribonucleic acid |
eAdVs | enteric adenoviruses |
EAE | experimental autoimmune encephalomyelitis |
EBV | Epstein–Barr virus |
FCV | feline calicivirus |
FDA | The Food and Drug Administration |
GE | gastroenteritis |
HAtVs | astrovirus |
HBV | hepatitis B virus |
HCoV | human coronavirus |
HHV | human herpesvirus |
HIUS | high-intensity ultrasound |
HIV | human immunodeficiency virus |
HMME-PDT | hematoporphyrin monomethyl ether combined with PDT |
HO- | hydroxyl radicals |
hPIV3 | parainfluenza-3 virus |
HPV | human papillomavirus |
HSV | herpes simplex virus |
ICG | indocyanine green |
IOP | intraocular pressure |
KS | Kaposi’s sarcoma |
LGFU | laser-generated focused ultrasound |
LLLT | low- level light therapy |
mNoV | murine norovirus |
NIR | near-infrared light |
NoV | noroviruses |
NT-P | porphyrin-conjugated multiwalled carbon nanotubes |
PTA | photothermal agent |
PAI | photoacoustic imaging |
PAT | photoacoustic therapy |
PBNP | Prussian blue nanoparticles |
PBS | phosphate buffered saline |
Pc | phthalocyanine |
PDI | photodynamic inactivation |
PDT | photodynamic therapy |
PS | photosensitizers |
PT | phototherapy |
PTT | photothermal therapy |
PLD | pulsed dye laser |
PUT | photo-mediated ultrasound therapy |
RBD | receptor binding domain |
RNA | ribonucleic acid |
ROS | reactive oxygen species |
RRP | recurrent respiratory papillomatosis |
RuV | rubella virus |
RV | rotaviruses |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SaV | sapoviruses |
SWEEPS | shock wave-enhance emission photoacoustic streaming |
TMPyP | tetrakis (1-methyl-4-pyridinio) porphyrin- tetra- p-toluene sulfonate |
TP P2a | meso-tetraphenylporphine with two sulfonate groups on adjacent phenyl rings |
UV | ultraviolet |
Zn-BC-AM | Zn (II)-benzochlorine analog |
References
- Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021, 105, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Ochani, R.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Ochani, R.; Hussham Arshad, M.; et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021, 29, 20–36. [Google Scholar] [PubMed]
- Majumder, J.; Minko, T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Tang, X.X. Virus infection induced pulmonary fibrosis. J. Transl. Med. 2021, 19, 496. [Google Scholar] [CrossRef] [PubMed]
- Auriti, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Piersigilli, F.; Bersani, I.; Ronchetti, M.P.; Caforio, L. Pregnancy and Viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166198. [Google Scholar] [CrossRef]
- Rosalik, K.; Tarney, C.; Han, J. Human Papilloma Virus Vaccination. Viruses 2021, 13, 1091. [Google Scholar] [CrossRef]
- Domingo, E.; García-Crespo, C.; Lobo-Vega, R.; Perales, C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021, 13, 1882. [Google Scholar] [CrossRef]
- Hemmer, C.J.; Löbermann, M.; Reisinger, E.C. COVID-19: Epidemiologie und Mutationen. Der Radiol. 2021, 61, 880–887. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Botteon, C.E.A.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials 2021, 11, 3132. [Google Scholar] [CrossRef]
- Han, Z.; Tu, X.; Qiao, L.; Sun, Y.; Li, Z.; Sun, X.; Wu, Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J. Mater. Chem. B 2021, 9, 6751–6769. [Google Scholar] [CrossRef]
- Broadwater, D.; Medeiros, H.C.; Lunt, R.R.; Lunt, S.Y. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu. Rev. Biomed. Eng. 2021, 23, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yu, Y.; Xie, X.; Zhang, W.; Fu, J.; Paulus, Y.M.; Yang, X.; Wang, X. The Effect of Laser and Ultrasound Synchronization in Photo-Mediated Ultrasound Therapy. IEEE Trans. Biomed. Eng. 2020, 67, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- Kharkwal, G.B.; Sharma, S.K.; Huang, Y.-Y.; Dai, T.; Hamblin, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011, 43, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef]
- Mariewskaya, K.; Tyurin, A.; Chistov, A.; Korshun, V.; Alferova, V.; Ustinov, A. Photosensitizing Antivirals. Molecules 2021, 26, 3971. [Google Scholar] [CrossRef]
- Wiehe, A.; O'Brien, J.M.; Senge, M.O. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci. 2019, 18, 2565–2612. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, F.; Sun, J.; Wang, F.; Liu, K. Biomacromolecule-based photo-thermal agents for tumor treatment. J. Mater. Chem. B 2021, 9, 7007–7022. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Zhang, Z.; Ji, L.; Zhang, J.; Wang, Q.; Guo, T.; Ni, S.; Cai, R.; Mu, X.; et al. Recent Progress on NIR-II Photothermal Therapy. Front. Chem. 2021, 9, 728066. [Google Scholar] [CrossRef]
- Yu, Z.; Chan, W.K.; Zhang, Y.; Tan, T.T.Y. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 2020, 269, 120459. [Google Scholar] [CrossRef]
- Prost, A.; Funke, A.; Tanter, M.; Aubry, J.-F.; Bossy, E. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array. J. Biomed. Opt. 2012, 17, 0612051–0612056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Gu, Z. Photoacoustic Drug Delivery. Sensors 2017, 17, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, A.; Sabah, S.; Dhou, S.; Alsawaftah, N.; Husseini, G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. Nanomaterials 2022, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Kim, J.; Hu, Q.; Jiang, X.; Gu, Z. Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J. Control. Release 2015, 220, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clementi, N.; Ghosh, S.; De Santis, M.; Castelli, M.; Criscuolo, E.; Zanoni, I.; Clementi, M.; Mancini, N. Viral Respiratory Pathogens and Lung Injury. Clin. Microbiol. Rev. 2021, 34, e00103-20. [Google Scholar] [CrossRef]
- Charlton, C.L.; Babady, E.; Ginocchio, C.C.; Hatchette, T.F.; Jerris, R.C.; Li, Y.; Loeffelholz, M.; McCarter, Y.S.; Miller, M.B.; Novak-Weekley, S.; et al. Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections. Clin. Microbiol. Rev. 2018, 32, e00042-18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, C.Y.; Wan, X.-F. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal. Bioanal. Chem. 2021, 414, 2841–2881. [Google Scholar] [CrossRef]
- Majiya, H.; Adeyemi, O.O.; Herod, M.; Stonehouse, N.J.; Millner, P. Photodynamic inactivation of non-enveloped RNA viruses. J. Photochem. Photobiol. B Biol. 2018, 189, 87–94. [Google Scholar] [CrossRef]
- Monjo, A.L.-A.; Pringle, E.S.; Thornbury, M.; Duguay, B.A.; Monro, S.M.A.; Hetu, M.; Knight, D.; Cameron, C.G.; McFarland, S.A.; McCormick, C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018, 10, 532. [Google Scholar] [CrossRef] [Green Version]
- Engesæter, B.; Tveito, S.; Bonsted, A.; Engebraaten, O.; Berg, K.; Mælandsmo, G.M. Photochemical treatment with endosomally localized photosensitizers enhances the number of adenoviruses in the nucleus. J. Gene Med. 2006, 8, 707–718. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Azimi, M.; Haddadi-Asl, V.; Ahmadi, H.; Gholamzad, M.; Ghorbanpour, S.; Bahador, A. Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in Vero cell line as a model. Photodiagnosis Photodyn. Ther. 2021, 34, 102286. [Google Scholar] [CrossRef] [PubMed]
- Zarubaev, V.V.; Belousova, I.M.; Kiselev, O.I.; Piotrovsky, L.B.; Anfimov, P.M.; Krisko, T.C.; Muraviova, T.D.; Rylkov, V.V.; Starodubzev, A.M.; Sirotkin, A.C. Photodynamic inactivation of influenza virus with fullerene C60 suspension in allantoic fluid. Photodiagnosis Photodyn. Ther. 2007, 4, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Douaisi, M.P.; Mondal, D.; Kane, R.S. Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology 2012, 23, 105101. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Gu, M.; Leung, J.-K.; Li, X.; Yuan, Y.; Shen, C.; Wang, L.; Zhao, E.; Chen, S. A Membrane-Targeting Photosensitizer with Aggregation-Induced Emission Characteristics for Highly Efficient Photodynamic Combat of Human Coronaviruses. Small Weinh. Bergstr. Ger. 2021, 17, 2101770. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Bahador, A. Computational Biology Analysis of COVID-19 Receptor-Binding Domains: A Target Site for Indocyanine Green Through Antimicrobial Photodynamic Therapy. J. Lasers Med Sci. 2020, 11, 433–441. [Google Scholar] [CrossRef]
- Brilkina, A.A.; Dubasova, L.V.; Sergeeva, E.A.; Pospelov, A.; Shilyagina, N.Y.; Shakhova, N.M.; Balalaeva, I.V. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J. Photochem. Photobiol. B Biol. 2018, 191, 128–134. [Google Scholar] [CrossRef]
- Derkay, C.S.; Wiatrak, B. Recurrent Respiratory Papillomatosis: A Review. Laryngoscope 2008, 118, 1236–1247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Sun, B.; Wang, F.; Dai, Z.; Han, Z.; Han, J.; Chen, M.; Shen, Y. Coblation plus photodynamic therapy (PDT) for the treatment of juvenile onset laryngeal papillomatosis: Case reports. World J. Surg. Oncol. 2014, 12, 275. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Liu, Y.; Shi, R.; Zhou, P. Successful Treatment of Adult-Onset Recurrent Respiratory Papillomatosis with CO2 Laser and Photodynamic Therapy. Case Rep. Otolaryngol. 2019, 2019, 7394879-6. [Google Scholar] [CrossRef]
- Fanales-Belasio, E.; Raimondo, M.; Suligoi, B.; Buttò, S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Curr. Opin. HIV AIDS 2010, 46, 5–14. [Google Scholar] [CrossRef]
- Phanuphak, N.; Gulick, R.M. HIV treatment and prevention 2019: Current standards of care. Curr. Opin. HIV AIDS 2020, 15, 4–12. [Google Scholar] [CrossRef]
- Labh, R.; Gupta, R. Emerging Trends in the Long-Acting Antiretroviral Therapy: Current Status and Therapeutic Challenges. Curr. HIV Res. 2021, 19, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Flexner, C.; Owen, A.; Siccardi, M.; Swindells, S. Long-acting drugs and formulations for the treatment and prevention of HIV infection. Int. J. Antimicrob. Agents 2020, 57, 106220. [Google Scholar] [CrossRef]
- Yin, H.; Li, Y.; Zheng, Y.; Ye, X.; Zheng, L.; Li, C.; Xue, Z. Photoinactivation of cell-free human immunodeficiency virus by hematoporphyrin monomethyl ether. Lasers Med Sci. 2011, 27, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Griffin, B.D.; Verweij, M.C.; Wiertz, E.J. Herpesviruses and immunity: The art of evasion. Veter-Microbiol. 2010, 143, 89–100. [Google Scholar] [CrossRef]
- Davison, A.J. Herpesvirus systematics. Veter-Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, R.J.; Pantanowitz, L.; Dezube, B.J. Targeted therapy in Kaposi sarcoma. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2009, 23, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, Z.P.; Wilson, B.D.; Oseroff, A.R.; Jones, C.M.; Dozier, S.E.; Brooks, J.S.J.; Cheney, R.; Foulke, L.; Mang, T.S.; Bellnier, D.A.; et al. Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi‚s sarcoma. AIDS 1999, 13, 1697–1704. [Google Scholar] [CrossRef]
- Shiryaev, A.; Efendiev, K.; Kornev, D.; Samoylova, S.; Fatyanova, A.; Karpova, R.; Reshetov, I.; Loschenov, V. Photodynamic therapy of classic Kaposi's sarcoma with video-fluorescence control. Photodiagnosis Photodyn. Ther. 2021, 35, 102378. [Google Scholar] [CrossRef]
- Latief, M.A.; Chikama, T.; Ko, J.-A.; Kiuchi, Y.; Sakaguchi, T.; Obana, A. Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy. Mol. Vis. 2015, 21, 532–537. [Google Scholar]
- Zverev, V.V.; Makarov, O.V.; Khashukoeva, A.Z.; Svitich, O.A.; Dobrokhotova, Y.E.; Markova, E.A.; Labginov, P.A.; Khlinova, S.A.; Shulenina, E.A.; Gankovskaya, L.V. In vitro studies of the antiherpetic effect of photodynamic therapy. Lasers Med Sci. 2016, 31, 849–855. [Google Scholar] [CrossRef]
- DeRussy, B.M.; Aylward, M.A.; Fan, Z.; Ray, P.C.; Tandon, R. Inhibition of cytomegalovirus infection and photothermolysis of infected cells using bioconjugated gold nanoparticles. Sci. Rep. 2014, 4, srep05550. [Google Scholar] [CrossRef] [PubMed]
- Burga, R.A.; Patel, S.; Bollard, C.M.; Cruz, C.R.Y.; Fernandes, R. Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy. Nanomedicine 2016, 11, 1759–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sanjosé, S.; Brotons, M.; Pavón, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Ntanasis-Stathopoulos, I.; Kyriazoglou, A.; Liontos, M.; Gavriatopoulou, M. Current trends in the management and prevention of human papillomavirus (HPV) infection. Hum. Papillomavirus (HPV) JBUON 2020, 25, 1281–1285. [Google Scholar]
- Hu, Z.; Zheng, H.; Zeng, K. Patterns of multiple human papillomavirus clearance during 5-aminolevulinic acid-based photodynamic therapy in patients with genital warts. Photodiagnosis Photodyn. Ther. 2021, 35, 102454. [Google Scholar] [CrossRef] [PubMed]
- Szeimies, R.-M. Photodynamic Therapy for Human Papilloma Virus-Related Diseases in Dermatology. Med Laser Appl. 2003, 18, 107–116. [Google Scholar] [CrossRef]
- Kechichian, E.; Helou, E.; Sarkis, J.; Hayek, C.; Labaki, C.; Nemr, E.; Tomb, R. The place of 5-aminolaevulinic acid-photodynamic therapy in the treatment landscape of urethral warts: A systematic review. Photodiagnosis Photodyn. Ther. 2021, 33, 102204. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Litscher, G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 7150. [Google Scholar] [CrossRef]
- Semyachkina-Glushkovskaya, O.; Chehonin, V.; Borisova, E.; Fedosov, I.; Namykin, A.; Abdurashitov, A.; Shirokov, A.; Khlebtsov, B.; Lyubun, Y.; Navolokin, N.; et al. Photodynamic opening of the blood-brain barrier and pathways of brain clearing. J. Biophotonics 2018, 11, e201700287. [Google Scholar] [CrossRef]
- Papa, A.; Kotrotsiou, T.; Papadopoulou, E.; Reusken, C.; GeurtsvanKessel, C.; Koopmans, M. Challenges in laboratory diagnosis of acute viral central nervous system infections in the era of emerging infectious diseases: The syndromic approach. Expert Rev. Anti-infective Ther. 2016, 14, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Tyler, K.L. Emerging Viral Infections of the Central Nervous System: Part 1. Arch. Neurol. 2009, 66, 939–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovane, R.A.; Lavender, P.D. Central Nervous System Infections. Prim. Care 2018, 45, 505–518. [Google Scholar] [CrossRef] [PubMed]
- CDC. Tickborne Disease Surveillance Data Summary|CDC.Centers for Disease Control and Prevention. 6 October 2021. Available online: https://www.cdc.gov/ticks/data-summary/index.html (accessed on 23 March 2022).
- CDC—Rabies around the World—Rabies. 29 July 2020. Available online: https://www.cdc.gov/rabies/location/world/index.html (accessed on 23 March 2022).
- Nagel, M.A.; Niemeyer, C.S.; Bubak, A.N. Central nervous system infections produced by varicella zoster virus. Curr. Opin. Infect. Dis. 2020, 33, 273–278. [Google Scholar] [CrossRef]
- Kerr, J.R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J. Clin. Pathol. 2019, 72, 651–658. [Google Scholar] [CrossRef]
- Strazielle, N. Factors affecting delivery of antiviral drugs to the brain. Rev. Med Virol. 2004, 15, 105–133. [Google Scholar] [CrossRef]
- Menon, Y.; McCarthy, K.; McGrath, H. Reversal of brain dysfunction with UV-A1 irradiation in a patient with systemic lupus. Lupus 2003, 12, 479–482. [Google Scholar] [CrossRef]
- Koon, H.-K.; Lo, K.W.; Leung, K.-N.; Lung, M.L.; Chang, C.C.; Wong, R.N.-S.; Leung, W.-N.; Mak, N.-K. Photodynamic therapy-mediated modulation of inflammatory cytokine production by Epstein–Barr virus-infected nasopharyngeal carcinoma cells. Cell. Mol. Immunol. 2010, 7, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Marling, S.J.; Beaver, E.F.; Severson, K.S.; Deluca, H.F. UV light selectively inhibits spinal cord inflammation and demyelination in experimental autoimmune encephalomyelitis. Arch. Biochem. Biophys. 2015, 567, 75–82. [Google Scholar] [CrossRef]
- Maiello, M.; Losiewicz, O.M.; Bui, E.; Spera, V.; Hamblin, M.R.; Marques, L.; Cassano, P. Transcranial Photobiomodulation with Near-Infrared Light for Generalized Anxiety Disorder: A Pilot Study. Photobiomodulation Photomed. Laser Surg. 2019, 37, 644–650. [Google Scholar] [CrossRef]
- Lee, H.I.; Park, J.H.; Park, M.Y.; Kim, N.G.; Park, K.-J.; Choi, B.T.; Shin, Y.-I.; Shin, H.K. Pre-conditioning with transcranial low-level light therapy reduces neuroinflammation and protects blood-brain barrier after focal cerebral ischemia in mice. Restor. Neurol. Neurosci. 2016, 34, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Norovirus Worldwide|CDC. 14 March 2020. Available online: https://www.cdc.gov/norovirus/trends-outbreaks/worldwide.html (accessed on 23 March 2022).
- Salami, A.; Fakih, H.; Chakkour, M.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Prevalence, risk factors and seasonal variations of different Enteropathogens in Lebanese hospitalized children with acute gastroenteritis. BMC Pediatr. 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Tohmé, M.J.; Delgui, L.R. Advances in the Development of Antiviral Compounds for Rotavirus Infections. mBio 2021, 12, e00111-21. [Google Scholar] [CrossRef] [PubMed]
- Page, N.A.; Nadan, S.; Mans, J. Chapter 11—Viral Gastroenteritis. In Gastrointestinal Diseases and Their Associated Infections; Eslick, G.D., Ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 135–149. [Google Scholar] [CrossRef]
- Viral Gastroenteritis (Stomach flu)—Symptoms and Causes. Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/viral-gastroenteritis/symptoms-causes/syc-20378847 (accessed on 24 March 2022).
- Iturriza-Gómara, M.; Cunliffe, N.A. 34—Viral Gastroenteritis. In Hunter’s Tropical Medicine and Emerging Infectious Diseases, 3rd ed.; Ryan, E.T., Hill, D.R., Solomon, T., Aronson, N.E., Endy, T.P., Eds.; Elsevier: London, UK, 2020; pp. 289–307. [Google Scholar] [CrossRef]
- Sadiq, A.; Bostan, N.; Khan, J.; Aziz, A. Effect of rotavirus genetic diversity on vaccine impact. Rev. Med Virol. 2021, 32, e2259. [Google Scholar] [CrossRef]
- Chiu, M.; Bao, C.; Sadarangani, M. Dilemmas with Rotavirus Vaccine: The Neonate and Immunocompromised. Pediatr. Infect. Dis. J. 2019, 38, S43–S46. [Google Scholar] [CrossRef]
- van Dongen, J.A.; Rouers, E.D.; Schuurman, R.; Band, C.; Watkins, S.M.; van Houten, M.A.; Bont, L.J.; Norbruis, O.F.; Hemels, M.A.; van Well, G.T.; et al. Rotavirus Vaccine Safety and Effectiveness in Infants with High-Risk Medical Conditions. Pediatrics 2021, 148, e2021051901. [Google Scholar] [CrossRef]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Rotavirus Infection, Illness, and Vaccine Performance in Malnourished Children: A Review of the Literature. Pediatr. Infect. Dis. J. 2021, 40, 930–936. [Google Scholar] [CrossRef]
- Cárcamo-Calvo, R.; Muñoz, C.; Buesa, J.; Rodríguez-Díaz, J.; Gozalbo-Rovira, R. The Rotavirus Vaccine Landscape, an Update. Pathogens 2021, 10, 520. [Google Scholar] [CrossRef]
- Santos-Ferreira, N.; Van Dycke, J.; Neyts, J.; Rocha-Pereira, J. Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms 2021, 9, 1599. [Google Scholar] [CrossRef]
- Li, X.; Peng, T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front. Pharmacol. 2021, 12, 660710. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, J.-F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antivir. Res. 2014, 110, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Hedvat, J.; Salerno, D.M.; Kovac, D.; Scheffert, J.L.; Corbo, H.; Chen, J.K.; Choe, J.Y.; Jennings, D.L.; Anamisis, A.; Liu, E.C.; et al. Nitazoxanide treatment for norovirus infection in solid organ transplant recipients. Clin. Transplant. 2022, 36, e14594. [Google Scholar] [CrossRef] [PubMed]
- Teran, C.G.; Teran-Escalera, C.N.; Villarroel, P. Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: A randomized, single-blind, controlled trial in Bolivian children. Int. J. Infect. Dis. 2009, 13, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Frazia, S.; Ciucci, A.; Arnoldi, F.; Coira, M.; Gianferretti, P.; Angelini, M.; Belardo, G.; Burrone, O.R.; Rossignol, J.-F.; Santoro, M.G. Thiazolides, a New Class of Antiviral Agents Effective against Rotavirus Infection, Target Viral Morphogenesis, Inhibiting Viroplasm Formation. J. Virol. 2013, 87, 11096–11106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargest, V.; Sharp, B.; Livingston, B.; Cortez, V.; Schultz-Cherry, S. Astrovirus Replication Is Inhibited by Nitazoxanide In Vitro and In Vivo. J. Virol. 2020, 94, e01706-19. [Google Scholar] [CrossRef]
- Shen, Z.; Tian, Z.; He, H.; Zhang, J.; Li, J.; Wu, Y. Antiviral Effects of Cyclosporin A in Neonatal Mice with Rotavirus-Induced Diarrhea. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 11–17. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, Y.; Dang, W.; Xu, L.; Su, J.; Zhou, X.; Wang, W.; Felczak, K.; van der Laan, L.; Pankiewicz, K.W.; et al. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antivir. Res. 2016, 133, 41–49. [Google Scholar] [CrossRef]
- Ding, S.; Yu, B.; van Vuuren, A.J. Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 2021, 13, 1955643. [Google Scholar] [CrossRef]
- Wu, J.; Hou, W.; Cao, B.; Zuo, T.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.-J. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis Photodyn. Ther. 2015, 12, 385–392. [Google Scholar] [CrossRef]
- Randazzo, W.; Aznar, R.; Sánchez, G. Curcumin-Mediated Photodynamic Inactivation of Norovirus Surrogates. Food Environ. Virol. 2016, 8, 244–250. [Google Scholar] [CrossRef]
- Su, X.; Zivanovic, S.; D'Souza, D.H. Inactivation of Human Enteric Virus Surrogates by High-Intensity Ultrasound. Foodborne Pathog. Dis. 2010, 7, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.D. Herpes Simplex Virus Keratitis. Home Health Now 2019, 37, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Herpes Zoster Ophthalmicus. American Academy of Ophthalmology. 1 January 2020. Available online: https://www.aao.org/eyenet/article/herpes-zoster-ophthalmicus-pearls (accessed on 23 March 2022).
- Herpes Simplex Keratitis—Europe. American Academy of Ophthalmology. 10 November 2013. Available online: https://www.aao.org/topic-detail/herpes-simplex-keratitis--europe (accessed on 23 March 2022).
- Herpes Zoster Ophthalmicus: Acute Keratitis—Pubmed. Available online: https://pubmed.ncbi.nlm.nih.gov/29794881/ (accessed on 23 March 2022).
- Babu, K.; Konana, V.K.; Ganesh, S.K.; Patnaik, G.; Chan, N.S.W.; Chee, S.-P.; Sobolewska, B.; Zierhut, M. Viral anterior uveitis. Indian J. Ophthalmol. 2020, 68, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Khairallah, M.; Mahendradas, P.; Curi, A.; Khochtali, S.; Jr, E.T.C. Emerging Viral Infections Causing Anterior Uveitis. Ocul. Immunol. Inflamm. 2019, 27, 219–228. [Google Scholar] [CrossRef]
- Kaplan, H.J. Anatomy and Function of the Eye. Chem. Immunol. Allergy 2007, 92, 4–10. [Google Scholar] [CrossRef]
- Prednisone and Other Corticosteroids: Balance the RISKS and benefits. Mayo Clinic. Available online: https://www.mayoclinic.org/steroids/art-20045692 (accessed on 23 March 2022).
- Bird, A.C. Recent advances in the treatment of senile disciform macular degeneration by photocoagulation. Br. J. Ophthalmol. 1974, 58, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Paulus, Y.M.; Qin, Y.; Yu, Y.; Fu, J.; Wang, X.; Yang, X. Photo-mediated Ultrasound Therapy to Treat Retinal Neovascularization. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; 2020; pp. 5244–5247. [Google Scholar] [CrossRef]
- Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: Two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol. 2001, 131, 541–560. [Google Scholar] [CrossRef]
- Klais, C.M.; Ober, M.; Freund, K.B.; Ginsburg, L.H.; Luckie, A.; Mauget-Faÿsse, M.; Coscas, G.; Gross, N.E.; Yannuzzi, L.A. Choroidal Infarction Following Photodynamic Therapy with Verteporfin. Arch. Ophthalmol. Chic. Ill 1960 2005, 123, 1149–1153. [Google Scholar] [CrossRef]
- Suryawanshi, A.; Mulik, S.; Sharma, S.; Reddy, P.B.J.; Sehrawat, S.; Rouse, B.T. Ocular Neovascularization Caused by Herpes Simplex Virus Type 1 Infection Results from Breakdown of Binding between VEGF A and Its Soluble Receptor. J. Immunol. 2011, 186, 3653–3665. [Google Scholar] [CrossRef] [Green Version]
- Clebak, K.T.; Malone, M.A. Skin Infections. Prim. Care: Clin. Off. Pr. 2018, 45, 433–454. [Google Scholar] [CrossRef]
- Warts: Signs and Symptoms. Available online: https://www.aad.org/public/diseases/a-z/warts-symptoms (accessed on 5 May 2022).
- Witchey, D.J.; Witchey, N.B.; Roth-Kauffman, M.M.; Kauffman, M.K. Plantar Warts: Epidemiology, Pathophysiology, and Clinical Management. J. Am. Osteopat. Assoc. 2018, 118, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Soenjoyo, K.R.; Chua, B.W.B.; Wee, L.W.Y.; Koh, M.J.A.; Bin Ang, S. Treatment of cutaneous viral warts in children: A review. Dermatol. Ther. 2020, 33, e14034. [Google Scholar] [CrossRef] [PubMed]
- Shingles—Symptoms and Causes. Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/shingles/symptoms-causes/syc-20353054 (accessed on 5 May 2022).
- Kwok, C.S.; Gibbs, S.; Bennett, C.; Holland, R.; Abbott, R. Topical treatments for cutaneous warts. Cochrane Database Syst. Rev. 2012, 2020, CD001781. [Google Scholar] [CrossRef]
- Borgia, F.; Giuffrida, R.; Coppola, M.; Princiotta, R.; Vaccaro, M.; Guarneri, F.; Cannavò, S.P. Efficacy and safety of conventional versus daylight photodynamic therapy in children affected by multiple facial flat warts. Photodiagnosis Photodyn. Ther. 2020, 31, 101819. [Google Scholar] [CrossRef]
- Han, T.Y.; Lee, J.H.; Lee, C.K.; Ahn, J.Y.; Seo, S.J.; Hong, C.K. Long-Pulsed Nd:YAG Laser Treatment of Warts: Report on a Series of 369 Cases. J. Korean Med Sci. 2009, 24, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Fadel, M.; Kassab, K.; Samy, N.; Fadeel, D.A.; Yassin, G.; Nasr, M. Nanovesicular Photodynamic Clinical Treatment of Resistant Plantar Warts. Curr. Drug Deliv. 2020, 17, 396–405. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, J.W.; Jang, S.J.; Choi, J.C. Pulsed Dye Laser Therapy for Pediatric Warts. Pediatr. Dermatol. 2007, 24, 177–181. [Google Scholar] [CrossRef]
- Alshami, M.A.; Mohana, M.J. Novel Treatment Approach for Deep Palmoplantar Warts Using Long-Pulsed 1064-nm Nd:YAG Laser and a Moisturizing Cream Without Prior Paring of the Wart Surface. Photomed. Laser Surg. 2016, 34, 448–455. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunstek, H.; Vreken, F.; Keita, A.; Hamblin, M.R.; Dumarçay, F.; Varbanov, M. Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light. Pharmaceuticals 2022, 15, 858. https://doi.org/10.3390/ph15070858
Kunstek H, Vreken F, Keita A, Hamblin MR, Dumarçay F, Varbanov M. Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light. Pharmaceuticals. 2022; 15(7):858. https://doi.org/10.3390/ph15070858
Chicago/Turabian StyleKunstek, Hannah, Fanny Vreken, Aminata Keita, Michael R. Hamblin, Florence Dumarçay, and Mihayl Varbanov. 2022. "Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light" Pharmaceuticals 15, no. 7: 858. https://doi.org/10.3390/ph15070858
APA StyleKunstek, H., Vreken, F., Keita, A., Hamblin, M. R., Dumarçay, F., & Varbanov, M. (2022). Aspects of Antiviral Strategies Based on Different Phototherapy Approaches: Hit by the Light. Pharmaceuticals, 15(7), 858. https://doi.org/10.3390/ph15070858