Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters
Abstract
:1. Introduction
2. Results
2.1. Weight Loss in the NTR and SHR Animals in the Period of the Experiment
2.2. Six-Hour Diuresis
2.3. Crystalluria in Urine
2.4. Electrolytes and Biochemical Parameters in Urine and Serum
2.5. Oxidative Stress and Inflammation Parameters
2.6. Histological Analysis
2.7. Molecular Docking
3. Discussion
4. Methods and Materials
4.1. Products
4.2. Animals
4.3. Animal CaOx Crystallization Model
4.4. Diuresis
4.4.1. pH and Conductivity Assessment in Urine
4.4.2. Electrolytes and Biochemical Concentration in Urine
4.5. Biochemical, Oxidative Stress, and Inflammation Parameters
4.6. Histological Analysis
4.7. Statistical Analysis
4.8. Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayans, L. Nephrolithiasis. Prim. Care Clin. Off. Pract. 2019, 46, 203–212. [Google Scholar] [CrossRef]
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of Kidney Stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef]
- Skolarikos, A.; Jung, H.; Neisius, A.; Petřík, A.; Somani, B.; Tailly, T.; Gambaro, G.; Davis, N.F.; Geraghty, R.; Lombardo, R.; et al. EAU Guidelines. Edn. Presented at the EAU Annual Congress Milan Italy 2023; European Association of Urology: Arnhem, The Netherlands, 2023. [Google Scholar]
- Singh, P.; Harris, P.C.; Sas, D.J.; Lieske, J.C. The Genetics of Kidney Stone Disease and Nephrocalcinosis. Nat. Rev. Nephrol. 2022, 18, 224–240. [Google Scholar] [CrossRef]
- Strohmaier, W.L. Economics of Stone Disease/Treatment. Arab. J. Urol. 2012, 10, 273–278. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent Advances on the Mechanisms of Kidney Stone Formation (Review). Int. J. Mol. Med. 2021, 48, 149. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamoori, F.; Aburjai, T. Medicinal Plants for the Treatment of Nephrolithiasis. In Nephrolithiasis—From Bench to Bedside; IntechOpen: London, UK, 2022; pp. 1–17. [Google Scholar] [CrossRef]
- Arafat, O.M.; Tham, S.Y.; Sadikun, A.; Zhari, I.; Haughton, P.J.; Asmawi, M.Z. Studies on Diuretic and Hypouricemic Effects of Orthosiphon stamineus Methanol Extracts in Rats. J. Ethnopharmacol. 2008, 118, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wen, Q.; Qian, K.; Feng, Y.; Luo, Y.; Tan, T. Metabolic Profile of Rosmarinic Acid from Java Tea (Orthosiphon stamineus) by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Time-of-Flight Tandem Mass Spectrometry with a Three-Step Data Mining Strategy. Biomed. Chromatogr. 2019, 33, e4599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hou, A.; Dong, J.; Zheng, S.; Yu, H.; Wang, X.; Jiang, H.; Yang, L. Screening out Key Compounds of Glechomae herba for Antiurolithic Activity and Quality Control Based on Spectrum-Effect Relationships Coupled with UPLC-QDA. Biomed. Pharmacother. 2022, 149, 112829. [Google Scholar] [CrossRef]
- Ozturk, H.; Ozturk, H.; Hakan Terzi, E.; Ozgen, U.; Duran, A.; Uygun, I. Protective Effects of Rosmarinic Acid against Renal Ischaemia/Reperfusion Injury in Rats. J. Pak. Med. Assoc. 2014, 64, 260–265. [Google Scholar]
- Khan, S.R. Animal Models of Kidney Stone Formation: An Analysis. World J. Urol. 1997, 15, 236–243. [Google Scholar] [CrossRef]
- Corley, R.A.; Meek, M.E.; Carney, E.W. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol. Crit. Rev. Toxicol. 2005, 35, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Tsujihata, M. Mechanism of Calcium Oxalate Renal Stone Formation and Renal Tubular Cell Injury. Int. J. Urol. 2008, 15, 115–120. [Google Scholar] [CrossRef]
- Bervinova, A.V.; Borozdina, N.A.; Palikov, V.A.; Palikova, Y.A.; Mikhailov, E.S.; Kravchenko, I.N.; Rykov, V.A.; Ponomareva, T.I.; Semushina, S.G.; Pakhomova, I.A.; et al. Discerning Comparison of 1 and 0.5% Ethylene Glycol in Sprague-Dawley Rats with Modeled Urolithiasis. Bull. Exp. Biol. Med. 2022, 173, 673–676. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Strazzullo, P.; Mancini, M. Kidney Stones and Hypertension: Population Based Study of an Independent Clinical Association. Br. Med. J. 1990, 300, 1234–1236. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Siani, A.; Barba, G.; Mellone, M.C.; Russo, L.; Farinaro, E.; Trevisan, M.; Mancini, M.; Strazzullo, P. A Prospective Study of Hypertension and the Incidence of Kidney Stones in Men. J. Hypertens. 1999, 17, 1017–1022. [Google Scholar] [CrossRef]
- Okamoto, K.; Aoki, K. Development of a Strain of Spontaneously Hypertensive Rats. Jpn. Circ. J. 1963, 27, 282–293. [Google Scholar] [CrossRef]
- Grisk, O.; Klöting, I.; Exner, J.; Spiess, S.; Schmidt, R.; Junghans, D.; Lorenz, G.; Rettig, R. Long-Term Arterial Pressure in Spontaneously Hypertensive Rats Is Set by the Kidney. J. Hypertens. 2002, 20, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Dhayat, N.A.; Bonny, O.; Roth, B.; Christe, A.; Ritter, A.; Mohebbi, N.; Faller, N.; Pellegrini, L.; Bedino, G.; Venzin, R.M.; et al. Hydrochlorothiazide and Prevention of Kidney-Stone Recurrence. N. Engl. J. Med. 2023, 388, 781–791. [Google Scholar] [CrossRef]
- Moser, J.C.; Cechinel-Zanchett, C.C.; Mariano, L.N.B.; Boeing, T.; da Silva, L.M.; de Souza, P. Diuretic, Natriuretic and Ca2+-Sparing Effects Induced by Rosmarinic and Caffeic Acids in Rats. Rev. Bras. Farmacogn. 2020, 30, 588–592. [Google Scholar] [CrossRef]
- Ambursa, M.; Rahman, M.G.; Sulaiman, S.; Zakaria, A.; Mohamed Daud, M.; Zakaria, Z.; Zahari, Z.; Wong, M.-K. An in Vitro Study of Orthosiphon stamineus (Misai Kucing) Standardized Water Extract as a Chemolytic Agent in Urolithiasis. J. Pharm. Bioallied Sci. 2021, 13, 373. [Google Scholar] [CrossRef]
- Marhoume, F.Z.; Aboufatima, R.; Zaid, Y.; Limami, Y.; Duval, R.E.; Laadraoui, J.; Belbachir, A.; Chait, A.; Bagri, A. Antioxidant and Polyphenol-Rich Ethanolic Extract of Rubia tinctorum L. Prevents Urolithiasis in an Ethylene Glycol Experimental Model in Rats. Molecules 2021, 26, 1005. [Google Scholar] [CrossRef] [PubMed]
- Green, M.L.; Hatch, M.; Freel, R.W. Ethylene Glycol Induces Hyperoxaluria without Metabolic Acidosis in Rats. Am. J. Physiol. Renal Physiol. 2005, 289, F536–F543. [Google Scholar] [CrossRef] [PubMed]
- Fowles, J.; Banton, M.; Klapacz, J.; Shen, H. A Toxicological Review of the Ethylene Glycol Series: Commonalities and Differences in Toxicity and Modes of Action. Toxicol. Lett. 2017, 278, 66–83. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Verma, R.J. Bergenia ciliata Extract Prevents Ethylene Glycol Induced Histopathological Changes in the Kidney. Acta Pol. Pharm. 2011, 68, 711–715. [Google Scholar] [PubMed]
- Ceban, E.; Banov, P.; Galescu, A.; Botnari, V. Oxidative Stress and Antioxidant Status in Patients with Complicated Urolithiasis. J. Med. Life 2016, 9, 259–262. [Google Scholar]
- Yuan, F.; Yin, S.; Xu, Y.; Xiang, L.; Wang, H.; Li, Z.; Fan, K.; Pan, G. The Richness and Diversity of Catalases in Bacteria. Front. Microbiol. 2021, 12, 645477. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Suzek, H. Effects of Subacute Treatment of Ethylene Glycol on Serum Marker Enzymes and Erythrocyte and Tissue Antioxidant Defense Systems and Lipid Peroxidation in Rats. Chem. Biol. Interact. 2007, 167, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R. Reactive Oxygen Species, Inflammation and Calcium Oxalate Nephrolithiasis. Transl. Androl. Urol. 2014, 3, 256–276. [Google Scholar] [CrossRef] [PubMed]
- Slikker, W., Jr.; Andersen, M.E.; Bogdanffy, M.S.; Bus, J.S.; Cohen, S.D.; Conolly, R.B.; David, R.M.; Doerrer, N.G.; Dorman, D.C.; Gaylor, D.W.; et al. Dose-dependent transitions in mechanisms of toxicity: Case studies. Toxicol. Appl. Pharmacol. 2004, 201, 226–294. [Google Scholar] [CrossRef]
- Chattaraj, B.; Nandi, A.; Das, A.; Sharma, A.; Dey, Y.N.; Kumar, D.; Cláudio, L.; Da Silva, N.; Khanal, P.; Khan, A.; et al. Inhibitory Activity of Enhydra fluctuans Lour. on Calcium Oxalate Crystallisation through in Silico and in Vitro Studies. Front. Pharmacol. 2023, 13, 982419. [Google Scholar] [CrossRef]
- Shirfule, A.L.; Sangamwar, A.T.; Khobragade, C.N. Exploring Glycolate Oxidase (GOX) as an Antiurolithic Drug Target: Molecular Modeling and in Vitro Inhibitor Study. Int. J. Biol. Macromol. 2011, 49, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Bawari, S.; Sah, A.N.; Gupta, P.; Zengin, G.; Tewari, D. Himalayan Citrus jambhiri Juice Reduced Renal Crystallization in Nephrolithiasis by Possible Inhibition of Glycolate Oxidase and Matrix Metalloproteinases. J. Ethnopharmacol. 2023, 306, 116157. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, K.P.; Tandon, S.; Naik, P.K.; Singh, S.K.; Tandon, C. Peeping into Human Renal Calcium Oxalate Stone Matrix: Characterization of Novel Proteins Involved in the Intricate Mechanism of Urolithiasis. PLoS ONE 2013, 8, e69916. [Google Scholar] [CrossRef] [PubMed]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bao, X.; Lin, C.; Zhou, G. Pharmacokinetics of Rosmarinic Acid in Rats and Tissue Distribution in Mice. Lat. Am. J. Pharm. 2019, 38, 985–990. [Google Scholar]
- Hu, Z.-N.; Huang, L.-J.; Chen, W.-P. The Inhibitory Effects of Rosmarinic Acid on Catabolism Induced by IL-1β in Rat Chondrocyte. Acta Biochim. Pol. 2018, 65, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, G.; Ozgun, E. The Cytotoxic Concentration of Rosmarinic Acid Increases MG132-Induced Cytotoxicity, Proteasome Inhibition, Autophagy, Cellular Stresses, and Apoptosis in HepG2 Cells. Hum. Exp. Toxicol. 2020, 39, 514–523. [Google Scholar] [CrossRef]
- Ghaffari, H.; Venkataramana, M.; Jalali Ghassam, B.; Chandra Nayaka, S.; Nataraju, A.; Geetha, N.P.; Prakash, H.S. Rosmarinic Acid Mediated Neuroprotective Effects against H2O2-Induced Neuronal Cell Damage in N2A Cells. Life Sci. 2014, 113, 7–13. [Google Scholar] [CrossRef]
- Costa, P.; Sarmento, B.; Gonçalves, S.; Romano, A. Protective Effects of Lavandula viridis L’Hér Extracts and Rosmarinic Acid against H2O2-Induced Oxidative Damage in A172 Human Astrocyte Cell Line. Ind. Crops Prod. 2013, 50, 361–365. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of Rosmarinic Acid on Atopic Dermatitis. J. Dermatol. 2008, 35, 768–771. [Google Scholar] [CrossRef]
- Osakabe, N.; Takano, H.; Sanbongi, C.; Yasuda, A.; Yanagisawa, R.; Inoue, K.; Yoshikawa, T. Anti-inflammatory and Anti-allergic Effect of Rosmarinic Acid (RA); Inhibition of Seasonal Allergic Rhinoconjunctivitis (SAR) and Its Mechanism. BioFactors 2004, 21, 127–131. [Google Scholar] [CrossRef]
- Zanovello, M.; Bolda Mariano, L.N.; Cechinel-Zanchett, C.C.; Boeing, T.; Tazinaffo, G.C.; Mota da Silva, L.; Silva, D.B.; Gasparotto Junior, A.; de Souza, P. Tagetes erecta L. Flowers, a Medicinal Plant Traditionally Used to Promote Diuresis, Induced Diuretic and Natriuretic Effects in Normotensive and Hypertensive Rats. J. Ethnopharmacol. 2021, 279, 114393. [Google Scholar] [CrossRef]
- de Souza, P.; da Silva, R.d.C.V.; Mariano, L.N.B.; Dick, S.L.; Ventura, G.C.; Cechinel-Filho, V. Diuretic and Natriuretic Effects of Hesperidin, a Flavanone Glycoside, in Female and Male Hypertensive Rats. Plants 2023, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- de Souza, P.; Boeing, T.; Somensi, L.B.; Cechinel-Zanchett, C.C.; Bastos, J.K.; Petreanu, M.; Niero, R.; Cechinel-Filho, V.; da Silva, L.M.; de Andrade, S.F. Diuretic Effect of Extracts, Fractions and Two Compounds 2α,3β,19α-Trihydroxy-Urs-12-En-28-Oic Acid and 5-Hydroxy-3,6,7,8,4′-Pentamethoxyflavone from Rubus rosaefolius Sm. (Rosaceae) Leaves in Rats. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 351–360. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Boeing, T.; Filho, V.C.; Niero, R.; da Silva, L.M.; de Souza, P. 3-Demethyl-2-Geranyl-4-Prenylbellidifoline, a Natural Xanthone with Diuretic and Kidney Protective Properties. J. Pharm. Pharmacol. 2024, 76, 106–114. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information PubChem Compound Summary for CID 11966245. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Rosmarinic-acid (accessed on 12 March 2024).
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Group | Na+ (mmol/L) | K+ (mmol/L) | Cl− (mmol/L) | Ca2+ (mg/dL) | Urea (mg/dL) | Creatinine (mg/dL) | Glucose (mg/dL) | |
---|---|---|---|---|---|---|---|---|
NTRs | VEH | 94.00 ± 16.73 | 57.12 ± 19.76 | 85.14 ± 3.51 | 11.91 ± 0.48 | 7.95 ± 1.84 | 19.26 ± 10.75 | 19.50 ± 4.60 |
VEH+EG/AC | 32.78 ± 11.49 b | 24.95 ± 17.46 b | 89.75 ± 9.11 | 6.28 ± 3.28 b | 3.68 ± 0.78 b | 13.23 ± 3.82 | 18.93 ± 5.01 | |
HCTZ+EG/AC | 75.00 ± 27.37 a | 54.00 ± 11.86 a | 121.45 ± 3.35 a,b | 11.32 ± 0.89 a | 6.63 ± 3.4 a | 7.27 ± 3.08 b | 13.92 ± 0.85 a,b | |
RA+EG/AC | 31.67 ± 19.58 b | 18.40 ± 16.63 b | 83.98 ± 22.86 | 6.26 ± 3.36 b | 5.84 ± 1.67 | 22.30 ± 7.34 a | 22.54 ± 4.33 | |
SHRs | VEH | 120.00 ± 36.51 | 67.04 ± 12.11 | 81.68 ± 11.37 | 12.19 ± 0.15 | 5.07 ± 1.76 | 27.25 ± 5.52 | 23.52 ± 2.40 |
VEH+EG/AC | 53.33 ± 30.80 b | 45.93 ± 15.81 b | 119.07 ± 8.75 b | 12.46 ± 0.40 | 5.94 ± 2.06 | 17.12 ± 4.99 b | 23.27 ± 4.27 | |
HCTZ+EG/AC | 124.00 ± 31.62 a | 39.60 ± 10.66 b | 120.69 ± 7.95 b | 11.81 ± 1.60 | 7.12 ± 1.80 | 8.20 ± 2.47 a,b | 18.49 ± 1.88 a,b | |
RA+EG/AC | 40.50 ± 14.09 b | 35.90 ± 13.19 b | 88.82 ± 10.00 a | 7.82 ± 1.78 a,b | 3.07 ± 0.59 a | 20.48 ± 6.27 b | 22.65 ± 1.48 |
Group | Na+ (mmol/L) | K+ (mmol/L) | Cl− (mmol/L) | Ca2+ (mg/dL) | Urea (mg/dL) | Creatinine (mg/dL) | Glucose (mg/dL) | TGO (U/L) | TGP (U/L) | Colinesterase (U/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|
NTRs | VEH | 174.00 ± 27.02 | 4.20 ± 0.84 | 68.69 ± 5.75 | 9.90 ± 0.86 | 25.17 ± 9.60 | 2.71 ± 0.22 | 171.15 ± 5.41 | 11.70 ± 0.58 | 2.36 ± 0.25 | 9585 ± 5179 |
VEH+EG/AC | 230.00 ± 29.66 b | 6.22 ± 0.91 | 72.51 ± 4.09 | 9.57 ± 0.67 | 17.99 ± 6.46 | 2.67 ± 0.60 | 139.29 ± 22.30 b | 6.70 ± 3.06 b | 2.43 ± 0.38 | 16,514 ± 5772 | |
HCTZ+EG/AC | 202.50 ± 26.86 | 7.25 ± 1.73 b | 69.47 ± 4.38 | 9.32 ± 0.67 | 20.47 ± 7.80 | 3.66 ± 1.76 | 109.79 ± 32.44 a,b | 6.79 ± 2.94 b | 2.47 ± 0.22 | 2663 ± 2054 a | |
RA+EG/AC | 205.71 ± 25.13 | 6.00 ± 2.24 | 70.37 ± 4.33 | 8.88 ± 1.18 | 24.40 ± 12.46 | 3.10 ± 1.59 | 140.59 ± 16.11 | 4.96 ± 1.07 b | 2.49 ± 0.14 | 15,208 ± 8298 | |
SHRs | VEH | 236.00 ± 41.59 | 6.20 ± 1.30 | 65.58 ± 2.29 | 10.16 ± 0.64 | 33.08 ± 8.27 | 2.22 ± 0.13 | 157.93 ± 3.95 | 4.39 ± 0.46 | 2.43 ± 0.22 | 11,185 ± 3272 |
VEH+EG/AC | 221.67 ± 7.60 | 5.67 ± 0.38 | 67.59 ± 2.30 | 9.73 ± 0.65 | 28.42 ± 7.80 | 2.28 ± 0.56 | 151.12 ± 5.79 | 4.70 ± 0.53 | 2.51 ± 0.29 | 15,057 ± 6863 | |
HCTZ+EG/AC | 224.00 ± 11.01 | 5.20 ± 0.42 b | 63.72 ± 5.55 | 9.82 ± 0.46 | 30.12 ± 4.23 | 2.17 ± 1.26 | 166.35 ± 7.16 a | 4.43 ± 0.54 | 2.43 ± 0.25 | 12,158 ± 2727 | |
RA+EG/AC | 240.00 ± 12.64 | 6.33 ± 0.75 | 70.24 ± 1.99b | 9.57 ± 0.54 | 29.36 ± 3.32 | 2.10 ± 0.47 | 146.08 ± 13.63 | 4.69 ± 0.58 | 2.74 ± 0.21 | 10,335 ± 1281 |
Group | LPO mmol/mg Tissue | GSH µg/g Tissue | GST µmol/min/mg pt | SOD U/mg pt | CAT µmol/min/mg | NAG mD.O/mg pt | MPO mD.O/mg pt | |
---|---|---|---|---|---|---|---|---|
NTRs | VEH | 4.53 ± 0.26 | 1267.16 ± 92.48 | 0.44 ± 0.30 | 4.32 ± 0.84 | 59.48 ± 12.50 | 113.75 ± 20.93 | 5.26 ± 1.04 |
VEH+EG/AC | 4.32 ± 0.13 | 1524.96 ± 131.45 | 0.45 ± 0.20 | 4.98 ± 1.68 | 19.94 ± 5.93 b | 83.04 ± 14.76 b | 3.54 ± 1.02 | |
HCTZ+EG/AC | 4.61 ± 0.20 | 1705.35 ± 99.57 b | 0.23 ± 0.01 | 5.83 ± 0.47 | 40.03 ± 2.89 a,b | 75.35 ± 10.11 b | 3.00 ± 0.25 b | |
RA+EG/AC | 4.39 ± 0.28 | 1480.76 ± 258.07 | 0.33 ± 0.23 | 4.92 ± 1.15 | 26.76 ± 7.92 b | 89.29 ± 15.24 | 3.65 ± 1.47 | |
SHRs | VEH | 4.45 ± 0.29 | 1111.49 ± 71.06 | 0.30 ± 0.08 | 3.55 ± 0.51 | 35.54 ± 17.74 | 82.16 ± 15.62 | 3.11 ± 0.55 |
VEH+EG/AC | 4.53 ± 0.34 | 1410.36 ± 129.83 b | 0.29 ± 0.11 | 4.25 ± 1.49 | 13.29 ± 12.26 | 109.86 ± 31.41 | 4.01 ± 1.43 | |
HCTZ+EG/AC | 4.17 ± 0.15 | 741.68 ± 145.62 a,b | 0.73 ± 0.33 a,b | 5.11 ± 0.80 | 41.23 ± 12.31 | 100.97 ± 26.67 | 4.87 ± 1.59 | |
RA+EG/AC | 4.42 ± 0.20 | 1261.86 ± 129.83 | 0.70 ± 0.24 a,b | 5.75 ± 0.81b | 57.89 ± 20.50a | 117.88 ± 23.05 | 5.16 ± 1.59 |
Group | LPO mmol/mg Tissue | GSH µg/g Tissue | GST µmol/min/mg pt | SOD U/mg pt | CAT µmol/min/mg | NAG mD.O/mg pt | MPO mD.O/mg pt | |
---|---|---|---|---|---|---|---|---|
NTRs | VEH | 3.89 ± 0.04 | 1043.98 ± 75.66 | 0.79 ± 0.14 | 4.67 ± 0.34 | 7.30 ± 6.05 | 96.24 ± 17.48 | 5.44 ± 0.68 |
VEH+EG/AC | 3.88 ± 0.10 | 749.56 ± 145.98 b | 0.29 ± 0.19 b | 3.17 ± 0.75 b | 23.07 ± 9.63 b | 52.29 ± 10.93 b | 4.43 ± 0.87 | |
HCTZ+EG/AC | 4.07 ± 0.13 a,b | 1188.18 ± 205.62 a | 0.42 ± 0.13 b | 3.90 ± 0.33 | 21.79 ± 4.31 | 61.58 ± 6.44 b | 3.93 ± 0.81 b | |
RA+EG/AC | 3.61 ± 0.12 a,b | 1343.79 ± 222.12 a,b | 0.45 ± 0.17 b | 4.59 ± 0.68 a | 26.30 ± 9.40 b | 55.04 ± 11.16 b | 4.47 ± 0.89 | |
SHRs | VEH | 4.14 ± 0.31 | 1318.91 ± 244.04 | 0.62 ± 0.18 | 3.43 ± 0.32 | 4.58 ± 2.60 | 61.84 ± 12.11 | 5.17 ± 0.94 |
VEH+EG/AC | 3.80 ± 0.14 b | 2385.20 ± 298.30 b | 0.70 ± 0.15 | 3.86 ± 0.50 | 19.41 ± 7.65 b | 61.68 ± 7.80 | 5.19 ± 1.03 | |
HCTZ+EG/AC | 3.71 ± 0.17 b | 1682.13 ± 392.97 a | 0.37 ± 0.21 a | 5.79 ± 1.94 a,b | 9.01 ± 4.83 | 65.13 ± 14.47 | 6.38 ± 2.30 | |
RA+EG/AC | 3.73 ± 0.19 b | 1854.99 ± 357.46 | 0.39 ± 0.16 a | 4.51 ± 1.15 | 18.30 ± 7.59 b | 56.38 ± 4.99 | 4.58 ± 0.60 |
Enzymes | PDB Code | RA Binding Affinity (kcal/mol) | H-Bonds |
---|---|---|---|
Human glycolate oxidase | 2RDT | −9.5 | Tyr27, His260, Ala81, Lys236, Arg295 |
MMP-2 catalytic domain | 1HOV | −7.0 | Ala84, Tyr142, Glu121 |
MMP-9 catalytic domain | 4XCT | −10.5 | Ala189, Glu227, His226, Met247, Gly186 |
Phosphoethanolamine cytidylyltransferase | 3ELB | −9.8 | Phe222, His229, Ala219, Gly308, Ser336, Leu340, Glu311, Tyr290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macarini, A.F.; Mariano, L.N.B.; Zanovello, M.; da Silva, R.d.C.V.; Corrêa, R.; de Souza, P. Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters. Pharmaceuticals 2024, 17, 702. https://doi.org/10.3390/ph17060702
Macarini AF, Mariano LNB, Zanovello M, da Silva RdCV, Corrêa R, de Souza P. Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters. Pharmaceuticals. 2024; 17(6):702. https://doi.org/10.3390/ph17060702
Chicago/Turabian StyleMacarini, Anelise Felício, Luísa Nathalia Bolda Mariano, Mariana Zanovello, Rita de Cássia Vilhena da Silva, Rogério Corrêa, and Priscila de Souza. 2024. "Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters" Pharmaceuticals 17, no. 6: 702. https://doi.org/10.3390/ph17060702
APA StyleMacarini, A. F., Mariano, L. N. B., Zanovello, M., da Silva, R. d. C. V., Corrêa, R., & de Souza, P. (2024). Protective Role of Rosmarinic Acid in Experimental Urolithiasis: Understanding Its Impact on Renal Parameters. Pharmaceuticals, 17(6), 702. https://doi.org/10.3390/ph17060702