Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model
Abstract
:1. Introduction
2. Results
2.1. Crude Ethanolic Extract of P. emblica Fruit Reduces the Formation of Preneoplastic Lesions in the Liver and Colon of Rats Treated with Dual Carcinogens
2.2. The Crude Ethanolic Extract of P. emblica Fruit Decreases Cell Proliferation during the Early Stages of Liver and Colon Carcinogenesis in Rats
2.3. The Crude Ethanolic Extract of P. emblica Fruit Enhances the Key Antioxidant Enzymes and Non-Enzymatic Molecules in Rat Liver
2.4. Phytochemical Analysis of Crude Ethanolic Extract from P. emblica Fruit
2.5. The Crude Ethanolic Extract of P. emblica Fruit and Its Fractions Exhibit Free Radical Scavenging Activities
2.6. DCM Fraction from the Crude Ethanolic Extract Attenuates Intracellular ROS and NO Production in RAW 264.7 Macrophage Cell Lines
2.7. The Crude Ethanolic Extract of P. emblica Fruit and Its Fractions Demonstrate Anti-Mutagenic Activity in Salmonella typhimurium
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of P. emblica Fruits Extract
4.3. Animals Model
4.4. Carcinogenicity and Anti-Carcinogenicity
4.5. Determination of Preneoplastic Lesions in Liver and Colon
4.6. Immunohistochemistry of Proliferation Cell Nuclear Antigen (PCNA)
4.7. Terminal Deoxynucleotidyltransferase (TdT)–dUTP Nick End Labeling (TUNEL) Assay
4.8. Determination of Antioxidant Enzyme Activities in Rat Liver
4.9. Determination of Phytochemical Contents
4.10. Screening of Antioxidant Activity
4.11. Cytotoxicity of Murine Macrophage Cells
4.12. Antioxidant Activity in Murine Macrophage Cells
4.13. Anti-Inflammatory Activity in Murine Macrophage Cells
4.14. Mutagenic and Antimutagenic Properties
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Tricker, A.; Preussmann, R. Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. Genet. Toxicol. 1991, 259, 277–289. [Google Scholar] [CrossRef]
- Gushgari, A.J.; Halden, R.U. Critical review of major sources of human exposure to N-nitrosamines. Chemosphere 2018, 210, 1124–1136. [Google Scholar] [CrossRef]
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef]
- Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [Google Scholar] [CrossRef]
- Augustsson, K.; Skog, K.; Jägerstad, M.; Dickman, P.W.; Steineck, G. Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: A population-based study. Lancet 1999, 353, 703–707. [Google Scholar] [CrossRef]
- Butler, L.M.; Sinha, R.; Millikan, R.C.; Martin, C.F.; Newman, B.; Gammon, M.D.; Ammerman, A.S.; Sandler, R.S. Heterocyclic Amines, Meat Intake, and Association with Colon Cancer in a Population-based Study. Am. J. Epidemiol. 2003, 157, 434–445. [Google Scholar] [CrossRef]
- Newaz, S.; Fang, W.F.; Strobel, H.W. Metabolism of the carcinogen 1, 2-dimethylhydrazine by isolated human colon microsomes and human colon tumor cells in culture. Cancer 1983, 52, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.-F.; Feng, X.-S. Unsymmetrical dimethylhydrazine and related compounds in the environment: Recent updates on pretreatment, analysis, and removal techniques. J. Hazard. Mater. 2022, 432, 128708. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.F.; El-Zaemey, S.; Carey, R.N. Prevalence of exposure to multiple occupational carcinogens among exposed workers in Australia. Occup. Environ. Med. 2021, 78, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O.; Bushkin-Bedient, S. Exposure to chemicals and radiation during childhood and risk for cancer later in life. J. Adolesc. Health 2013, 52, S21–S29. [Google Scholar] [CrossRef] [PubMed]
- Goodson, W.H., 3rd; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Manaf Ali, A.; Lopez de Cerain Salsamendi, A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead. Carcinogenesis 2015, 36 (Suppl. S1), S254–S296. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.; Schmid, S.; Heinimann, K.; Frick, H.; Herrmann, C.; Cerny, T.; Omlin, A. Multiple primary tumours: Challenges and approaches, a review. ESMO Open 2017, 2, e000172. [Google Scholar] [CrossRef]
- Tanjak, P.; Suktitipat, B.; Vorasan, N.; Juengwiwattanakitti, P.; Thiengtrong, B.; Songjang, C.; Therasakvichya, S.; Laiteerapong, S.; Chinswangwatanakul, V. Risks and cancer associations of metachronous and synchronous multiple primary cancers: A 25-year retrospective study. BMC Cancer 2021, 21, 1045. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Hasegawa, R.; Imaida, K.; Hirose, M.; Shirai, T. Medium-term liver and multi-organ carcinogenesis bioassays for carcinogens and chemopreventive agents. Exp. Toxicol. Pathol. 1996, 48, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Futakuchi, M.; Fukamachi, K.; Shirai, T.; Imaida, K.; Fukushima, S.; Tatematsu, M.; Furukawa, F.; Tamano, S.; Ito, N. A medium-term, rapid rat bioassay model for the detection of carcinogenic potential of chemicals. Toxicol. Pathol. 2010, 38, 182–187. [Google Scholar] [CrossRef]
- Takahashi, S.; Hasegawa, R.; Masui, T.; Mizoguchi, M.; Fukushima, S.; Ito, N. Establishment of multi-organ carcinogenesis bioassay using rats treated with a combination of five different carcinogens. J. Toxicol. Pathol. 1992, 5, 151–156. [Google Scholar] [CrossRef]
- Solano, M.d.L.M.; Rocha, N.S.; Barbisan, L.F.; Franchi, C.A.d.S.; Spinardi-Barbisan, A.L.T.; De Oliveira, M.L.C.S.; Salvadori, D.M.F.; Ribeiro, L.R.; De Camargo, J.L.V. Alternative multiorgan initiation–promotion assay for chemical carcinogenesis in the Wistar rat. Toxicol. Pathol. 2016, 44, 1146–1159. [Google Scholar] [CrossRef]
- Ghia, M.; Mattioli, F.; Mereto, E. A possible medium-term assay for detecting the effects of liver and colon carcinogens in rats. Cancer Lett. 1996, 105, 71–75. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Chariyakornkul, A.; Chewonarin, T.; Jarukamjorn, K.; Wongpoomchai, R. Augmentation of diethylnitrosamine–induced early stages of rat hepatocarcinogenesis by 1, 2-dimethylhydrazine. Drug Chem. Toxicol. 2019, 42, 641–648. [Google Scholar] [CrossRef]
- Ugbogu, A.; Akubugwo, E.; Iweala, E.; Uhegbu, F.; Chinyere, G.; Obasi, N. Role of phytochemicals in chemoprevention of cancer: A review. Int. J. Pharm. Chem. Sci. 2013, 2, 566–577. [Google Scholar]
- Crespy, V.; Williamson, G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 2004, 134, 3431S–3440S. [Google Scholar] [CrossRef]
- Hirose, M.; Hoshiya, T.; Akagi, K.; Takahashi, S.; Hara, Y.; Ito, N. Effects of green tea catechins in a rat multi-organ carcinogenesis model. Carcinogenesis 1993, 14, 1549–1553. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Galdámez, H.V.; Fattel-Fazenda, S.; Flores-Téllez, T.N.; Aguilar-Chaparro, M.A.; Mendoza-García, J.; Díaz-Fernández, L.C.; Romo-Medina, E.; Sánchez-Pérez, Y.; Arellanes-Robledo, J.; De la Garza, M.; et al. Iron-saturated bovine lactoferrin: A promising chemopreventive agent for hepatocellular carcinoma. Food Funct. 2024, 15, 4586–4602. [Google Scholar] [CrossRef]
- Ushida, Y.; Sekine, K.; Kuhara, T.; Takasuka, N.; Iigo, M.; Maeda, M.; Tsuda, H. Possible chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat. Jpn. J. Cancer Res. 1999, 90, 262–267. [Google Scholar] [CrossRef]
- Ahmad, B.; Hafeez, N.; Rauf, A.; Bashir, S.; Linfang, H.; Rehman, M.-U.; Mubarak, M.S.; Uddin, M.S.; Bawazeer, S.; Shariati, M.A.; et al. Phyllanthus emblica: A comprehensive review of its therapeutic benefits. S. Afr. J. Bot. 2021, 138, 278–310. [Google Scholar] [CrossRef]
- Gaire, B.P.; Subedi, L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin. J. Integr. Med. 2014. ahead of print. [Google Scholar]
- Li, P.-H.; Wang, C.-W.; Lu, W.-C.; Song, T.-Y.; Wang, C.-C. Antioxidant, anti-inflammatory activities, and neuroprotective behaviors of Phyllanthus emblica L. fruit extracts. Agriculture 2022, 12, 588. [Google Scholar] [CrossRef]
- Hasan, M.R.; Islam, M.N.; Islam, M.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int. Curr. Pharm. J. 2016, 5, 14–21. [Google Scholar] [CrossRef]
- Ngamkitidechakul, C.; Jaijoy, K.; Hansakul, P.; Soonthornchareonnon, N.; Sireeratawong, S. Antitumour effects of Phyllanthus emblica L.: Induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother. Res. 2010, 24, 1405–1413. [Google Scholar] [CrossRef]
- Pinmai, K.; Chunlaratthanabhorn, S.; Ngamkitidechakul, C.; Soonthornchareon, N.; Hahnvajanawong, C. Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: Doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells. World J. Gastroenterol. WJG 2008, 14, 1491–1497. [Google Scholar] [CrossRef]
- Jeena, K.J.; Joy, K.; Kuttan, R. Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett. 1999, 136, 11–16. [Google Scholar] [CrossRef]
- Rajeshkumar, N.; Pillai, M.R.; Kuttan, R. Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis. J. Exp. Clin. Cancer Res. CR 2003, 22, 201–212. [Google Scholar]
- Sultana, S.; Ahmed, S.; Jahangir, T. Emblica officinalis and hepatocarcinogenesis: A chemopreventive study in Wistar rats. J. Ethnopharmacol. 2008, 118, 1–6. [Google Scholar] [CrossRef]
- Banu, S.M.; Selvendiran, K.; Singh, J.P.; Sakthisekaran, D. Protective effect of Emblica officinalis ethanolic extract against 7,12-dimethylbenz(a) anthracene (DMBA) induced genotoxicity in Swiss albino mice. Hum. Exp. Toxicol. 2004, 23, 527–531. [Google Scholar] [CrossRef]
- Sharma, N.; Trikha, P.; Athar, M.; Raisuddin, S. In vitro inhibition of carcinogen-induced mutagenicity by Cassia occidentalis and Emblica officinalis. Drug Chem. Toxicol. 2000, 23, 477–484. [Google Scholar] [CrossRef]
- Niture, S.K.; Rao, U.S.; Srivenugopal, K.S. Chemopreventative strategies targeting the MGMT repair protein: Augmented expression in human lymphocytes and tumor cells by ethanolic and aqueous extracts of several Indian medicinal plants. Int. J. Oncol. 2006, 29, 1269–1278. [Google Scholar] [CrossRef]
- Kumnerdkhonkaen, P.; Saenglee, S.; Asgar, M.A.; Senawong, G.; Khongsukwiwat, K.; Senawong, T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement. Altern. Med. 2018, 18, 130. [Google Scholar] [CrossRef]
- Guo, X.; Ni, J.; Liu, X.; Xue, J.; Wang, X. Phyllanthus emblica L. fruit extract induces chromosomal instability and suppresses necrosis in human colon cancer cells. Int. J. Vitam. Nutr. Res. 2013, 83, 271–280. [Google Scholar] [CrossRef]
- Guo, X.-H.; Ni, J.; Xue, J.-L.; Wang, X. Phyllanthus emblica Linn. fruit extract potentiates the anticancer efficacy of mitomycin C and cisplatin and reduces their genotoxicity to normal cells in vitro. J. Zhejiang Univ. Sci. B 2017, 18, 1031. [Google Scholar] [CrossRef]
- Kumar, G.; Madka, V.; Pathuri, G.; Ganta, V.; Rao, C.V. Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica). Nutr. Cancer 2022, 74, 2291–2302. [Google Scholar] [CrossRef]
- Oliveira, P.A.; Colaço, A.; Chaves, R.; Guedes-Pinto, H.; De-La-Cruz, P.; Luis, F.; Lopes, C. Chemical carcinogenesis. An. Acad. Bras. Ciênc. 2007, 79, 593–616. [Google Scholar] [CrossRef]
- Kang, J.S.; Wanibuchi, H.; Morimura, K.; Gonzalez, F.J.; Fukushima, S. Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res. 2007, 67, 11141–11146. [Google Scholar] [CrossRef]
- Rosenberg, D.W.; Giardina, C.; Tanaka, T. Mouse models for the study of colon carcinogenesis. Carcinogenesis 2009, 30, 183–196. [Google Scholar] [CrossRef]
- Oberley, T.; Oberley, L. Antioxidant enzyme levels in cancer. Histol. Histopathol. 1997, 12, 525–535. [Google Scholar]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1948. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Miyazawa, M.; Okuno, Y.; Nakamura, S.-I.; Kameoka, H. Suppression of SOS-inducing activity of chemical mutagens by cinnamic acid derivatives from Scrophulia ningpoensis in the Salmonella typhimurium TA1535/pSK1002 umu test. J. Agric. Food Chem. 1998, 46, 904–910. [Google Scholar] [CrossRef]
- Celik, G.; Semiz, A.; Karakurt, S.; Arslan, S.; Adali, O.; Sen, A. A comparative study for the evaluation of two doses of ellagic acid on hepatic drug metabolizing and antioxidant enzymes in the rat. BioMed Res. Int. 2013, 2013, 358945. [Google Scholar] [CrossRef]
- Vattem, D.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005, 29, 234–266. [Google Scholar] [CrossRef]
- Kang, C.; Kim, J.; Ju, S.; Cho, H.; Kim, H.Y.; Yoon, I.-S.; Yoo, J.-W.; Jung, Y. Colon-Targeted Trans-Cinnamic Acid Ameliorates Rat Colitis by Activating GPR109A. Pharmaceutics 2022, 15, 41. [Google Scholar] [CrossRef]
- Basli, A.; Belkacem, N.; Amrani, I. Chapter 10. Health benefits of phenolic compounds against cancers. In Phenolic Compounds—Biological Activity; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Mason, E.F.; Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 645–654. [Google Scholar] [CrossRef]
- Yoshida, Y.; Tatematsu, M.; Takaba, K.; Iwasaki, S.; Ito, N. Target organ specificity of cell proliferation induced by various carcinogens. Toxicol. Pathol. 1993, 21, 436–442. [Google Scholar] [CrossRef]
- Kawaguchi, I.; Doi, M.; Kakinuma, S.; Shimada, Y. Combined effect of multiple carcinogens and synergy index. J. Theor. Biol. 2006, 243, 143–151. [Google Scholar] [CrossRef]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef]
- Cendrowicz, E.; Sas, Z.; Bremer, E.; Rygiel, T.P. The Role of Macrophages in Cancer Development and Therapy. Cancers 2021, 13, 1946. [Google Scholar] [CrossRef]
- Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol. 2010, 107, 650–655. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, R.; Wang, N.; Deng, Y.; Tan, B.; Yin, Y.; Qi, M.; Wang, J. Ellagic acid alleviates oxidative stress by mediating Nrf2 signaling pathways and protects against paraquat-induced intestinal injury in piglets. Antioxidants 2022, 11, 252. [Google Scholar] [CrossRef]
- Hseu, Y.-C.; Korivi, M.; Lin, F.-Y.; Li, M.-L.; Lin, R.-W.; Wu, J.-J.; Yang, H.-L. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J. Dermatol. Sci. 2018, 90, 123–134. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10 (Suppl. S1), S4. [Google Scholar] [CrossRef]
- Acute Oral Toxicity–Up-and-Down Procedure. OECD Guideline for Testing of Chemicals; OECD: Paris, France, 2001. [Google Scholar]
- Punvittayagul, C.; Chariyakornkul, A.; Sankam, P.; Wongpoomchai, R. Inhibitory Effect of Thai Purple Rice Husk Extract on Chemically Induced Carcinogenesis in Rats. Molecules 2021, 26, 360. [Google Scholar] [CrossRef]
- Thumvijit, T.; Taya, S.; Punvittayagul, C.; Peerapornpisal, Y.; Wongpoomchai, R. Cancer chemopreventive effect of Spirogyra neglecta (Hassall) Kützing on diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian Pac. J. Cancer Prev. 2014, 15, 1611–1616. [Google Scholar] [CrossRef]
- Chariyakornkul, A.; Juengwiroj, W.; Ruangsuriya, J.; Wongpoomchai, R. Antioxidant Extract from Cleistocalyx nervosum var. paniala Pulp Ameliorates Acetaminophen-Induced Acute Hepatotoxicity in Rats. Molecules 2022, 27, 553. [Google Scholar] [CrossRef]
- Shaheen, N.; Azhar, I.; Mahmood, Z.A. Comparative phytochemical investigations for standardization of some spices available in Pakistan. World J. Pharm. Sci. 2015, 3, 1496–1506. [Google Scholar]
- Inboot, W.; Taya, S.; Chailungka, A.; Meepowpan, P.; Wongpoomchai, R. Genotoxicity and antigenotoxicity of the methanol extract of Cleistocalyx nervosum var. paniala seed using a Salmonella mutation assay and rat liver micronucleus tests. Mol. Cell. Toxicol. 2012, 8, 19–24. [Google Scholar]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef]
- Insuan, O.; Chariyakornkul, A.; Rungrote, Y.; Wongpoomchai, R. Antimutagenic and antioxidant activities of Thai rice brans. J. Cancer Prev. 2017, 22, 89–97. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Sankam, P.; Taya, S.; Wongpoomchai, R. Anticlastogenicity and anticarcinogenicity of purple rice extract in rats. Nutr. Cancer 2016, 68, 646–653. [Google Scholar] [CrossRef]
- Lengkidworraphiphat, P.; Wongpoomchai, R.; Taya, S.; Jaturasitha, S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast meat. Asian-Australas. J. Anim. Sci. 2020, 33, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chariyakornkul, A.; Phannasorn, W.; Mahatheeranont, S.; Wongpoomchai, R. Phytochemical profile and chemopreventive properties of cooked glutinous purple rice extracts using cell-based assays and rat model. Foods 2022, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Park, T.; Kang, M.-G.; Park, D. Anti-inflammatory activity and ROS regulation effect of sinapaldehyde in LPS-stimulated RAW 264.7 macrophages. Molecules 2020, 25, 4089. [Google Scholar] [CrossRef] [PubMed]
- Landete, J. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Nutley, B.; Farmer, P.; Caldwell, J. Metabolism of trans-cinnamic acid in the rat and the mouse and its variation with dose. Food Chem. Toxicol. 1994, 32, 877–886. [Google Scholar] [CrossRef]
Crude | HEX | DCM | EAC | BA | Residue | |
---|---|---|---|---|---|---|
Spectrophotometric analysis | ||||||
Total phenolic (mg GAE/g) | 530.49 ± 20.36 | 181.53 ± 9.86 | 337.58 ± 26.76 | 853.04 ± 47.73 | 517.59 ± 22.46 | 301.92 ± 37.98 |
Total flavonoid (mg CE/g) | 19.58 ± 4.05 | 22.53 ± 4.40 | 30.82 ± 3.57 | 36.34 ± 3.32 | 21.90 ± 1.15 | 7.73 ± 5.55 |
Total condensed tannin (mg CE/g) | 5.19 ± 0.30 | 0.73 ± 0.08 | 0.89 ± 0.03 | 1.52 ± 0.62 | 1.01 ± 1.30 | ND |
Total hydrolysable tannin (mg MGE/g) | 47.28 ± 4.96 | 33.64 ± 1.48 | 169.20 ± 2.49 | 329.42 ± 3.28 | 36.19 ± 2.09 | 10.90 ± 1.43 |
HPLC analysis | ||||||
Gallic acid (mg/g) | 80.25 ± 5.09 | 31.26 ± 0.01 | 36.22 ± 2.22 | 281.03 ± 1.37 | 27.75 ± 0.08 | ND |
Syringic acid (mg/g) | 1.19 ± 0.01 | ND | 0.86 ± 0.01 | 2.60 ± 0.09 | ND | ND |
Ellagic acid (mg/g) | 3.54 ± 0.05 | 11. 82 ± 0.22 | 14.96 ± 0.74 | 6.98 ± 0.15 | 5.69 ± 0.21 | 2.86 ± 0.25 |
trans-cinnamic acid (mg/g) | ND | 13.76 ± 0.01 | 56.12 ± 0.13 | ND | ND | ND |
Catechin (mg/g) | 1.56 ± 0.01 | ND | ND | ND | ND | ND |
Epicatechin (mg/g) | 76.12 ± 0.01 | 14.65 ± 0.04 | 28.89 ± 0.05 | 35.71 ± 0.02 | 47.20 ± 0.20 | ND |
Rutin (mg/g) | 0.32 ± 0.02 | 0.03 ± 0.01 | 0.15 ± 0.05 | 0.15 ± 0.01 | 11.82 ± 0.04 | ND |
Sample | DPPH (IC50) (μg/mL) | ABTS (IC50) (μg/mL) | FRAP (μM TE/g Extract) |
---|---|---|---|
Crude | 51.92 ± 15.76 | 254.71 ± 103.39 | 4199.24 ± 317.86 |
HEX | 898.40 ± 133.55 | 2555.58 ± 377.31 | 171.02 ± 30.31 |
DCM | 126.80 ± 75.64 | 2417.85 ± 109.93 | 2687.16 ± 177.89 |
ECA | 30.53 ± 6.61 | 100.90 ± 30.79 | 5423.04 ± 460.77 |
BA | 54.64 ± 3.72 | 210.62 ± 13.51 | 3244.69 ± 256.60 |
Residue | 98.21 ± 26.11 | 247.61 ± 40.44 | 1678.49 ± 52.73 |
Sample | Dose (mg/plate) | Average of His+ Revertant Colonies per Plate (MI) | |||
---|---|---|---|---|---|
TA98 | TA100 | ||||
+S9 | −S9 | +S9 | −S9 | ||
DMSO | 34.0 ± 1.5 | 34.8 ± 0.4 | 121.0 ± 6.4 | 116.8 ± 4.6 | |
2-AA | 0.0005 | 1553.1 ± 84.8 (45.7) | − | 909.9 ± 13.9 (7.5) | − |
AF-2 | 0.0001 | − | 413.0 ± 36.7 (11.9) | − | − |
AF-2 | 0.00001 | − | − | − | 882.3 ± 49.3 (7.6) |
Crude | 0.2 | 36.0 ± 1.7 (1.1) | 26.9 ± 0.7 (0.8) | 130.7 ± 5.0 (1.1) | 106.8 ± 1.9 (0.92) |
1 | 35.4 ± 2.6 (1.0) | 27.8 ± 1.5 (0.8) | 112.8 ± 11.0 (0.9) | 112.3 ± 2.9 (1.0) | |
5 | 29.9 ± 0.4 (0.9) | 25.9 ± 1.2 (0.7) | 107.8 ± 4.9 (0.9) | 99.7 ± 7.3 (0.9) | |
HEX | 0.2 | 33.1 ± 2.4 (1.0) | 27.2 ± 0.8 (0.8) | 121.9 ± 1.4 (1.0) | 100.7 ± 6.7 (0.9) |
1 | 30.9 ± 1.6 (0.9) | 27.4 ± 1.0 (0.8) | 88.3 ± 8.2 (0.7) | 80.2 ± 4.0 (0.7) | |
5 | 33.3 ± 0.5 (1.0) | 26.2 ± 0.6 (0.8) | 86.7 ± 4.8 (0.7) | 76.2 ± 1.09 (0.7) | |
DCM | 0.2 | 39.1 ± 1.4 (1.2) | 28.1 ± 0.5 (0.8) | 112.2 ± 4.2 (0.9) | 113.6 ± 7.6 (1.0) |
1 | 32.9 ± 1.4 (1.0) | 27.4 ± 1.0 (0.8) | 109.7 ± 7.5 (0.9) | 112.6 ± 0.9 (1.0) | |
5 | 33.7 ± 2.2 (1.0) | 26.2 ± 0.6 (0.8) | 107.1 ± 4.3 (0.9) | 110.8 ± 3.2 (1.0) | |
EAC | 0.2 | 38.2 ± 1.2 (1.1) | 27.1 ± 1.1 (0.8) | 116.1 ± 4.8 (1.0) | 115.8 ± 1.2 (1.0) |
1 | 50.4 ± 3.1 (1.5) | 28.0 ± 0.8 (0.8) | 106.2 ± 3.5 (0.9) | 94.3 ± 1.4 (0.8) | |
5 | 46.2 ± 2.1 (1.4) | 30.4 ± 0.1 (0.9) | 96.2 ± 1.5 (0.8) | 97.4 ± 4.0 (0.8) | |
BA | 0.2 | 34.7 ± 1.2 (1.0) | 24.8 ± 1.9 (0.7) | 105.7 ± 8.2 (0.9) | 108.3 ± 4.9 (0.9) |
1 | 31.9 ± 2.0 (0.9) | 27.2 ± 0.6 (0.8) | 107.7 ± 6.9 (0.9) | 112.8 ± 10.4 (1.0) | |
5 | 27.0 ± 1.0 (0.8) | 28.2 ± 0.8 (0.8) | 102.0 ± 4.9 (0.8) | 118.0 ± 4.3 (1.0) | |
Residue | 0.2 | 34.8 ± 1.4 (1.0) | 24.0 ± 1.5 (0.7) | 108.2 ± 3.5 (0.9) | 114.8 ± 2.1 (1.0) |
1 | 34.4 ± 1.3 (1.0) | 26.7 ± 1.5 (0.8) | 104.8 ± 5.3 (0.9) | 105.2 ± 2.0 (0.9) | |
5 | 26.2 ± 1.2 (0.8) | 26.6 ± 0.6 (0.8) | 126.5 ± 21.9 (1.0) | 125.9 ± 5.1 (1.0) |
Sample | Dose (mg/plate) | Average of His+ Revertant Colonies per Plate (%Inhibition) | |||
---|---|---|---|---|---|
TA98 | TA100 | ||||
+S9 | −S9 | +S9 | −S9 | ||
DMSO | 26.3 ± 4.8 * | 24.6 ± 0.6 * | 125.9 ± 1.3 * | 107.2 ± 6.0 * | |
AFB1 | 0.00005 | 926.7 ± 70.6 | − | − | − |
AF-2 | 0.0001 | − | 324.6 ± 2.1 | − | − |
MeIQ | 0.000025 | − | − | 1482.6 ± 103.4 | − |
NaN3 | 0.001 | − | − | − | 498.4 ± 74.2 |
Crude | 0.04 | 744.2 ± 21.4 (19.4) | 256.0 ± 4.7 (22.8) | 1199.3 ± 105.6 (21.1) | 419.8 ± 40.8 (18.4) |
0.2 | 613.6 ± 11.2 (34.0) * | 242.6 ± 8.5 (27.4) | 1055.7 ± 51.2 (31.0) * | 381.8 ± 50.4 (29.5) | |
HEX | 0.04 | 541.7 ± 44.3 (42.8) * | 250.2 ± 2.1 (24.8) | 916.2 ± 75.1 (41.9) * | 450.7 ± 36.5 (8.3) |
0.2 | 108.1 ± 2.4 (90.9) *,# | 237.1 ± 15.8 (29.4) | 509.0 ± 89.8 (72.2) *,# | 423.6 ± 41.7 (16.3) | |
DCM | 0.04 | 435.3 ± 3.3 (54.0) *,# | 240.4 ± 30.4 (28.1) | 772.7 ± 51.0 (52.3) *,# | 448.8 ± 42.0 (7.8) |
0.2 | 134.9 ± 5.5 (87.9) *,# | 250.3 ± 7.7 (24.7) | 434.7 ± 8.2 (77.0) *,# | 406.2 ± 34.6 (20.6) | |
EAC | 0.04 | 877.6 ± 40.6 (4.8) | 258.9 ± 14.3 (21.9) | 1269.1 ± 105.7 (15.9) | 478.9 ± 52.4 (1.8) |
0.2 | 208.1 ± 40.8 (79.0) *,# | 244.0 ± 16.0 (26.8) | 583.3 ± 49.8 (66.4) *,# | 376.2 ± 32.1 (28.6) | |
BA | 0.04 | 772.0 ± 21.0 (16.5) | 236.1 ± 5.5 (29.5) | 1260.3 ± 101.6 (16.5) | 458.7 ± 41.7 (7.7) |
0.2 | 321.3 ± 49.7 (66.2) *,# | 235.4 ± 8.8 (29.7) | 940.0 ± 29.6 (39.5) * | 424.9 ± 35.3 (16.5) | |
Residue | 0.04 | 593.1 ± 35.8 (35.7) * | 236.1 ± 14.9 (29.5) | 1282.9 ± 76.0 (14.6) | 463.1 ± 61.0 (8.0) |
0.2 | 543.3 ± 55.1 (40.8) * | 242.2 ± 15.6 (27.4) | 888.4 ± 54.2 (43.3) * | 464.2 ± 54.3 (7.5) |
Sample | Dose (mg/plate) | Average of His+ Revertant Colonies per Plate (%Inhibition) | |
---|---|---|---|
TA98 (+S9) | TA100 (+S9) | ||
DMSO | 26.7 ± 1.0 * | 116.3 ± 2.5 * | |
AFB1 | 0.00005 | 965.0 ± 37.9 | − |
MeIQ | 0.000025 | − | 1024.0 ± 56.5 |
Vanillic acid | 1 | 417.0 ± 15.1 (58.4) * | 466.0 ± 19.5 (61.1) * |
DCM | 0.2 | 79.8 ± 5.2 (94.4) * | 207.7 ± 23.1 (90.0) * |
tCA | 0.01 | 891.0 ± 39.7 (7.9) | 998.7 ± 54.3 (2.8) |
0.2 | 888.3 ± 7.8 (7.9) | 842.7 ± 11.3 (19.5) | |
1 | 608.7 ± 37.5 (37.9) * | 509.3 ± 35.1 (56.5) * | |
EA | 0.003 | 890.7 ± 33.2 (10.1) | 995.0 ± 47.9 (3.1) |
0.2 | 622.7 ± 32.7 (36.5) * | 745.0 ± 32.6 (30.1) * | |
1 | 403.3 ± 18.7 (59.6) * | 356.0 ± 11.3 (73.4) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singai, C.; Pitchakarn, P.; Taya, S.; Phannasorn, W.; Wongpoomchai, R.; Wongnoppavich, A. Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model. Pharmaceuticals 2024, 17, 818. https://doi.org/10.3390/ph17070818
Singai C, Pitchakarn P, Taya S, Phannasorn W, Wongpoomchai R, Wongnoppavich A. Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model. Pharmaceuticals. 2024; 17(7):818. https://doi.org/10.3390/ph17070818
Chicago/Turabian StyleSingai, Chonikarn, Pornsiri Pitchakarn, Sirinya Taya, Warunyoo Phannasorn, Rawiwan Wongpoomchai, and Ariyaphong Wongnoppavich. 2024. "Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model" Pharmaceuticals 17, no. 7: 818. https://doi.org/10.3390/ph17070818
APA StyleSingai, C., Pitchakarn, P., Taya, S., Phannasorn, W., Wongpoomchai, R., & Wongnoppavich, A. (2024). Chemopreventive Potential of Phyllanthus emblica Fruit Extract against Colon and Liver Cancer Using a Dual-Organ Rat Carcinogenesis Model. Pharmaceuticals, 17(7), 818. https://doi.org/10.3390/ph17070818