Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential
Abstract
:1. Introduction
1.1. Rheumatoid Arthritis (RA)
1.1.1. Development of RA
1.1.2. Pathogenesis of RA
1.1.3. Role of NF-κB, MAPK, JAK/STAT, and PI3K/Akt in the Pathogenesis of RA
1.1.4. Oxidative Stress in RA
1.1.5. Novel Treatments for RA
1.2. Introduction of GAL as a Potential Therapeutic Agent and Its Sources
2. Bioactive Properties of GAL
2.1. Molecular Structure of GAL
2.2. Pharmacological Properties of GAL
2.2.1. Anti-Inflammatory Effects of GAL
2.2.2. Antioxidant Effect of GAL
2.2.3. Immunomodulatory Effect of GAL
2.2.4. GAL and Autoimmunity
3. Mechanism of Action of GAL against Arthritis: In Vivo and In Vitro Studies
3.1. Effect of GAL on Osteoarthritis (OA)
3.2. Effect of GAL on Rheumatoid Arthritis (RA)
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, S.; Zhao, M.; Jia, S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front. Immunol. 2023, 14, 1080310. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, A.; Bathon, J.M.; Emery, P. Rheumatoid arthritis. Lancet 2023, 402, 2019–2033. [Google Scholar] [CrossRef] [PubMed]
- Venetsanopoulou, A.I.; Alamanos, Y.; Voulgari, P.V.; Drosos, A.A. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert. Rev. Clin. Immunol. 2022, 18, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Straub, R.H. Sex steroids and autoimmune rheumatic diseases: State of the art. Nat. Rev. Rheumatol. 2020, 16, 628–644. [Google Scholar] [CrossRef] [PubMed]
- Gravallese, E.M.; Firestein, G.S. Rheumatoid Arthritis—Common Origins, Divergent Mechanisms. N. Engl. J. Med. 2023, 388, 529–542. [Google Scholar] [CrossRef]
- Deane, K.D.; Demoruelle, M.K.; Kelmenson, L.B.; Kuhn, K.A.; Norris, J.M.; Holers, V.M. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2017, 31, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tedeschi, S.K.; Barbhaiya, M.; Leatherwood, C.L.; Speyer, C.B.; Lu, B.; Costenbader, K.H.; Karlson, E.W.; Sparks, J.A. Impact and Timing of Smoking Cessation on Reducing Risk of Rheumatoid Arthritis among Women in the Nurses’ Health Studies. Arthritis Care Res. 2019, 71, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Möller, B.; Kollert, F.; Sculean, A.; Villiger, P.M. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front. Immunol. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Ishigaki, K.; Lagattuta, K.A.; Luo, Y.; James, E.A.; Buckner, J.H.; Raychaudhuri, S. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 2022, 54, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.J.; Ju, J.H. Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int. J. Mol. Sci. 2021, 22, 10576. [Google Scholar] [CrossRef]
- Kissel, T.; Ge, C.; Hafkenscheid, L.; Kwekkeboom, J.C.; Slot, L.M.; Cavallari, M.; He, Y.; van Schie, K.A.; Vergroesen, R.D.; Kampstra, A.S.B.; et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 2022, 8, eabm1759. [Google Scholar] [CrossRef] [PubMed]
- Wehr, P.; Purvis, H.; Law, S.C.; Thomas, R. Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin. Exp. Immunol. 2019, 196, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Gao, J.; Kang, J.; Wang, X.; Niu, Q.; Liu, J.; Zhang, L. B Cells in Rheumatoid Arthritis: Pathogenic Mechanisms and Treatment Prospects. Front. Immunol. 2021, 12, 750753. [Google Scholar] [CrossRef] [PubMed]
- Pruijn, G.J.; Wiik, A.; van Venrooij, W.J. The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Rönnelid, J.; Turesson, C.; Kastbom, A. Autoantibodies in Rheumatoid Arthritis—Laboratory and Clinical Perspectives. Front. Immunol. 2021, 12, 685312. [Google Scholar] [CrossRef] [PubMed]
- Kongpachith, S.; Lingampalli, N.; Ju, C.H.; Blum, L.K.; Lu, D.R.; Elliott, S.E.; Mao, R.; Robinson, W.H. Affinity Maturation of the Anti-Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yang, G.; Liu, Q.; Wang, S.; Cui, D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 626193. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Chi, S.; Wang, X.; Sun, J.; Zhang, Y. CD4+CXCR5+PD-1+ T Follicular Helper Cells Play a Pivotal Role in the Development of Rheumatoid Arthritis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 3032–3040. [Google Scholar] [CrossRef]
- Onishi, R.M.; Gaffen, S.L. Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology 2010, 129, 311–321. [Google Scholar] [CrossRef]
- Alivernini, S.; MacDonald, L.; Elmesmari, A.; Finlay, S.; Tolusso, B.; Gigante, M.R.; Petricca, L.; Di Mario, C.; Bui, L.; Perniola, S.; et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 2020, 26, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Takaki-Kuwahara, A.; Arinobu, Y.; Miyawaki, K.; Yamada, H.; Tsuzuki, H.; Irino, K.; Ayano, M.; Kimoto, Y.; Mitoma, H.; Akahoshi, M.; et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res. Ther. 2019, 21, 198. [Google Scholar] [CrossRef] [PubMed]
- Culemann, S.; Grüneboom, A.; Nicolás-Ávila, J.; Weidner, D.; Lämmle, K.F.; Rothe, T.; Quintana, J.A.; Kirchner, P.; Krljanac, B.; Eberhardt, M.; et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019, 572, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.; Ding, J.; Cohn, I.S.; Zhang, F.; Wei, K.; Rao, D.A.; Rozo, C.; Sokhi, U.K.; Shanaj, S.; Oliver, D.J.; et al. HBEGF(+) macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 2019, 11, eaau8587. [Google Scholar] [CrossRef] [PubMed]
- Müller-Ladner, U.; Pap, T.; Gay, R.E.; Neidhart, M.; Gay, S. Mechanisms of Disease: The molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2005, 1, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, N.; Win, S.; Yan, M.; Huynh, N.C.; Sawa, S.; Tsukasaki, M.; Terashima, A.; Pluemsakunthai, W.; Kollias, G.; Nakashima, T.; et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J. Clin. Investig. 2021, 131, e143060. [Google Scholar] [CrossRef] [PubMed]
- Danks, L.; Komatsu, N.; Guerrini, M.M.; Sawa, S.; Armaka, M.; Kollias, G.; Nakashima, T.; Takayanagi, H. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann. Rheum. Dis. 2016, 75, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, W.; Fissel, B.M.; Maeda, Y.; Yan, J.; Ge, X.; Gravallese, E.M.; Aliprantis, A.O.; Charles, J.F. RANK-Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis. Arthritis Rheumatol. 2016, 68, 2889–2900. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Lin, C.; Lu, Y.; Guan, H.; Qi, W.; Zhang, H.; Shao, Y.; Zeng, C.; Zhang, R.; Zhang, H.; et al. FABP4 secreted by M1-polarized macrophages promotes synovitis and angiogenesis to exacerbate rheumatoid arthritis. Bone Res. 2022, 10, 45. [Google Scholar] [CrossRef]
- Conforti, A.; Di Cola, I.; Pavlych, V.; Ruscitti, P.; Berardicurti, O.; Ursini, F.; Giacomelli, R.; Cipriani, P. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102735. [Google Scholar] [CrossRef]
- Gao, D.; Gao, X.; Yang, F.; Wang, Q. Neuroimmune Crosstalk in Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 8158. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.; Blatteis, C.M. Mechanisms of fever production and lysis: Lessons from experimental LPS fever. Compr. Physiol. 2014, 4, 1563–1604. [Google Scholar] [CrossRef] [PubMed]
- Lora, V.; Cerroni, L.; Cota, C. Skin manifestations of rheumatoid arthritis. G. Ital. Dermatol. Venereol. 2018, 153, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Tilstra, J.S.; Lienesch, D.W. Rheumatoid Nodules. Dermatol. Clin. 2015, 33, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, W.; Yang, H.; Shao, M.; Xu, S.; Deng, J.; Gao, X.; Liu, H.; Shuai, Z.; Xu, S.; et al. Serum Levels of Hepcidin in Rheumatoid Arthritis and Its Correlation with Disease Activity and Anemia: A Meta-analysis. Immunol. Investig. 2021, 50, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Takai, C.; Kazama, J.J.; Wakamatsu, A.; Hasegawa, E.; Kobayashi, D.; Kondo, N.; Nakatsue, T.; Abe, A.; Ito, S.; et al. Serum hepcidin level, iron metabolism and osteoporosis in patients with rheumatoid arthritis. Sci. Rep. 2020, 10, 9882. [Google Scholar] [CrossRef] [PubMed]
- Kadura, S.; Raghu, G. Rheumatoid arthritis-interstitial lung disease: Manifestations and current concepts in pathogenesis and management. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2021, 30, 210011. [Google Scholar] [CrossRef] [PubMed]
- England, B.R.; Duryee, M.J.; Roul, P.; Mahajan, T.D.; Singh, N.; Poole, J.A.; Ascherman, D.P.; Caplan, L.; Demoruelle, M.K.; Deane, K.D.; et al. Malondialdehyde-Acetaldehyde Adducts and Antibody Responses in Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2019, 71, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ma, H.; Zhang, H.; Deng, C.; Xin, P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin. Immunol. 2021, 230, 108793. [Google Scholar] [CrossRef]
- Malemud, C.J. Negative Regulators of JAK/STAT Signaling in Rheumatoid Arthritis and Osteoarthritis. Int. J. Mol. Sci. 2017, 18, 484. [Google Scholar] [CrossRef]
- Ilchovska, D.D.; Barrow, D.M. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmun. Rev. 2021, 20, 102741. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhang, X.; Zeng, Y.; Huang, X.; Chen, H.; Wang, S.; Wu, J.; Li, Q.; Zhu, W.; Li, H.; et al. A Novel Phytochemical, DIM, Inhibits Proliferation, Migration, Invasion and TNF-α Induced Inflammatory Cytokine Production of Synovial Fibroblasts from Rheumatoid Arthritis Patients by Targeting MAPK and AKT/mTOR Signal Pathway. Front. Immunol. 2019, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, R.; Zhang, L. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors. Int. Immunopharmacol. 2022, 111, 109095. [Google Scholar] [CrossRef] [PubMed]
- Ba, X.; Huang, Y.; Shen, P.; Huang, Y.; Wang, H.; Han, L.; Lin, W.J.; Yan, H.J.; Xu, L.J.; Qin, K.; et al. WTD Attenuating Rheumatoid Arthritis via Suppressing Angiogenesis and Modulating the PI3K/AKT/mTOR/HIF-1α Pathway. Front. Pharmacol. 2021, 12, 696802. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.J.S.d.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Oxidative Med. Cell. Longev. 2019, 2019, 7536805. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Gao, X.; Wang, Y.; Cheng, S.; Zhong, X.; Xu, Y.; Zhou, X.; Zhang, Z.; Liu, Z.; Cheng, L. Ultrasmall iron-quercetin metal natural product nanocomplex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharm. Sin. B 2023, 13, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- López-Armada, M.J.; Fernández-Rodríguez, J.A.; Blanco, F.J. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants 2022, 11, 1151. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; et al. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021, 26, 6570. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, L.; Chitti, R.; Sreeharsha, N.; Mishra, A.; Gubbiyappa, S.K.; Singh, Y. Wogonin ameliorate complete Freund’s adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway. BioFactors 2020, 46, 283–291. [Google Scholar] [CrossRef]
- Puppala, E.R.; Jain, S.; Saha, P.; Rachamalla, M.; Np, S.; Yalamarthi, S.S.; Abubakar, M.; Chaudhary, A.; Chamundeswari, D.; Usn, M.; et al. Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways: A comprehensive study onin-vitro and in-vivo experimental models. Phytomed. Int. J. Phytother. Phytopharm. 2022, 97, 153926. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Katsuoka, F.; Yamamoto, M. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016, 586, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Esalatmanesh, K.; Loghman, A.; Esalatmanesh, R.; Soleimani, Z.; Khabbazi, A.; Mahdavi, A.M.; Mousavi, S.G.A. Effects of melatonin supplementation on disease activity, oxidative stress, inflammatory, and metabolic parameters in patients with rheumatoid arthritis: A randomized double-blind placebo-controlled trial. Clin. Rheumatol. 2021, 40, 3591–3597. [Google Scholar] [CrossRef] [PubMed]
- Zamani, B.; Taghvaee, F.; Akbari, H.; Mohtashamian, A.; Sharifi, N. Effects of Selenium Supplementation on the Indices of Disease Activity, Inflammation and Oxidative Stress in Patients with Rheumatoid Arthritis: A Randomized Clinical Trial. Biol. Trace Elem. Res. 2024, 202, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef]
- Shiozawa, S.; Tsumiyama, K. Pathogenesis of rheumatoid arthritis and c-Fos/AP-1. Cell Cycle 2009, 8, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.T.; Won, J.; Khan, M.; Mannie, M.D.; Singh, I. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 2021, 164, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Behl, T.; Kumar, A.; Khullar, G.; Arora, S. Role of Nrf2 in rheumatoid arthritis. Curr. Res. Transl. Med. 2020, 68, 171–181. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 2021, 73, 924–939. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A. Treatment Guidelines in Rheumatoid Arthritis. Rheum. Dis. Clin. N. Am. 2022, 48, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Verma, S.; Surbhi; Ganguly, N.K.; Chaturvedi, V.; Mittal, S.A. Rheumatoid arthritis: Advances in treatment strategies. Mol. Cell Biochem. 2023, 478, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Anzaghe, M.; Schulke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Kerschbaumer, A.; Sepriano, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; et al. Efficacy of synthetic and biological DMARDs: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, Y.; Yuan, Y.; Sun, J.; Liu, L.; Huang, D.; Hu, J.; Wang, M.; Li, S.; Song, W.; et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann. Rheum. Dis. 2021, 80, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Arneson, L.C.; Carroll, K.J.; Ruderman, E.M. Bruton’s Tyrosine Kinase Inhibition for the Treatment of Rheumatoid Arthritis. ImmunoTargets Ther. 2021, 10, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zamri, F.; de Vries, T.J. Use of TNF Inhibitors in Rheumatoid Arthritis and Implications for the Periodontal Status: For the Benefit of Both? Front. Immunol. 2020, 11, 591365. [Google Scholar] [CrossRef]
- Lucas, C.; Perdriger, A.; Amé, P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin. Arthritis Rheum. 2020, 50, 867–872. [Google Scholar] [CrossRef]
- Humby, F.; Durez, P.; Buch, M.H.; Lewis, M.J.; Rizvi, H.; Rivellese, F.; Nerviani, A.; Giorli, G.; Mahto, A.; Montecucco, C.; et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 2021, 397, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Mysler, E.; Caubet, M.; Lizarraga, A. Current and Emerging DMARDs for the Treatment of Rheumatoid Arthritis. Open Access Rheumatol. Res. Rev. 2021, 13, 139–152. [Google Scholar] [CrossRef]
- Sbidian, E.; Chaimani, A.; Garcia-Doval, I.; Doney, L.; Dressler, C.; Hua, C.; Hughes, C.; Naldi, L.; Afach, S.; Le Cleach, L. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst. Rev. 2022, 5, Cd011535. [Google Scholar] [CrossRef]
- Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt. Bone Spine 2019, 86, 301–307. [Google Scholar] [CrossRef]
- Hamed, K.M.; Dighriri, I.M.; Baomar, A.F.; Alharthy, B.T.; Alenazi, F.E.; Alali, G.H.; Alenazy, R.H.; Alhumaidi, N.T.; Alhulayfi, D.H.; Alotaibi, Y.B.; et al. Overview of Methotrexate Toxicity: A Comprehensive Literature Review. Cureus 2022, 14, e29518. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Hasan, H.; El-Orfali, Y.; Ismail, H.; Khawaja, G. Anti-Inflammatory, Antioxidative, and Hepatoprotective Effects of Trans Delta9-Tetrahydrocannabinol/Sesame Oil on Adjuvant-Induced Arthritis in Rats. Evid.-Based Complement. Altern. Med. 2018, 2018, 9365464. [Google Scholar] [CrossRef]
- Hasan, H.; Ismail, H.; El-Orfali, Y.; Khawaja, G. Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity. BMC Complement. Altern. Med. 2018, 18, 337. [Google Scholar] [CrossRef]
- Kamal, R.M.; Sabry, M.M.; Aly, Z.Y.; Hifnawy, M.S. Phytochemical and In-Vivo Anti-Arthritic Significance of Aloe thraskii Baker in Combined Therapy with Methotrexate in Adjuvant-Induced Arthritis in Rats. Molecules 2021, 26, 3660. [Google Scholar] [CrossRef] [PubMed]
- Banji, D.; Banji, O.J.F.; Rashida, S.; Alshahrani, S.; Alqahtani, S.S. Bioavailability, anti-inflammatory and anti-arthritic effect of Acetyl Keto Boswellic acid and its combination with methotrexate in an arthritic animal model. J. Ethnopharmacol. 2022, 292, 115200. [Google Scholar] [CrossRef]
- Dogra, A.; Kour, D.; Bhardwaj, M.; Dhiman, S.; Kumar, A.; Vij, B.; Kumar, A.; Nandi, U. Glabridin Plays Dual Action to Augment the Efficacy and Attenuate the Hepatotoxicity of Methotrexate in Arthritic Rats. ACS Omega 2022, 7, 34341–34351. [Google Scholar] [CrossRef]
- Khawaja, G.; El-Orfali, Y. Silibinin’s Effects against Methotrexate-Induced Hepatotoxicity in Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals 2024, 17, 431. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Drouet, S.; Garros, L.; Hano, C. Differential Flavonoid and Other Phenolic Accumulations and Antioxidant Activities of Nymphaea lotus L. Populations throughout Thailand. Molecules 2022, 27, 3590. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.S.; Khaled, A.M.; Al-Bagawi, A.H.; Fareid, M.A.; Hameed, R.A.; Zahra, F.A.A.; Moneim, A.E.A. Echinops spinosus effect against diabetes and its hepatorenal complications: Total extract and flavonoids fraction. Environ. Sci. Pollut. Res. Int. 2022, 29, 38606–38617. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; You, P.; Luo, Y.; Yang, M.; Liu, Y. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition. Pharmacology 2018, 102, 58–66. [Google Scholar] [CrossRef]
- Alfwuaires, M.A. Galangin mitigates oxidative stress, inflammation, and apoptosis in a rat model of methotrexate hepatotoxicity. Environ. Sci. Pollut. Res. Int. 2022, 29, 20279–20288. [Google Scholar] [CrossRef]
- Tan, K.T.; Li, S.; Panny, L.; Lin, C.C.; Lin, S.C. Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunity. J. Immunotoxicol. 2021, 18, 50–60. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Wang, J.; Chen, X.; Liu, T.; Zhuo, Q.; Zhang, S.Q. Evaluation of cellular antioxidant components of honeys using UPLC-MS/MS and HPLC-FLD based on the quantitative composition-activity relationship. Food Chem. 2019, 293, 169–177. [Google Scholar] [CrossRef]
- Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-kappaB Pathways. Foods 2022, 11, 2439. [Google Scholar] [CrossRef]
- Sahin, S.; Karkar, B. The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. J. Food Biochem. 2019, 43, e12888. [Google Scholar] [CrossRef] [PubMed]
- Saric, A.; Balog, T.; Sobocanec, S.; Kusic, B.; Sverko, V.; Rusak, G.; Likic, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Song, H.K.; Park, S.H.; Kim, H.J.; Jang, S.; Kim, T. Alpinia officinarum water extract inhibits the atopic dermatitis-like responses in NC/Nga mice by regulation of inflammatory chemokine production. Biomed. Pharmacother. 2021, 144, 112322. [Google Scholar] [CrossRef] [PubMed]
- Erusappan, T.; Paramasivam, S.; Ekambaram, S.P. Identification of galangin as the bioactive compound from Alpinia calcarata (Haw.) Roscoe rhizomes to inhibit IRAK-1/ MAPK/ NF-kappaB p65 and JAK-1 signaling in LPS stimulated RAW 264.7 cells. J. Ethnopharmacol. 2022, 288, 114975. [Google Scholar] [CrossRef] [PubMed]
- Upadhye, A.S.; Rajopadhye, A.; Dias, L. Development and validation of HPTLC fingerprints of three species of Alpinia with biomarker Galangin. BMC Complement. Altern. Med. 2018, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Azar, K.A.H.; Ezhilarasan, D.; Shree Harini, K. Coleus vettiveroides ethanolic root extract induces cytotoxicity by intrinsic apoptosis in HepG2 cells. J. Appl. Toxicol. 2024, 44, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Z.; Mukhopadhyay, S.; Robbins, R.J.; Harnly, J.M. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. J. Food Compos. Anal. 2007, 20, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Chitala, M.D.C.; Flores-Martinez, H.; Orozco-Avila, I.; Leon-Campos, C.; Suarez-Jacobo, A.; Estarron-Espinosa, M.; Lopez-Muraira, I. Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules 2021, 26, 702. [Google Scholar] [CrossRef] [PubMed]
- Gyeltshen, T.; Jordan, G.J.; Smith, J.A.; Bissember, A.C. Natural products isolation studies of the paleoendemic plant species Nothofagus gunnii and Nothofagus cunninghamii. Fitoterapia 2022, 156, 105088. [Google Scholar] [CrossRef]
- Barauna, S.C.; Delwing-Dal Magro, D.; Brueckheimer, M.B.; Maia, T.P.; Sala, G.; Dohler, A.W.; Harger, M.C.; de Melo, D.F.M.; de Gasper, A.L.; Alberton, M.D.; et al. Antioxidant and antidepressant-like effects of Eugenia catharinensis D. Legrand in an animal model of depression induced by corticosterone. Metab. Brain Dis. 2018, 33, 1985–1994. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 2000, 71 (Suppl. S1), S110–S116. [Google Scholar] [CrossRef]
- de Zorzi, V.N.; Haupenthal, F.; Cardoso, A.S.; Cassol, G.; Facundo, V.A.; Balico, L.J.; Lima, D.K.S.; Santos, A.R.S.; Furian, A.F.; Oliveira, M.S.; et al. Galangin Prevents Increased Susceptibility to Pentylenetetrazol-Stimulated Seizures by Prostaglandin E2. Neuroscience 2019, 413, 154–168. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Saha, A.; Kuzuhara, T.; Asakawa, Y. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae). Phytomedicine 2011, 18, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Jokubaite, M.; Pukenaite, G.; Marksa, M.; Ramanauskiene, K. Balsam Poplar Buds Extracts-Loaded Gels and Emulgels: Development, Biopharmaceutical Evaluation, and Biological Activity In Vitro. Gels 2023, 9, 821. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, Y.; Ye, J.; Fan, G.; Peng, L.; Pan, S. Effects of poplar buds as an alternative to propolis on postharvest diseases control of strawberry fruits. J. Sci. Food Agric. 2016, 96, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Hage, S.; Morlock, G.E. Bioprofiling of Salicaceae bud extracts through high-performance thin-layer chromatography hyphenated to biochemical, microbiological and chemical detections. J. Chromatogr. A 2017, 1490, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Cui-ping, Z.; Shuai, H.; Wen-ting, W.; Shun, P.; Xiao-ge, S.; Ya-jing, L.; Fu-liang, H. Development of high-performance liquid chromatographic for quality and authenticity control of Chinese propolis. J. Food Sci. 2014, 79, C1315–C1322. [Google Scholar] [CrossRef]
- Aguiniga-Sanchez, I.; Soto-Hernandez, M.; Cadena-Iniguez, J.; Suwalsky, M.; Colina, J.R.; Castillo, I.; Rosado-Perez, J.; Mendoza-Nunez, V.M.; Santiago-Osorio, E. Phytochemical Analysis and Antioxidant and Anti-Inflammatory Capacity of the Extracts of Fruits of the Sechium Hybrid. Molecules 2020, 25, 4637. [Google Scholar] [CrossRef]
- Salazar-Aguilar, S.; Ruiz-Posadas, L.D.M.; Cadena-Iniguez, J.; Soto-Hernandez, M.; Santiago-Osorio, E.; Aguiniga-Sanchez, I.; Rivera-Martinez, A.R.; Aguirre-Medina, J.F. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line. Nutrients 2017, 9, 798. [Google Scholar] [CrossRef]
- Grutzmann Arcari, S.; Arena, K.; Kolling, J.; Rocha, P.; Dugo, P.; Mondello, L.; Cacciola, F. Polyphenolic compounds with biological activity in guabiroba fruits (Campomanesia xanthocarpa Berg.) by comprehensive two-dimensional liquid chromatography. Electrophoresis 2020, 41, 1784–1792. [Google Scholar] [CrossRef]
- Alrgei, H.O.S.; Dabić, D.Č.; Natić, M.M.; Rakonjac, V.S.; Milojković-Opsenica, D.; Tešić, Ž.L.; Fotirić Akšić, M.M. Chemical profile of major taste- and health-related compounds of Oblačinska sour cherry. J. Sci. Food Agric. 2015, 96, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Seraglio, S.K.T.; Schulz, M.; Silva, B.; Pasini Deolindo, C.T.; Hoff, R.B.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Chemical Constituents and Antioxidant Potential of Red Guava (Psidium cattleianum Sabine) from Southern Brazil in Different Edible Ripening Stages. Plant Foods Hum. Nutr. 2024, 79, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; et al. Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef]
- Wang, B.; Hui, Y.; Liu, L.; Zhao, A.; Chiou, Y.S.; Zhang, F.; Pan, M.H. Optimized Extraction of Phenolics from Jujube Peel and Their Anti-inflammatory Effects in LPS-Stimulated Murine Macrophages. J. Agric. Food Chem. 2019, 67, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Kinst-Hori, I. Flavonols from saffron flower: Tyrosinase inhibitory activity and inhibition mechanism. J. Agric. Food Chem. 1999, 47, 4121–4125. [Google Scholar] [CrossRef]
- Kamat, S.; Kumari, M.; Sajna, K.V.; Singh, S.K.; Kaushalendra; Kumar, A.; Jayabaskaran, C. Improved Chrysin Production by a Combination of Fermentation Factors and Elicitation from Chaetomium globosum. Microorganisms 2023, 11, 999. [Google Scholar] [CrossRef]
- Ouyang, X.; Li, X.; Lu, W.; Zhao, X.; Chen, D. A Null B-Ring Improves the Antioxidant Levels of Flavonol: A Comparative Study between Galangin and 3,5,7-Trihydroxychromone. Molecules 2018, 23, 3083. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Sun, W.; Chen, R.; Wang, Z.; Cui, X.; Zhang, H.; Qian, S.; Zheng, Q.; Zhou, Y.; Wan, J.; et al. Pharmacokinetics in rat plasma and tissue distribution in mice of galangin determined by UHPLC–MS/MS. Acta Chromatogr. 2019, 31, 120–125. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Wei, N.; Tan, Y. Simultaneous determination of two galangin metabolites from Alpinia Officinarum Hance in rat plasma by UF LC-MS/MS and its application in pharmacokinetics study. PeerJ 2021, 9, e11041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, S.; Li, H.; Zhang, X.; Chen, F.; Li, Y.; Zhang, J.; Tan, Y. Isolation and identification of two galangin metabolites from rat urine and determination of their in vitro hypolipidemic activity. Trop. J. Pharm. Res. 2016, 15, 1235–1241. [Google Scholar] [CrossRef]
- Yao, H.; Lu, H.; Zhang, J.; Xue, X.; Yin, C.; Hu, J.; Zou, R.; Wang, L.; Xu, H. Preparation of Prolonged-Circulating Galangin-Loaded Liposomes and Evaluation of Antitumor Efficacy In Vitro and Pharmacokinetics In Vivo. J. Nanomater. 2019, 2019, 7236895. [Google Scholar] [CrossRef]
- Patil, S.; Ujalambkar, V.; Rathore, A.; Rojatkar, S.; Pokharkar, V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed. Pharmacother. 2019, 112, 108691. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, H.; Nouri, M.; Ghorbani, M.; Bahramifar, A.; Emameh, R.Z.; Taheri, R.A. Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving cytotoxic effects of chemotherapeutic agents. Naunyn Schmiedeberg’s Arch. Pharmacol. 2021, 394, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wu, B.; Guo, X.; Shi, D.; Xia, H.; Xu, H.; Liu, X. Galangin delivered by retinoic acid-modified nanoparticles targeted hepatic stellate cells for the treatment of hepatic fibrosis. RSC Adv. 2023, 13, 10987–11001. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Z.S.; Sulaiman, G.M.; Jabir, M.S.; Mohammed, S.A.A.; Khan, R.A.; Mohammed, H.A.; Al-Subaiyel, A. Galangin/beta-Cyclodextrin Inclusion Complex as a Drug-Delivery System for Improved Solubility and Biocompatibility in Breast Cancer Treatment. Molecules 2022, 27, 4521. [Google Scholar] [CrossRef] [PubMed]
- Bojic, M.; Kondza, M.; Rimac, H.; Benkovic, G.; Males, Z. The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity. Molecules 2019, 24, 3174. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Zhao, F.; Yin, J.T.; Liang, C.J.; Niu, X.L.; Qiu, Z.H.; Zhang, L.T. Two Approaches for Evaluating the Effects of Galangin on the Activities and mRNA Expression of Seven CYP450. Molecules 2019, 24, 1171. [Google Scholar] [CrossRef]
- Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; El Newehy, A.S.; Al-Numair, K.S. Galangin, a dietary flavonoid, improves antioxidant status and reduces hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2017, 22, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E.; Park, P.R.; Na, J.Y.; Jung, I.; Cho, J.H.; Lee, J.S. Anti-neuroinflammatory effects of galangin in LPS-stimulated BV-2 microglia through regulation of IL-1beta production and the NF-kappaB signaling pathways. Mol. Cell. Biochem. 2019, 451, 145–153. [Google Scholar] [CrossRef]
- Rampogu, S.; Gajula, R.G.; Lee, K.W. A comprehensive review on chemotherapeutic potential of galangin. Biomed. Pharmacother. 2021, 141, 111808. [Google Scholar] [CrossRef]
- Lee, J.J.; Ng, S.C.; Hsu, J.Y.; Liu, H.; Chen, C.J.; Huang, C.Y.; Kuo, W.W. Galangin Reverses H2O2-Induced Dermal Fibroblast Senescence via SIRT1-PGC-1alpha/Nrf2 Signaling. Int. J. Mol. Sci. 2022, 23, 1387. [Google Scholar] [CrossRef]
- Thangaiyan, R.; Arjunan, S.; Govindasamy, K.; Khan, H.A.; Alhomida, A.S.; Prasad, N.R. Galangin Attenuates Isoproterenol-Induced Inflammation and Fibrosis in the Cardiac Tissue of Albino Wistar Rats. Front. Pharmacol. 2020, 11, 585163. [Google Scholar] [CrossRef]
- Chaihongsa, N.; Maneesai, P.; Sangartit, W.; Potue, P.; Bunbupha, S.; Pakdeechote, P. Galangin alleviates vascular dysfunction and remodelling through modulation of the TNF-R1, p-NF-kappaB and VCAM-1 pathways in hypertensive rats. Life Sci. 2021, 285, 119965. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, A.Y.; Ye, X.; Guan, R.; Rankin, G.O.; Chen, Y.C. Galangin, a Flavonoid from Lesser Galangal, Induced Apoptosis via p53-Dependent Pathway in Ovarian Cancer Cells. Molecules 2020, 25, 1579. [Google Scholar] [CrossRef] [PubMed]
- Pepeljnjak, S.; Kosalec, I. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2004, 240, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Aladaileh, S.H.; Al-Swailmi, F.K.; Abukhalil, M.H.; Shalayel, M.H. Galangin protects against oxidative damage and attenuates inflammation and apoptosis via modulation of NF-kappaB p65 and caspase-3 signaling molecules in a rat model of diabetic nephropathy. J. Physiol. Pharmacol. 2021, 72, 35–44. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Jiang, L.; Ran, X.; He, D.; Li, Y.; Huang, B.; Wang, W.; Fu, S. Galangin Reduces the Loss of Dopaminergic Neurons in an LPS-Evoked Model of Parkinson’s Disease in Rats. Int. J. Mol. Sci. 2017, 19, 12. [Google Scholar] [CrossRef]
- Wen, S.Y.; Chen, J.Y.; Weng, Y.S.; Aneja, R.; Chen, C.J.; Huang, C.Y.; Kuo, W.W. Galangin suppresses H2O2-induced aging in human dermal fibroblasts. Environ. Toxicol. 2017, 32, 2419–2427. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.J.K.; Ramar, M.K.; Palanisamy, S.; Natesan, S.; Kandasamy, R. Mechanistic investigation of PPARgamma-facilitated anti-asthmatic effects of Galangin (Norizalpinin): Insights from in silico and in vivo analyses. Biochem. Biophys. Res. Commun. 2020, 526, 833–840. [Google Scholar] [CrossRef]
- Gerges, S.H.; Tolba, M.F.; Elsherbiny, D.A.; El-Demerdash, E. The natural flavonoid galangin ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Effect on Toll-like receptor 4, inflammation and oxidative stress. Basic Clin. Pharmacol. Toxicol. 2020, 127, 10–20. [Google Scholar] [CrossRef]
- Song, Y.-D.; Liu, Y.-Y.; Li, D.-J.; Yang, S.-J.; Wang, Q.-F.; Liu, Y.-N.; Li, M.-K.; Mei, C.-P.; Cui, H.-N.; Chen, S.-Y.; et al. Galangin ameliorates severe acute pancreatitis in mice by activating the nuclear factor E2-related factor 2/heme oxygenase 1 pathway. Biomed. Pharmacother. 2021, 144, 112293. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Fu, D.; Wang, Z.; Zhang, X.; Zhu, C. Analgesic and anti-inflammatory effects of galangin: A potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation. Korean J. Pain 2024, 37, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Mei, X.; Ouyang, H.; Lu, B.; Yu, Z.; Wang, Z.; Ji, L. Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of diabetic retinopathy. J. Nutr. Biochem. 2019, 65, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Tsai, M.S.; Hsieh, P.C.; Shih, J.H.; Wang, T.S.; Wang, Y.C.; Lin, T.H.; Wang, S.H. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol. Appl. Pharmacol. 2017, 329, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Tomar, A.; Vasisth, S.; Khan, S.I.; Malik, S.; Nag, T.C.; Arya, D.S.; Bhatia, J. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. Phytomedicine 2017, 34, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yao, H.; Zou, R.; Chen, X.; Xu, H. Galangin Suppresses Renal Inflammation via the Inhibition of NF-kappaB, PI3K/AKT and NLRP3 in Uric Acid Treated NRK-52E Tubular Epithelial Cells. Biomed. Res. Int. 2019, 2019, 3018357. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Huang, S.H.; Xu, M.; Yang, J.; Yang, J.; Liu, M.X.; Wan, C.X.; Liao, H.H.; Fan, D.; Tang, Q.Z. Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J. Cell. Physiol. 2019, 234, 15654–15667. [Google Scholar] [CrossRef] [PubMed]
- Abukhalil, M.H.; Althunibat, O.Y.; Aladaileh, S.H.; Al-Amarat, W.; Obeidat, H.M.; Al-Khawalde, A.A.A.; Hussein, O.E.; Alfwuaires, M.A.; Algefare, A.I.; Alanazi, K.M.; et al. Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed. Pharmacother. 2021, 138, 111410. [Google Scholar] [CrossRef] [PubMed]
- Prasatthong, P.; Meephat, S.; Rattanakanokchai, S.; Khamseekaew, J.; Bunbupha, S.; Prachaney, P.; Maneesai, P.; Pakdeechote, P. Galangin Resolves Cardiometabolic Disorders through Modulation of AdipoR1, COX-2, and NF-kappaB Expression in Rats Fed a High-Fat Diet. Antioxidants 2021, 10, 769. [Google Scholar] [CrossRef]
- Pakdeechote, P.; Poasakate, A.; Prasatthong, P.; Potue, P.; Khamseekaew, J.; Maneesai, P. Mitigation effect of galangin against aortic dysfunction and hypertrophy in rats with metabolic syndrome. Heliyon 2023, 9, e16500. [Google Scholar] [CrossRef]
- Choi, M.J.; Lee, E.J.; Park, J.S.; Kim, S.N.; Park, E.M.; Kim, H.S. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-gamma signaling pathway. Biochem. Pharmacol. 2017, 144, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Lin, C.C.; Hsiao, L.D.; Yang, C.M. Galangin Inhibits Thrombin-Induced MMP-9 Expression in SK-N-SH Cells via Protein Kinase-Dependent NF-kappaB Phosphorylation. Int. J. Mol. Sci. 2018, 19, 4084. [Google Scholar] [CrossRef] [PubMed]
- Kabel, A.M.; Arab, H.H.; Atef, A.; Estfanous, R.S. Omarigliptin/galangin combination mitigates lipopolysaccharide-induced neuroinflammation in rats: Involvement of glucagon-like peptide-1, toll-like receptor-4, apoptosis and Akt/GSK-3beta signaling. Life Sci. 2022, 295, 120396. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Kim, S.H. Inhibitory effect of galangin on atopic dermatitis-like skin lesions. Food Chem. Toxicol. 2014, 68, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; et al. Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int. J. Mol. Med. 2018, 41, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Sangaraju, R.; Alavala, S.; Nalban, N.; Jerald, M.K.; Sistla, R. Galangin ameliorates Imiquimod-Induced psoriasis-like skin inflammation in BALB/c mice via down regulating NF-kappaB and activation of Nrf2 signaling pathways. Int. Immunopharmacol. 2021, 96, 107754. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Zha, W.J.; Ma, Y.; Chen, F.F.; Zhu, W.; Ge, A.; Zeng, X.N.; Huang, M. Galangin attenuates airway remodelling by inhibiting TGF-beta1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Sci. Rep. 2015, 5, 11758. [Google Scholar] [CrossRef] [PubMed]
- Zha, W.J.; Qian, Y.; Shen, Y.; Du, Q.; Chen, F.F.; Wu, Z.Z.; Li, X.; Huang, M. Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-kappaB. Evid. Based Complement. Altern. Med. 2013, 2013, 767689. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.S.; Tao, W.; Miao, Q.B.; Lu, S.C.; Zhu, Y.B. Galangin dampens mice lipopolysaccharide-induced acute lung injury. Inflammation 2014, 37, 1661–1668. [Google Scholar] [CrossRef]
- Hu, K.; Li, Y.; Jin, L.; Chen, Y.; Chen, L.; Zhang, Y.; Huang, M.; Ding, Y.; Yin, H.; Liang, M.; et al. Protective Effect of Galangin Methylation Modification Based on Cell Imaging on Inflammatory Lung Injury and Its Molecular Mechanism. Contrast Media Mol. Imaging 2022, 2022, 7511345. [Google Scholar] [CrossRef]
- Aladaileh, S.H.; Abukhalil, M.H.; Saghir, S.A.M.; Hanieh, H.; Alfwuaires, M.A.; Almaiman, A.A.; Bin-Jumah, M.; Mahmoud, A.M. Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity. Biomolecules 2019, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.A.; Elshafey, M.M. Galangin mitigates iron overload-triggered liver injury: Up-regulation of PPARgamma and Nrf2 signaling, and abrogation of the inflammatory responses. Life Sci. 2021, 283, 119856. [Google Scholar] [CrossRef] [PubMed]
- Skiba, M.A.; Szendzielorz, K.; Mazur, B.; Krol, W. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori. Cent. Eur. J. Immunol. 2016, 41, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Sangaraju, R.; Nalban, N.; Alavala, S.; Rajendran, V.; Jerald, M.K.; Sistla, R. Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflamm. Res. 2019, 68, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Q.; Zhang, Q.; Zhao, X.H.; Shi, J. The In Vitro Anti-Inflammatory Activities of Galangin and Quercetin towards the LPS-Injured Rat Intestinal Epithelial (IEC-6) Cells as Affected by Heat Treatment. Molecules 2021, 26, 7495. [Google Scholar] [CrossRef] [PubMed]
- Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tong, L.; Zhang, J.; Zhang, Y.; Zhang, F. Galangin Alleviates Liver Ischemia-Reperfusion Injury in a Rat Model by Mediating the PI3K/AKT Pathway. Cell. Physiol. Biochem. 2018, 51, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Devadoss, D.; Ramar, M.; Chinnasamy, A. Galangin, a dietary flavonol inhibits tumor initiation during experimental pulmonary tumorigenesis by modulating xenobiotic enzymes and antioxidant status. Arch. Pharm. Res. 2018, 41, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, A.S.; Viswanathan, P.; Anuradha, C.V. Dose-dependent effect of galangin on fructose-mediated insulin resistance and oxidative events in rat kidney. Redox Rep. 2010, 15, 224–232. [Google Scholar] [CrossRef]
- Sivakumar, A.S.; Anuradha, C.V. Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem. Biol. Interact. 2011, 193, 141–148. [Google Scholar] [CrossRef]
- Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; Al-Numair, K.S. Galangin, a natural flavonoid reduces mitochondrial oxidative damage in streptozotocin-induced diabetic rats. Redox Rep. 2018, 23, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Alagawadi, K.R. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm. Biol. 2013, 51, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.S.; Chien, C.C.; Lin, T.H.; Liu, C.C.; Liu, R.H.; Su, H.L.; Chiu, Y.T.; Wang, S.H. Galangin Prevents Acute Hepatorenal Toxicity in Novel Propacetamol-Induced Acetaminophen-Overdosed Mice. J. Med. Food 2015, 18, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Kim, M.A.; Cho, H.J.; Oh, S.K.; Lee, I.K.; Kim, U.K.; Lee, K.Y. Galangin prevents aminoglycoside-induced ototoxicity by decreasing mitochondrial production of reactive oxygen species in mouse cochlear cultures. Toxicol. Lett. 2016, 245, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aal, S.A.; AbdElrahman, M.; Reda, A.M.; Afify, H.; Ragab, G.M.; El-Gazar, A.A.; Ibrahim, S.S.A. Galangin mitigates DOX-induced cognitive impairment in rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-alpha/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022, 92, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Kanashiro, A.; Kabeya, L.M.; Polizello, A.C.; Azzolini, A.E.; Curti, C.; Oliveira, C.A.; Amaral, T.d.A.; Lucisano-Valim, Y.M. Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols. Life Sci. 2007, 81, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Bae, Y.; Kim, S.H. Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 2013, 57, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhu, L.; Ding, J.; Zhuang, X.; Xu, L.; Chen, F. Protective effect of galangin in Concanavalin A-induced hepatitis in mice. Drug Des. Dev. Ther. 2015, 9, 2983–2992. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; He, Q.; Gan, C.; Li, Y.; Zhang, Q.; Yao, Y.; He, F.; Ye, T.; Yin, W. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg. Med. Chem. 2020, 28, 115663. [Google Scholar] [CrossRef]
- Song, H.Y.; Kim, W.S.; Han, J.M.; Seo, H.S.; Lim, S.T.; Byun, E.B. Galangin treatment during dendritic cell differentiation confers tolerogenic properties in response to lipopolysaccharide stimulation. J. Nutr. Biochem. 2021, 87, 108524. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Gao, Y.; Wei, X.; Qu, Y.; Gao, R.; Lv, Y.; Wang, J.; Wang, Y.; Yang, J.; et al. Galangin alleviated myocardial ischemia-reperfusion injury by enhancing autophagic flux and inhibiting inflammation. Eur. J. Pharmacol. 2023, 945, 175621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yan, Y.; Zhang, L.M.; Li, D.X.; Li, L.; Lian, W.W.; Xia, C.Y.; He, J.; Xu, J.K.; Zhang, W.K. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. Phytomed. Int. J. Phytother. Phytopharm. 2023, 120, 155061. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, Y.; Liu, Y.; Yang, Y.; Deng, Y.; Gong, Z.; Chen, J.; Wu, T.; Lin, S.; Cui, L. Antiosteoporotic effects of Alpinia officinarum Hance through stimulation of osteoblasts associated with antioxidant effects. J. Orthop. Transl. 2016, 4, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Pei, W.; Ni, B.; Zhang, R.; You, H. Chondroprotective and antiarthritic effects of galangin in osteoarthritis: An in vitro and in vivo study. Eur. J. Pharmacol. 2021, 906, 174232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, T.; Yang, Q.; Jia, Y.; Sun, P.; Fu, Z.; Han, W.; Qian, Y. Galangin attenuates IL-1β-induced catabolism in mouse chondrocytes and ameliorates murine osteoarthritis. Am. J. Transl. Res. 2021, 13, 8742–8753. [Google Scholar] [PubMed]
- Su, Y.; Shen, L.; Xue, J.; Zou, J.; Wan, D.; Shi, Z. Therapeutic evaluation of galangin on cartilage protection and analgesic activity in a rat model of osteoarthritis. Electron. J. Biotechnol. 2021, 53, 8–13. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, Y.; Hong, W.; Miao, H.; Dai, J.; Sun, Y. Galangin ameliorates osteoarthritis progression by attenuating extracellular matrix degradation in chondrocytes via the activation of PRELP expression. Eur. J. Pharmacol. 2022, 936, 175347. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Wang, S.; Gu, H.; Chen, F.; Wang, Z.; Li, J.; Xie, Z.; Feng, P.; Shen, H.; Wu, Y. Galangin mitigates glucocorticoid-induced osteoporosis by activating autophagy of BMSCs via triggering the PKA/CREB signaling pathway. Acta Biochim. Biophys. Sin. 2023, 55, 1275–1287. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J.; Yang, Z.; Jin, S.; Lu, X.; Qian, Y. Galangin suppresses RANKL-induced osteoclastogenesis via inhibiting MAPK and NF-kappaB signalling pathways. J. Cell. Mol. Med. 2021, 25, 4988–5000. [Google Scholar] [CrossRef]
- Huh, J.E.; Jung, I.T.; Choi, J.; Baek, Y.H.; Lee, J.D.; Park, D.S.; Choi, D.Y. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-kappaB in collagen-induced arthritis and bone marrow-derived macrophages. Eur. J. Pharmacol. 2013, 698, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Gao, Y.; Zhao, H.; Wang, Z.; Wang, J. Galangin protects human rheumatoid arthritis fibroblast-like synoviocytes via suppression of the NF-kappaB/NLRP3 pathway. Mol. Med. Rep. 2018, 18, 3619–3624. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Le, H.; Wan, T.; Weng, M.; Tan, Y. Galangin alleviates rheumatoid arthritis in rats by downregulating the phosphatidylinositol 3-kinase/protein kinase B signaling pathway. Bioengineered 2022, 13, 11192–11201. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.O.; Kabeya, L.M.; Figueiredo-Rinhel, A.S.; Marchi, L.F.; Andrade, M.F.; Piatesi, F.; Paoliello-Paschoalato, A.B.; Azzolini, A.E.; Lucisano-Valim, Y.M. Flavonols modulate the effector functions of healthy individuals’ immune complex-stimulated neutrophils: A therapeutic perspective for rheumatoid arthritis. Int. Immunopharmacol. 2014, 21, 102–111. [Google Scholar] [CrossRef] [PubMed]
Category | Source | References |
---|---|---|
Honeybee Products | Propolis, Bee Pollen | [89,90,91,92] |
Plants (Rhizomes) | Alpinia officinarum, Alpinia calcarata, Alpinia galanga | [93,94,95] |
Plants (Roots) | Coleus vettiveroides | [96] |
Plants (Leaves) | Mexican Oregano (Lippia graveolens), Nothofagus gunnii, Eugenia catharinensis, Castanea sativa, Piper aleyreanum, Japanese Alnus sieboldiana | [97,98,99,100,101,102,103] |
Plants (Buds) | Poplar (Populus nigra) | [104,105,106,107] |
Plants (Other) | Poplar tree gum, Fruits (Sechium hybrid, Sechium edule Perla Negra, Campomanesia xanthocarpa, Prunus cerasus (Oblacinska), Psidium cattleianum), Plantain peel, Jujube peel and seed, Crocus sativus flower petals | [108,109,110,111,112,113,114,115] |
Marine Fungus | Chaetomium globosum | [116] |
Type of Inflammation | GAL’s Mechanism of Action | Model | References |
---|---|---|---|
Renal | Decreased NF-κB p65, iNOS, and TNF-α, IL-1β, IL-6 levels | Rat model of diabetic nephropathy | [136] |
Inhibited ERK and p38 MAPK signaling and NF-ĸB activation and the release of proinflammatory cytokines | Rodent model of nephrotoxicity | [144,145] | |
Suppressed PI3K/AKT, NF-κB, NLRP3 inflammasome, and the production of TNF-α, IL-1β, PGE2, and NO | Rat kidney epithelial cells (NRK-52E) | [146] | |
Cardiovascular | Suppressed TNF-α, IL-6, NF-κB, COX-2, and iNOS gene expression | Albino Wistar rat model of cardiac inflammation and fibrosis | [132] |
Decreased VCAM-1, TNF-R1, TNF-α, and the activity of NF-κB | Rat model of hypertension | [133] | |
Decreased NF-κB p65 activation and inhibited MEK1/2-ERK1/2-GATA4 and PI3K/AKT-GSK3β pathways | Mouse model of aortic banding mediated pressure overload and angiotensin II treated H9c2 cells | [147] | |
Decreased NF-κB p65, iNOS, and TNF-α, IL-1β, IL-6 levels | Rat model of diabetic cardiomyopathy | [148] | |
Positively regulated adiponectin/AdipoR1 signaling pathway and COX-2 and reduced NF-κB activity | Rat model of cardiometabolic syndrome | [149] | |
Downregulated renin-angiotensin system (RAS) and IL-6/TNF-α and upregulated endothelial nitric oxide synthase (eNOS) pathway | Rat model of cardiometabolic syndrome | [150] | |
Neural | Reduced prostaglandin E2 | Pentylenetetrazole (PTZ) mouse epilepsy model | [102] |
Suppressed production of proinflammatory mediators (TNF-α, IL-1β, IL-6, COX-2, iNOS) and inhibited phosphorylation of JNK, p38, AKT, and NF-κB p65 | Rat model of Parkinson’s disease | [137] | |
Suppressed phosphorylation of p38 MAPK, JNK, PI3K/Akt, and NF-κB, activated PPARγ, reduced proinflammatory mediators (TNF-α, IL-6, MMP-3, MMP-9, iNOS), and increased anti-inflammatory mediators (IL-10, HO-1) | Lipopolysaccharide (LPS) injected mouse brains and LPS-stimulated microglial cell line (BV-2 cells) | [151] | |
Suppressed MMP-9 expression and inhibited phosphorylation of multiple signaling molecules including c-Src, Pyk2, PKC isoforms, Akt, mTOR, MAPKs (ERK1/2, JNK1/2, p38), FoxO1, c-Jun, and p65 | Human neuroblastoma cell line (SK-N-SH cells) | [152] | |
Inhibited proinflammatory mediators (iNOS, IL-1β, NO) and suppressed phosphorylation of JNK, p38 MAPK, and NF-κB | LPS-stimulated microglial cell line (BV-2 cells) | [129] | |
Reduced proinflammatory cytokines (IL-8, TNF-α), inhibited TLR4/NLRP3 inflammasome and DPP-4, and increased GLP-1 levels | Rat model of LPS-induced neuroinflammation | [153] | |
Skin | Attenuated NF-κB p65 activation and proinflammatory cytokine release (TNF-α, IL-1β, IL-6) | Human HS68 dermal fibroblasts | [138] |
Inhibited ERK, p38 MAPKs, and NF-κB pathways and suppressed TNF-α/IFN-γ-induced production of CCL17 and proinflammatory cytokines (IL-6, TNF-α, IL-1β) | Mouse model of atopic dermatitis and human keratinocytes (HaCaT cells) | [154] | |
Attenuated NF-κB/p65 activation, inhibited Erk1/2 and JNK activation, suppressed production of NO, iNOS, and IL-6, and downregulated serum IgE levels | Mouse model of atopic dermatitis and RAW264.7 macrophages | [155] | |
Activated Nrf2/HO-1 pathway, inhibited NF-ĸB pathway, downregulated proinflammatory mediators (COX-2, iNOS) and cytokines (IL-17, IL-23, IL-1β), and upregulated anti-inflammatory cytokine IL-10 | BALB/c mice model of induced psoriasis-like skin inflammation | [156] | |
Pulmonary | Inhibited collagen deposition, lowered alpha-smooth muscle actin, disrupted TGF-β1 pathway, and reduced VEGF and MMP-9 | Induced chronic asthma mice model and airway smooth muscle cell culture (ASMC) | [157] |
Activated PPARγ, reduced IL-4, IL-5, IL-13, TNF-α, IL-17, NO, eosinophil peroxidase, and IgE, and increased IFN-γ | Induced allergic asthma mice model | [139] | |
Suppressed activation of NF-κB p65 and TNF-α-mediated translocation, decreased production of inflammatory mediators including monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1, IL-4, IL-5, IL-13, and iNOS | Mouse model of induced airway inflammation | [158] | |
Inhibited NF-κB activation and reduced TNF-α and IL-6 levels | Mouse model of induced acute lung injury | [159] | |
Activated PPARγ and DNMT3A, leading to suppressed ERK, p65, and AP-1, and reduced proinflammatory cytokines (IL-6, TNF-α) | Rat model of induced inflammatory lung injury | [160] | |
Hepatic | Suppressed NF-κB p65, iNOS, and proinflammatory cytokines (TNF-α, IL-1β, IL-6) | Rat model of induced hepatotoxicity | [86] |
Induced Nrf2/HO-1 pathway, elevated PPARγ, inhibited NF-κB activation, and decreased proinflammatory cytokines (TNF-α, IL-1β) | Rat model of induced hepatotoxicity | [161,162] | |
Gastrointestinal | Reduced TLR4 expression, decreased HMGB1, inhibited NF-κB p65 activation, and decreased proinflammatory cytokines (IL-6, TNF-α) | Mouse model of induced ulcerative colitis | [140] |
Downregulated IL-8 secretion | Human gastric adenocarcinoma (AGS) cells | [163] | |
Activated the Nrf2/HO-1 pathway and suppressed the NF-κB pathway and its downstream proinflammatory mediators (COX-2, iNOS, and TNF-α/IL-6) | Mouse model of induced ulcerative colitis | [164] | |
Suppressed TLR4/NF-κB signaling pathway, increased anti-inflammatory cytokines (IL-10, TGF-β), and decreased proinflammatory cytokines (IL-1β, IL-6, TNF-α), and PGE2 | LPS-injured rat intestinal epithelial (IEC-6) cells | [165] | |
Pancreatic | Activated Nrf2/HO-1 pathway and inhibited NF-κB p65 and proinflammatory mediators, such as TNF-α, IL-18, MCP-1, and CXCL10 | Mouse model of pancreatitis | [141] |
Foot | Suppressed the expression of NF-κB, TNF-α, COX-2, and PGE2 | Acute inflammation and pain rat model | [142] |
Retinal | Inhibited the ERK1/2-NF-κB/Egr1 pathway and proinflammatory cytokines (TNFα, IL-1β, and IL-6) | D-glucose-induced microglia BV2 cells and retinal inflammatory injury in diabetic mice model | [143] |
Condition/Cell Type | Mechanism of Action | Key Findings | Reference |
---|---|---|---|
Experimental Autoimmune Encephalomyelitis (EAE) Model | Inhibits mononuclear cell infiltration, reduces T cell proliferation and differentiation (Th1 and Th17 cells), and impairs dendritic cell function | Alleviated autoimmune encephalomyelitis | [87] |
LPS-stimulated RAW 264.7 Macrophage Cells | Downregulates COX-2, reduces NO and proinflammatory cytokines (TNF-α, IL-1β, IL-6), and inhibits IRAK-1, JAK/STAT pathway, MAPK (p38 and ERK), and NF-κB | Reduced inflammation | [94] |
Atopic Dermatitis (AD) Model | Reduces infiltration of inflammatory cells (eosinophils, mast cells), decreases histamine levels, inhibits Th1 and Th2 cytokines, and reduces serum IgE and IgG2a | Reduced inflammation | [154] |
Ovalbumin-(OVA-) Induced Airway Inflammation Model | Reduced total leukocytes (eosinophils, neutrophils, and lymphocytes) and downregulated the production of IgE | Alleviate induced airway hyperresponsiveness and inflammation | [158] |
Neutrophils | Inhibits FcγRs and CRs activation, and reduces myeloperoxidase and horseradish peroxidase activity | Decreased ROS production, reduced tissue damage | [176] |
Human Mast Cells (HMC)-1 | Downregulates JNK, p38, and NF-κB pathways, suppresses histamine release and reduces activation of Caspase-1 | Reduced inflammation | [177] |
Concanavalin A (ConA)-induced Hepatitis (CIH) Model | Suppresses infiltration of inflammatory cells (neutrophils, macrophages, T cells), inhibits T cell activation via STAT1 pathway, and reduces proinflammatory cytokines and chemokines | Reduced inflammation | [178] |
Bleomycin-Induced Pulmonary Fibrosis Model | Reduced the number of CD4+ and CD8+ T cells and dendritic cells | Alleviate pulmonary fibrosis | [179] |
Dendritic Cells (DCs) | Promotes tolerogenic DCs (tolDCs) and stimulates regulatory T cells (Tregs) | Skews DCs towards tolerogenic phenotype and suppresses inflammatory T cell responses | [180] |
Myocardial Ischemia-Reperfusion Injury | Induces autophagic flux via PI3K/AKT/mTOR pathway, increases anti-inflammatory M2 macrophages, and decreases proinflammatory M1 macrophages | Reduced inflammation | [181] |
Model and GAL’s Dose | Effect on Disease Progression | Signaling Pathway and Antioxidant Defense | Reference | |
---|---|---|---|---|
In vivo |
|
| N/D | [184] |
|
| N/D | [185,186] | |
|
|
| [187] | |
|
| N/D | [188] | |
|
|
| [189] | |
In vitro |
|
|
| [185,186,190] |
|
|
| [188] | |
|
|
| [189] |
Model and GAL’s Dose | Effect on Disease Progression | Signaling Pathway and Antioxidant Defense | Reference | |
---|---|---|---|---|
In vivo |
|
| N/D | [175] |
|
|
| [178] | |
In vitro |
|
|
| [175] |
Human neutrophil-10 µM | Suppress O2−, ROS and MPO | N/D | [176] | |
|
|
| [177] | |
|
| N/D | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khawaja, G.; El-Orfali, Y.; Shoujaa, A.; Abou Najem, S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals 2024, 17, 963. https://doi.org/10.3390/ph17070963
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals. 2024; 17(7):963. https://doi.org/10.3390/ph17070963
Chicago/Turabian StyleKhawaja, Ghada, Youmna El-Orfali, Aya Shoujaa, and Sonia Abou Najem. 2024. "Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential" Pharmaceuticals 17, no. 7: 963. https://doi.org/10.3390/ph17070963
APA StyleKhawaja, G., El-Orfali, Y., Shoujaa, A., & Abou Najem, S. (2024). Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals, 17(7), 963. https://doi.org/10.3390/ph17070963