The Mechanisms of Lithium Action: The Old and New Findings
Abstract
:1. Introduction
2. Old Findings
2.1. Uric Acid and Purinergic System
2.1.1. Uric Acid
2.1.2. Purinergic System
2.2. Electrolyte Metabolism and Membrane Transport
2.2.1. Lithium Accumulation in the Organism
2.2.2. Transmembrane Lithium Transport
2.2.3. Sodium–Potassium ATPase
2.3. Second Messenger Systems
2.3.1. Cyclic Nucleotide System
2.3.2. Phosphatidylinositol System
2.4. Glycogen Synthase Kinase-3 (GSK3) Activity
2.5. Brain-Derived Neurotrophic Factor
2.6. Neurotransmitters
2.6.1. Dopamine
2.6.2. Serotonin
3. New Findings
3.1. In Vitro Studies
3.1.1. Peripheral Blood Mononuclear Cells (PBMCs)
3.1.2. Lymphoblastoid Cell Lines (LCLs)
3.1.3. Pluripotent Stem Cells
3.2. Biological Rhythms
3.3. Telomere Functions
3.4. Immunomodulatory Effects
3.5. Antiviral Effects
3.6. Effect on Mitochondria
3.7. Genetic Studies
3.7.1. Candidate Genes
3.7.2. Genome-Wide Association Studies (GWASs)
3.7.3. ConLiGen Project
3.7.4. Epigenetic Findings
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cade, J.F. Lithium Salts in the Treatment of Psychotic Excitement. Med. J. Aust. 1949, 2, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Hartigan, G.P. The Use of Lithium Salts in Affective Disorders. Br. J. Psychiatry 1963, 109, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 Guidelines for the Management of Patients with Bipolar Disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef]
- Bauer, M.; Adli, M.; Ricken, R.; Severus, E.; Pilhatsch, M. Role of Lithium Augmentation in the Management of Major Depressive Disorder. CNS Drugs 2014, 28, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Tondo, L.; Baldessarini, R.J. Prevention of Suicidal Behavior with Lithium Treatment in Patients with Recurrent Mood Disorders. Int. J. Bipolar Disord. 2024, 12, 6. [Google Scholar] [CrossRef]
- Rybakowski, J.K. Antiviral, Immunomodulatory, and Neuroprotective Effect of Lithium. J. Integr. Neurosci. 2022, 21, 68. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The Molecular Physiology of Uric Acid Homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef]
- Garrod, A. The Nature and Treatment of Gout, and Rheumatic Gout; Walton & Maberly: London, UK, 1859. [Google Scholar]
- Lange, C.G. Om Periodiske Depressionstilstande Og Deres Patogenese: Foredrag Holdt i Medicinsk Selskab den 19. Januar 1886, Med en Efterskrift; Jacob Lunds Forlag: Copenhagen, Denmark, 1886. [Google Scholar]
- Anumonye, A.; Reading, H.W.; Knight, F.; Ashcroft, G.W. Uric-Acid Metabolism in Manic-Depressive Illness and during Lithium Therapy. Lancet 1968, 291, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.; Huang, C.C.; Lin, H.C. Increased Risk of Gout among Patients with Bipolar Disorder: A Nationwide Population-Based Study. Psychiatry Res. 2010, 180, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.S.; Ghosal, S.; Mitra, S.; Mallik, N.; Ghosal, M.K. Serum Uric Acid Levels in First Episode Mania, Effect on Clinical Presentation and Treatment Response: Data from a Case Control Study. Asian J. Psychiatry 2018, 35, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Salvadore, G.; Viale, C.I.; Luckenbaugh, D.A.; Zanatto, V.C.; Portela, L.V.; Souza, D.O.; Zarate, C.A.; Machado-Vieira, R. Increased Uric Acid Levels in Drug-Naïve Subjects with Bipolar Disorder during a First Manic Episode. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 819–821. [Google Scholar] [CrossRef]
- Bartoli, F.; Crocamo, C.; Mazza, M.G.; Clerici, M.; Carrà, G. Uric Acid Levels in Subjects with Bipolar Disorder: A Comparative Meta-Analysis. J. Psychiatr. Res. 2016, 81, 133–139. [Google Scholar] [CrossRef]
- Muti, M.; Del Grande, C.; Musetti, L.; Marazziti, D.; Turri, M.; Cirronis, M.; Pergentini, I.; Corsi, M.; Dell’Osso, L.; Corsini, G.U. Serum Uric Acid Levels and Different Phases of Illness in Bipolar I Patients Treated with Lithium. Psychiatry Res. 2015, 225, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. The Past, Present and Future of Purine Nucleotides as Signalling Molecules. Neuropharmacology 1997, 36, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Gubert, C.; Jacintho Moritz, C.E.; Vasconcelos-Moreno, M.P.; Quadros dos Santos, B.T.M.; Sartori, J.; Fijtman, A.; Kauer-Sant’Anna, M.; Kapczinski, F.; Battastini, A.M.O.; Magalhães, P.V.d.S. Peripheral Adenosine Levels in Euthymic Patients with Bipolar Disorder. Psychiatry Res. 2016, 246, 421–426. [Google Scholar] [CrossRef]
- Wilot, L.C.; Bernardi, A.; Frozza, R.L.; Marques, A.L.; Cimarosti, H.; Salbego, C.; Rocha, E.; Battastini, A.M.O. Lithium and Valproate Protect Hippocampal Slices against ATP-Induced Cell Death. Neurochem. Res. 2007, 32, 1539–1546. [Google Scholar] [CrossRef]
- Gubert, C.; Rodrigo Fries, G.; Wollenhaupt de Aguiar, B.; Ribeiro Rosa, A.; Busnello, V.; Ribeiro, L.; Bueno Morrone, F.; Maria Oliveira Battastini, A.; Kapczinski, F. The P2X7 Purinergic Receptor as a Molecular Target in Bipolar Disorder. Neuropsychiatr. Neuropsychol. 2013, 8, 1–7. [Google Scholar]
- Gubert, C.; Andrejew, R.; Jacintho Moritz, C.E.; Dietrich, F.; Vasconcelos-Moreno, M.P.; dos Santos, B.T.M.Q.; Fijtman, A.; Kauer-Sant’Anna, M.; Kapczinski, F.; da Silva Magalhães, P.V.; et al. Bipolar Disorder and 1513A>C P2RX7 Polymorphism Frequency. Neurosci. Lett. 2019, 694, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Gubert, C.; Andrejew, R.; Figueiro, F.; Bergamin, L.; Kapczinski, F.; Magalhães, P.V.d.S.; Battastini, A.M.O. Lithium-Induced Neuroprotective Activity in Neuronal and Microglial Cells: A Purinergic Perspective. Psychiatry Res. 2021, 295, 113562. [Google Scholar] [CrossRef]
- Serry, M. Lithium Retention and Response. Lancet 1969, 1, 1267–1268. [Google Scholar] [CrossRef] [PubMed]
- Serry, M. The Lithium Excretion Test: I. Clinical Application and Interpretation. Aust. N. Z. J. Psychiatry 1969, 3, 390–394. [Google Scholar] [CrossRef]
- Haas, M.; Schooler, J.; Tosteson, D.C. Coupling of Lithium to Sodium Transport in Human Red Cells. Nature 1975, 258, 425–427. [Google Scholar] [CrossRef]
- Rybakowski, J.; Frazer, A.; Mendels, J.; Alan Ramsey, T. Prediction of the Lithium Ratio in Man by Means of an in Vitro Test. Clin. Pharmacol. Ther. 1977, 22, 465–469. [Google Scholar] [CrossRef]
- Rybakowski, J.; Frazer, A.; Mendels, J.; Ramsey, T.A. Erythrocyte Accumulation of the Lithium Ion in Control Subjects and Patients with Primary Affective Disorder. Commun. Psychopharmacol. 1978, 2, 99–104. [Google Scholar] [PubMed]
- Dorus, E.; Pandey, G.N.; Shaughnessy, R.; Davis, J.M. Lithium Transport across the RBC Membrane. A Study of Genetic Factors. Arch. Gen. Psychiatry 1980, 37, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.N.; Dorus, E.; Casper, R.C.; Janicek, P.; Davis, J.M. Lithium Transport in Red Cells of Patients with Affective Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1984, 8, 547–555. [Google Scholar] [CrossRef]
- Coyac, M.; Jalabert, L.; Declèves, X.; Etain, B.; Bellivier, F. Relevance of Red Blood Cell Lithium Concentration in the Management of Lithium-Treated Bipolar and Unipolar Disorders: A Systematic Narrative Review. Int. J. Bipolar Disord. 2024, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Hokin-Neaverson, M.; Jefferson, J.W. Deficient Erythrocyte NaK-ATPase Activity in Different Affective States in Bipolar Affective Disorder and Normalization by Lithium Therapy. Neuropsychobiology 1989, 22, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.; Potok, E.; Strzyzewski, W.; Chłopocka-Woźniak, M. The Effects of Lithium Treatment on Cation Transport Processes in Erythrocytes of Patients with Affective Illnesses. Pol. J. Pharmacol. Pharm. 1983, 35, 209–215. [Google Scholar]
- Rybakowski, J.; Potok, E.; Strzyzewski, W. Decreased Activity of Ouabain-Dependent Sodium and Potassium Fluxes in Erythrocytes during Depression and Mania. Act. Nerv. Super. 1983, 25, 72–74. [Google Scholar]
- Naylor, G.J.; Smith, A.H.W.; Dick, E.G.; Dick, D.A.T.; McHarg, A.M.; Chambers, C.A. Erythrocyte Membrane Cation Carrier in Manic-Depressive Psychosis. Psychol. Med. 1980, 10, 521–525. [Google Scholar] [CrossRef]
- El-Mallakh, R.S.; Wyatt, R.J. The Na,K-ATPase Hypothesis for Bipolar Illness. Biol. Psychiatry 1995, 37, 235–244. [Google Scholar] [CrossRef]
- Mynett-Johnson, L.; Murphy, V.; McCormack, J.; Shields, D.C.; Claffey, E.; Manley, P.; McKeon, P. Evidence for an Allelic Association between Bipolar Disorder and a Na+, K+ Adenosine Triphosphatase Alpha Subunit Gene (ATP1A3). Biol. Psychiatry 1998, 44, 47–51. [Google Scholar] [CrossRef]
- Goldstein, I.; Lerer, E.; Laiba, E.; Mallet, J.; Mujaheed, M.; Laurent, C.; Rosen, H.; Ebstein, R.P.; Lichtstein, D. Association between Sodium- and Potassium-Activated Adenosine Triphosphatase Alpha Isoforms and Bipolar Disorders. Biol. Psychiatry 2009, 65, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Bootman, M.D.; Scott, J. Second Messengers. Cold Spring Harb. Perspect. Biol. 2016, 8, a005926. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, E.W. Studies on the Mechanism of Hormone Action. Science (1979) 1972, 177, 401–408. [Google Scholar] [CrossRef]
- Hepler, J.R.; Gilman, A.G. G Proteins. Trends Biochem. Sci. 1992, 17, 383–387. [Google Scholar] [CrossRef]
- Newman, M.E.; Belmaker, R.H. Effects of Lithium in Vitro and Ex Vivo on Components of the Adenylate Cyclase System in Membranes from the Cerebral Cortex of the Rat. Neuropharmacology 1987, 26, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Colin, S.F.; Chang, H.C.; Mollner, S.; Pfeuffer, T.; Reed, R.R.; Duman, R.S.; Nestler, E.J. Chronic Lithium Regulates the Expression of Adenylate Cyclase and Gi-Protein Alpha Subunit in Rat Cerebral Cortex. Proc. Natl. Acad. Sci. USA 1991, 88, 10634–10637. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.; Carstens, M.; Taljaard, J. Lithium Modulation of Cortical Cyclic Nucleotides: Evidence for the Yin-Yang Hypothesis. Eur. J. Pharmacol. 1990, 175, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Mann, L.; Heldman, E.; Bersudsky, Y.; Vatner, S.F.; Ishikawa, Y.; Almog, O.; Belmaker, R.H.; Agam, G. Inhibition of Specific Adenylyl Cyclase Isoforms by Lithium and Carbamazepine, but Not Valproate, May Be Related to Their Antidepressant Effect. Bipolar Disord. 2009, 11, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Mühleisen, T.W.; Leber, M.; Schulze, T.G.; Strohmaier, J.; Degenhardt, F.; Treutlein, J.; Mattheisen, M.; Forstner, A.J.; Schumacher, J.; Breuer, R.; et al. Genome-Wide Association Study Reveals Two New Risk Loci for Bipolar Disorder. Nat. Commun. 2014, 5, 3339. [Google Scholar] [CrossRef]
- Aghabozorg Afjeh, S.S.; Shams, J.; Hamednia, S.; Boshehri, B.; Olfat, A.; Omrani, M.D. Investigation of the Impact of an ADCY2 Polymorphism as a Predictive Biomarker in Bipolar Disorder, Suicide Tendency and Response to Lithium Carbonate Therapy: The First Report from Iran. Pharmacogenomics 2020, 21, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Hallcher, L.M.; Sherman, W.R. The Effects of Lithium Ion and Other Agents on the Activity of Myo-Inositol-1-Phosphatase from Bovine Brain. J. Biol. Chem. 1980, 255, 10896–10901. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Downes, C.P.; Hanley, M.R. Neural and Developmental Actions of Lithium: A Unifying Hypothesis. Cell 1989, 59, 411–419. [Google Scholar] [CrossRef]
- Ding, D.; Greenberg, M.L. Lithium and Valproate Decrease the Membrane Phosphatidylinositol/Phosphatidylcholine Ratio. Mol. Microbiol. 2003, 47, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Mallinger, A.G.; Dippold, C.S.; Frank, E.; Kupfer, D.J. Platelet Membrane Phospholipids in Euthymic Bipolar Disorder Patients: Are They Affected by Lithium Treatment? Biol. Psychiatry 1999, 45, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Chen, G.; Dippold, C.S.; Wells, K.F.; Frank, E.; Kupfer, D.J.; Manji, H.K.; Mallinger, A.G. Concurrent Measures of Protein Kinase C and Phosphoinositides in Lithium-Treated Bipolar Patients and Healthy Individuals: A Preliminary Study. Psychiatry Res. 2000, 95, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Agam, G.; Bersudsky, Y.; Berry, G.T.; Moechars, D.; Lavi-Avnon, Y.; Belmaker, R.H. Knockout Mice in Understanding the Mechanism of Action of Lithium. Biochem. Soc. Trans. 2009, 37, 1121–1125. [Google Scholar] [CrossRef]
- Baum, A.E.; Akula, N.; Cabanero, M.; Cardona, I.; Corona, W.; Klemens, B.; Schulze, T.G.; Cichon, S.; Rietschel, M.; Nöthen, M.M.; et al. A Genome-Wide Association Study Implicates Diacylglycerol Kinase Eta (DGKH) and Several Other Genes in the Etiology of Bipolar Disorder. Mol. Psychiatry 2008, 13, 197–207. [Google Scholar] [CrossRef]
- Bloch, P.J.; Weller, A.E.; Doyle, G.A.; Ferraro, T.N.; Berrettini, W.H.; Hodge, R.; Lohoff, F.W. Association Analysis between Polymorphisms in the Myo-Inositol Monophosphatase 2 (IMPA2) Gene and Bipolar Disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1515–1519. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef]
- Klein, P.S.; Melton, D.A. A Molecular Mechanism for the Effect of Lithium on Development. Proc. Natl. Acad. Sci. USA 1996, 93, 8455–8459. [Google Scholar] [CrossRef] [PubMed]
- Stambolic, V.; Ruel, L.; Woodgett, J.R. Lithium Inhibits Glycogen Synthase Kinase-3 Activity and Mimics Wingless Signalling in Intact Cells. Curr. Biol. 1996, 6, 1664–1669. [Google Scholar] [CrossRef]
- Chatterjee, D.; Beaulieu, J.M. Inhibition of Glycogen Synthase Kinase 3 by Lithium, a Mechanism in Search of Specificity. Front. Mol. Neurosci. 2022, 15, 1028963. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Kanno, T.; Jin, Y.; Nishizaki, T. Lithium Potentiates GSK-3β Activity by Inhibiting Phosphoinositide 3-Kinase-Mediated Akt Phosphorylation. Biochem. Biophys. Res. Commun. 2014, 450, 746–749. [Google Scholar] [CrossRef]
- Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børte, S.; Bryois, J.; et al. Genome-Wide Association Study of More than 40,000 Bipolar Disorder Cases Provides New Insights into the Underlying Biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef]
- Rybakowski, J.K.; Abramowicz, M.; Szczepankiewicz, A.; Michalak, M.; Hauser, J.; Czekalski, S. The Association of Glycogen Synthase Kinase-3beta (GSK-3β) Gene Polymorphism with Kidney Function in Long-Term Lithium-Treated Bipolar Patients. Int. J. Bipolar Disord. 2013, 1, 8. [Google Scholar] [CrossRef]
- Malhi, G.S.; Das, P.; Outhred, T.; Irwin, L.; Morris, G.; Hamilton, A.; Lynch, K.; Mannie, Z. Understanding Suicide: Focusing on Its Mechanisms through a Lithium Lens. J. Affect. Disord. 2018, 241, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a New Neurotrophic Factor from Mammalian Brain. EMBO J. 1982, 1, 549–553. [Google Scholar] [CrossRef]
- Hashimoto, K. Brain-Derived Neurotrophic Factor as a Biomarker for Mood Disorders: An Historical Overview and Future Directions. Psychiatry Clin. Neurosci. 2010, 64, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chang, H.; Xiao, X. BDNF Val66Met Polymorphism and Bipolar Disorder in European Populations: A Risk Association in Case-Control, Family-Based and GWAS Studies. Neurosci. Biobehav. Rev. 2016, 68, 218–233. [Google Scholar] [CrossRef]
- Fukumoto, T.; Morinobu, S.; Okamoto, Y.; Kagaya, A.; Yamawaki, S. Chronic Lithium Treatment Increases the Expression of Brain-Derived Neurotrophic Factor in the Rat Brain. Psychopharmacology 2001, 158, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Kauer-Sant’Anna, M.; Kapczinski, F.; Andreazza, A.C.; Bond, D.J.; Lam, R.W.; Young, L.T.; Yatham, L.N. Brain-Derived Neurotrophic Factor and Inflammatory Markers in Patients with Early- vs. Late-Stage Bipolar Disorder. Int. J. Neuropsychopharmacol. 2009, 12, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.K.; Suwalska, A. Excellent Lithium Responders Have Normal Cognitive Functions and Plasma BDNF Levels. Int. J. Neuropsychopharmacol. 2010, 13, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.K.; Borkowska, A.; Skibinska, M.; Hauser, J. Illness-Specific Association of Val66met BDNF Polymorphism with Performance on Wisconsin Card Sorting Test in Bipolar Mood Disorder. Mol. Psychiatry 2006, 11, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.K.; Suwalska, A.; Skibinska, M.; Dmitrzak-Weglarz, M.; Leszczynska-Rodziewicz, A.; Hauser, J. Response to Lithium Prophylaxis: Interaction between Serotonin Transporter and BDNF Genes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Schildkraut, J.J. The Catecholamine Hypothesis of Affective Disorders: A Review of Supporting Evidence. Am. J. Psychiatry 1965, 122, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Bunney, W.E. The Current Status of Research in the Catecholamine Theories of Affective Disorders. Psychopharmacol. Commun. 1975, 1, 599–609. [Google Scholar] [PubMed]
- Coppen, A. Defects in Monoamine Metabolism and Their Possible Importance in the Pathogenesis of Depressive Syndromes. Psychiatr. Neurol. Neurochir. 1969, 72, 173–180. [Google Scholar]
- Ashok, A.H.; Marques, T.R.; Jauhar, S.; Nour, M.M.; Goodwin, G.M.; Young, A.H.; Howes, O.D. The Dopamine Hypothesis of Bipolar Affective Disorder: The State of the Art and Implications for Treatment. Mol. Psychiatry 2017, 22, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Gallager, D.W.; Pert, A.; Bunney, W.E. Haloperidol-Induced Presynaptic Dopamine Supersensitivity Is Blocked by Chronic Lithium. Nature 1978, 273, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Can, A.; Frost, D.O.; Cachope, R.; Cheer, J.F.; Gould, T.D. Chronic Lithium Treatment Rectifies Maladaptive Dopamine Release in the Nucleus Accumbens. J. Neurochem. 2016, 139, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M. Converging Evidence for Regulation of Dopamine Neurotransmission by Lithium: An Editorial Highlight for “Chronic Lithium Treatment Rectifies Maladaptive Dopamine Release in the Nucleus Accumbens”. J. Neurochem. 2016, 139, 520–522. [Google Scholar] [CrossRef]
- Mohamadian, M.; Fallah, H.; Ghofrani-Jahromi, Z.; Rahimi-Danesh, M.; Shokouhi Qare Saadlou, M.S.; Vaseghi, S. Mood and Behavior Regulation: Interaction of Lithium and Dopaminergic System. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 1339–1359. [Google Scholar] [CrossRef]
- Muller-Oerlinghausen, B. Lithium Long-Term Treatment--Does It Act via Serotonin? Pharmacopsychiatry 1985, 18, 214–217. [Google Scholar] [CrossRef]
- Price, L.H.; Charney, D.S.; Delgado, P.L.; Heninger, G.R. Lithium and Serotonin Function: Implications for the Serotonin Hypothesis of Depression. Psychopharmacology 1990, 100, 3–12. [Google Scholar] [CrossRef]
- Ananth, M.; Bartlett, E.A.; DeLorenzo, C.; Lin, X.; Kunkel, L.; Vadhan, N.P.; Perlman, G.; Godstrey, M.; Holzmacher, D.; Ogden, R.T.; et al. Prediction of Lithium Treatment Response in Bipolar Depression Using 5-HTT and 5-HT1A PET. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2417–2428. [Google Scholar] [CrossRef]
- Li, X.; Friedman, A.B.; Zhu, W.; Wang, L.; Boswell, S.; May, R.S.; Davis, L.L.; Jope, R.S. Lithium Regulates Glycogen Synthase Kinase-3β in Human Peripheral Blood Mononuclear Cells: Implication in the Treatment of Bipolar Disorder. Biol. Psychiatry 2007, 61, 216–222. [Google Scholar] [CrossRef]
- Wu, T.N.; Lee, C.S.; Wu, B.J.; Sun, H.J.; Chang, C.H.; Chen, C.Y.; Chen, C.K.; Wu, L.S.H.; Cheng, A.T.A. Immunophenotypes Associated with Bipolar Disorder and Lithium Treatment. Sci. Rep. 2019, 9, 17453. [Google Scholar] [CrossRef]
- Ling, P.D.; Huls, H.M. Isolation and Immortalization of Lymphocytes. Curr. Protoc. Mol. Biol. 2005, 70, 28. [Google Scholar] [CrossRef]
- Fries, G.R.; Colpo, G.D.; Monroy-Jaramillo, N.; Zhao, J.; Zhao, Z.; Arnold, J.G.; Bowden, C.L.; Walss-Bass, C. Distinct Lithium-Induced Gene Expression Effects in Lymphoblastoid Cell Lines from Patients with Bipolar Disorder. Eur. Neuropsychopharmacol. 2017, 27, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Squassina, A.; Costa, M.; Congiu, D.; Manchia, M.; Angius, A.; Deiana, V.; Ardau, R.; Chillotti, C.; Severino, G.; Calza, S.; et al. Insulin-like Growth Factor 1 (IGF-1) Expression Is Up-Regulated in Lymphoblastoid Cell Lines of Lithium Responsive Bipolar Disorder Patients. Pharmacol. Res. 2013, 73, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Iyer, S.; Nadella, R.K.; Nayak, R.; Chellappa, A.S.; Ambardar, S.; Sud, R.; Sukumaran, S.K.; Purushottam, M.; Jain, S.; et al. Lithium Response in Bipolar Disorder Correlates with Improved Cell Viability of Patient Derived Cell Lines. Sci. Rep. 2020, 10, 7428. [Google Scholar] [CrossRef]
- Milanesi, E.; Voinsky, I.; Hadar, A.; Srouji, A.; Maj, C.; Shekhtman, T.; Gershovits, M.; Gilad, S.; Chillotti, C.; Squassina, A.; et al. RNA Sequencing of Bipolar Disorder Lymphoblastoid Cell Lines Implicates the Neurotrophic Factor HRP-3 in Lithium’s Clinical Efficacy. World J. Biol. Psychiatry 2019, 20, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, L.; Choudhary, A.; Ofer, P.; Goldberg, G.; Milanesi, E.; Kelsoe, J.R.; Gurwitz, D.; Alda, M.; Gage, F.H.; Stern, S. Immunoglobulin Genes Expressed in Lymphoblastoid Cell Lines Discern and Predict Lithium Response in Bipolar Disorder Patients. Mol. Psychiatry 2023, 28, 4280–4293. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, N.; Burmeister, M.; McInnis, M.G. MicroRNA Expression Changes in Lymphoblastoid Cell Lines in Response to Lithium Treatment. Int. J. Neuropsychopharmacol. 2009, 12, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Courtin, C.; Mombelli, E.; Maj, C.; Mora, C.; Etain, B.; Bellivier, F.; Marie-Claire, C.; Cattaneo, A. Transcriptomics and MiRNomics Data Integration in Lymphoblastoid Cells Highlights the Key Role of Immune-Related Functions in Lithium Treatment Response in Bipolar Disorder. BMC Psychiatry 2022, 22, 665. [Google Scholar] [CrossRef]
- Kuijk, E.W.; Chuva de Sousa Lopes, S.M.; Geijsen, N.; Macklon, N.; Roelen, B.A.J. The Different Shades of Mammalian Pluripotent Stem Cells. Hum. Reprod. Update 2011, 17, 254–271. [Google Scholar] [CrossRef]
- Mertens, J.; Wang, Q.W.; Kim, Y.; Yu, D.X.; Pham, S.; Yang, B.; Zheng, Y.; Diffenderfer, K.E.; Zhang, J.; Soltani, S.; et al. Differential Responses to Lithium in Hyperexcitable Neurons from Patients with Bipolar Disorder. Nature 2015, 527, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Stern, S.; Santos, R.; Marchetto, M.C.; Mendes, A.P.D.; Rouleau, G.A.; Biesmans, S.; Wang, Q.W.; Yao, J.; Charnay, P.; Bang, A.G.; et al. Neurons Derived from Patients with Bipolar Disorder Divide into Intrinsically Different Sub-Populations of Neurons, Predicting the Patients’ Responsiveness to Lithium. Mol. Psychiatry 2018, 23, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Osete, J.R.; Akkouh, I.A.; Ievglevskyi, O.; Vandenberghe, M.; de Assis, D.R.; Ueland, T.; Kondratskaya, E.; Holen, B.; Szabo, A.; Hughes, T.; et al. Transcriptional and Functional Effects of Lithium in Bipolar Disorder IPSC-Derived Cortical Spheroids. Mol. Psychiatry 2023, 28, 3033–3043. [Google Scholar] [CrossRef]
- Khayachi, A.; Abuzgaya, M.; Liu, Y.; Jiao, C.; Dejgaard, K.; Schorova, L.; Kamesh, A.; He, Q.; Cousineau, Y.; Pietrantonio, A.; et al. Molecular Signatures of Hyperexcitability and Lithium Responsiveness in Bipolar Disorder Patient Neurons Provide Alternative Therapeutic Strategies. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mishra, H.K.; Mandyam, A.D.; Trenet, W.; Wei, H.; Nievergelt, C.M.; Maihofer, A.X.; Shilling, P.D.; Alda, M.; Gershon, E.; McInnis, M.G.; et al. Neural Progenitor Cells Derived from Lithium Responsive and Non-Responsive Bipolar Disorder Patients Exhibit Distinct Sensitivity to Cell Death Following Methamphetamine. Neuropharmacology 2023, 226, 109410. [Google Scholar] [CrossRef]
- Santos, R.; Linker, S.B.; Stern, S.; Mendes, A.P.D.; Shokhirev, M.N.; Erikson, G.; Randolph-Moore, L.; Racha, V.; Kim, Y.; Kelsoe, J.R.; et al. Deficient LEF1 Expression Is Associated with Lithium Resistance and Hyperexcitability in Neurons Derived from Bipolar Disorder Patients. Mol. Psychiatry 2021, 26, 2440–2456. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Krishnan, H.; Raghu, P. IMPA1 Dependent Regulation of Phosphatidylinositol 4,5-Bisphosphate and Calcium Signalling by Lithium. Life Sci. Alliance 2023, 7, e202302425. [Google Scholar] [CrossRef]
- Grandin, L.D.; Alloy, L.B.; Abramson, L.Y. The Social Zeitgeber Theory, Circadian Rhythms, and Mood Disorders: Review and Evaluation. Clin. Psychol. Rev. 2006, 26, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Taylor, L.; Wakaf, Z.; Vasudevan, S.R.; Foster, R.G. The Genetics of Circadian Rhythms, Sleep and Health. Hum. Mol. Genet. 2017, 26, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Roybal, K.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S.; et al. Mania-like Behavior Induced by Disruption of CLOCK. Proc. Natl. Acad. Sci. USA 2007, 104, 6406–6411. [Google Scholar] [CrossRef] [PubMed]
- Freund, N.; Haussleiter, I. Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sci. 2023, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; Geoffroy, P.A. Lithium and Bipolar Disorder: Impacts from Molecular to Behavioural Circadian Rhythms. Chronobiol. Int. 2016, 33, 351–373. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Wei, H.; Nievergelt, C.M.; Stautland, A.; Maihofer, A.X.; Welsh, D.K.; Shilling, P.; Alda, M.; Alliey-Rodriguez, N.; Anand, A.; et al. Chronotype and Cellular Circadian Rhythms Predict the Clinical Response to Lithium Maintenance Treatment in Patients with Bipolar Disorder. Neuropsychopharmacology 2019, 44, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Federoff, M.; McCarthy, M.J.; Anand, A.; Berrettini, W.H.; Bertram, H.; Bhattacharjee, A.; Calkin, C.V.; Conroy, C.; Coryell, W.H.; D’Arcangelo, N.; et al. Correction of Depression-Associated Circadian Rhythm Abnormalities Is Associated with Lithium Response in Bipolar Disorder. Bipolar Disord. 2022, 24, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Dopierała, E.; Chrobak, A.; Tereszko, A.; Rybakowski, J. Lithium Influence on Circadian Rhythm Assessed by the Composite Scale of Morningness in Remitted Bipolar Patients. Pharmakother. Psychiatry Neurol. 2017, 33, 9–20. [Google Scholar]
- Mishra, H.K.; Wei, H.; Rohr, K.E.; Ko, I.; Nievergelt, C.M.; Maihofer, A.X.; Shilling, P.D.; Alda, M.; Berrettini, W.H.; Brennand, K.J.; et al. Contributions of Circadian Clock Genes to Cell Survival in Fibroblast Models of Lithium-Responsive Bipolar Disorder. Eur. Neuropsychopharmacol. 2023, 74, 1–14. [Google Scholar] [CrossRef]
- Rybakowski, J.K.; Dmitrzak-Weglarz, M.; Kliwicki, S.; Hauser, J. Polymorphism of Circadian Clock Genes and Prophylactic Lithium Response. Bipolar Disord. 2014, 16, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, J.; Klein, P.S.; Lazar, M.A. Nuclear Receptor Rev-Erbα Is a Critical Lithium-Sensitive Component of the Circadian Clock. Science (1979) 2006, 311, 1002–1005. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.Q.; Beesley, S.; Loudon, A.S.I.; Meng, Q.J. Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork. PLoS ONE 2012, 7, e33292. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Greider, C.W.; Szostak, J.W. Telomeres and Telomerase: The Path from Maize, Tetrahymena and Yeast to Human Cancer and Aging. Nat. Med. 2006, 12, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Coutts, F.; Palmos, A.B.; Duarte, R.R.R.; de Jong, S.; Lewis, C.M.; Dima, D.; Powell, T.R. The Polygenic Nature of Telomere Length and the Anti-Ageing Properties of Lithium. Neuropsychopharmacology 2018, 44, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Martinsson, L.; Wei, Y.; Xu, D.; Melas, P.A.; Mathe, A.A.; Schalling, M.; Lavebratt, C.; Backlund, L. Long-Term Lithium Treatment in Bipolar Disorder Is Associated with Longer Leukocyte Telomeres. Transl. Psychiatry 2013, 3, e261. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, C.; Congiu, D.; Manchia, M.; Caria, P.; Cocco, C.; Dettori, T.; Frau, D.V.; Manca, E.; Meloni, A.; Nieddu, M.; et al. Differences in Telomere Length between Patients with Bipolar Disorder and Controls Are Influenced by Lithium Treatment. Pharmacogenomics 2020, 21, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ferensztajn-Rochowiak, E.; Kurczewska, E.; Rubiś, B.; Lulkiewicz, M.; Hołysz, H.; Rybakowski, F.; Rybakowski, J.K. Decreased Leucocyte Telomere Length in Male Patients with Chronic Bipolar Disorder: Lack of Effect of Long-Term Lithium Treatment. Acta Neuropsychiatr 2021, 33, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Squassina, A.; Pisanu, C.; Congiu, D.; Caria, P.; Frau, D.; Niola, P.; Melis, C.; Baggiani, G.; Lopez, J.P.; Cruceanu, C.; et al. Leukocyte Telomere Length Positively Correlates with Duration of Lithium Treatment in Bipolar Disorder Patients. Eur. Neuropsychopharmacol. 2016, 26, 1241–1247. [Google Scholar] [CrossRef]
- Lundberg, M.; Millischer, V.; Backlund, L.; Martinsson, L.; Stenvinkel, P.; Sellgren, C.M.; Lavebratt, C.; Schalling, M. Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Front. Psychiatry 2020, 11, 586083. [Google Scholar] [CrossRef] [PubMed]
- Mutz, J.; Wong, W.L.E.; Powell, T.R.; Young, A.H.; Dawe, G.S.; Lewis, C.M. The Duration of Lithium Use and Biological Ageing: Telomere Length, Frailty, Metabolomic Age and All-Cause Mortality. Geroscience 2024, 46, 5981–5994. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.B.; Backlund, L.; Wegener, G.; Mathé, A.A.; Lavebratt, C. Telomerase Dysregulation in the Hippocampus of a Rat Model of Depression: Normalization by Lithium. Int. J. Neuropsychopharmacol. 2015, 18, pyv002. [Google Scholar] [CrossRef] [PubMed]
- Ferensztajn-Rochowiak, E.; Rybakowski, J.K. The Effect of Lithium on Hematopoietic, Mesenchymal and Neural Stem Cells. Pharmacol. Rep. 2016, 68, 224–230. [Google Scholar] [CrossRef]
- Radomski, J.L.; Fuyat, H.N.; Nelson, A.A.; Smith, P.K. The toxic effects, excretion and distribution of lithium chloride. J. Pharmacol. Exp. Ther. 1950, 100, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, J.D.; McIntyre, R.S. Bipolar Disorder and Inflammation. Psychiatr. Clin. N. Am. 2016, 39, 125–137. [Google Scholar] [CrossRef]
- Sakrajda, K.; Szczepankiewicz, A. Inflammation-Related Changes in Mood Disorders and the Immunomodulatory Role of Lithium. Int. J. Mol. Sci. 2021, 22, 1532. [Google Scholar] [CrossRef]
- Arumugam, S.; Qin, Y.; Liang, Z.; Han, S.N.; Boodapati, S.L.T.; Li, J.; Lu, Q.; Flavell, R.A.; Mehal, W.Z.; Ouyang, X. GSK3β Mediates the Spatiotemporal Dynamics of NLRP3 Inflammasome Activation. Cell Death Differ. 2022, 29, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Sakrajda, K.; Bilska, K.; Czerski, P.M.; Narożna, B.; Dmitrzak-Węglarz, M.; Heilmann-Heimbach, S.; Brockschmidt, F.F.; Herms, S.; Nöthen, M.M.; Cichon, S.; et al. Abelson Helper Integration Site 1 Haplotypes and Peripheral Blood Expression Associates with Lithium Response and Immunomodulation in Bipolar Patients. Psychopharmacology 2024, 241, 727–738. [Google Scholar] [CrossRef]
- Damri, O.; Agam, G. Lithium, Inflammation and Neuroinflammation with Emphasis on Bipolar Disorder—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 13277. [Google Scholar] [CrossRef] [PubMed]
- Sakrajda, K.; Langwiński, W.; Stachowiak, Z.; Ziarniak, K.; Narożna, B.; Szczepankiewicz, A. Immunomodulatory Effect of Lithium Treatment on in Vitro Model of Neuroinflammation. Neuropharmacology 2025, 265, 110238. [Google Scholar] [CrossRef] [PubMed]
- Lieb, J. Remission of Recurrent Herpes Infection during Therapy with Lithium. N. Engl. J. Med. 1979, 301, 942. [Google Scholar] [CrossRef] [PubMed]
- Skinner, G.R.B.; Hartley, C.; Buchan, A.; Harper, L.; Gallimore, P. The Effect of Lithium Chloride on the Replication of Herpes Simplex Virus. Med. Microbiol. Immunol. 1980, 168, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.K.; Amsterdam, J.D. Lithium Prophylaxis and Recurrent Labial Herpes Infections. Lithium 1991, 2, 43–47. [Google Scholar]
- Itzhaki, R.F. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); Underwhelming Evidence Against. Vaccines 2021, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Walkowiak, J.; Wei, F.; Wang, W.; Beaulieu, J.-M.; Chuang, D.-M. Lithium and Coronaviral Infections. A Scoping Review. F1000Research 2020, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Murru, A.; Manchia, M.; Hajek, T.; Nielsen, R.E.; Rybakowski, J.K.; Sani, G.; Schulze, T.G.; Tondo, L.; Bauer, M. Lithium’s Antiviral Effects: A Potential Drug for CoViD-19 Disease? Int. J. Bipolar Disord. 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Spuch, C.; López-García, M.; Rivera-Baltanás, T.; Cabrera-Alvargonzález, J.J.; Gadh, S.; Rodrigues-Amorim, D.; Álvarez-Estévez, T.; Mora, A.; Iglesias-Martínez-Almeida, M.; Freiría-Martínez, L.; et al. Efficacy and Safety of Lithium Treatment in SARS-CoV-2 Infected Patients. Front. Pharmacol. 2022, 13, 850583. [Google Scholar] [CrossRef]
- De Picker, L.J.; Leboyer, M.; Geddes, J.R.; Morrens, M.; Harrison, P.J.; Taquet, M. Association between Serum Lithium Level and Incidence of COVID-19 Infection. Br. J. Psychiatry 2022, 221, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Madireddy, S.; Madireddy, S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int. J. Mol. Sci. 2022, 23, 1844. [Google Scholar] [CrossRef]
- Lam, X.J.; Xu, B.; Yeo, P.L.; Cheah, P.S.; Ling, K.H. Mitochondria Dysfunction and Bipolar Disorder: From Pathology to Therapy. IBRO Neurosci. Rep. 2023, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Maurer, I.C.; Schippel, P.; Volz, H.P. Lithium-Induced Enhancement of Mitochondrial Oxidative Phosphorylation in Human Brain Tissue. Bipolar Disord. 2009, 11, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Nciri, R.; Desmoulin, F.; Allagui, M.S.; Murat, J.-C.; El Feki, A.; Vincent, C.; Croute, F. Neuroprotective Effects of Chronic Exposure of SH-SY5Y to Low Lithium Concentration Involve Glycolysis Stimulation, Extracellular Pyruvate Accumulation and Resistance to Oxidative Stress. Int. J. Neuropsychopharmacol. 2013, 16, 365–376. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.T.; Streck, E.L.; Zanetti, M.V.; Ferreira, G.K.; Diniz, B.S.; Brunoni, A.R.; Busatto, G.F.; Gattaz, W.F.; Machado-Vieira, R. Lithium Increases Leukocyte Mitochondrial Complex I Activity in Bipolar Disorder during Depressive Episodes. Psychopharmacology 2015, 232, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Stacey, D.; Schubert, K.O.; Clark, S.R.; Amare, A.T.; Milanesi, E.; Maj, C.; Leckband, S.G.; Shekhtman, T.; Kelsoe, J.R.; Gurwitz, D.; et al. A Gene Co-Expression Module Implicating the Mitochondrial Electron Transport Chain Is Associated with Long-Term Response to Lithium Treatment in Bipolar Affective Disorder. Transl. Psychiatry 2018, 8, 183. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Z.; Gao, J.; Shi, W.; Li, L.; Jiang, S.; Hu, H.; Liu, Z.; Xu, D.; Wu, L. The Key Roles of GSK-3β in Regulating Mitochondrial Activity. Cell. Physiol. Biochem. 2017, 44, 1445–1459. [Google Scholar] [CrossRef]
- Grof, P.; Duffy, A.; Cavazzoni, P.; Grof, E.; Garnham, J.; MacDougall, M.; O’Donovan, C.; Alda, M. Is Response to Prophylactic Lithium a Familial Trait? J. Clin. Psychiatry 2002, 63, 942–947. [Google Scholar] [CrossRef]
- Rybakowski, J.K. Genetic Influences on Response to Mood Stabilizers in Bipolar Disorder: Current Status of Knowledge. CNS Drugs 2013, 27, 165–173. [Google Scholar] [CrossRef]
- Szczepankiewicz, A.; Narozna, B.; Rybakowski, J.K.; Kliwicki, S.; Czerski, P.; Dmitrzak-Węglarz, M.; Skibińska, M.; Twarowska-Hauser, J.; Pawlak, J. Genes Involved in Stress Response Influence Lithium Efficacy in Bipolar Patients. Bipolar Disord. 2018, 20, 753–760. [Google Scholar] [CrossRef]
- Senner, F.; Kohshour, M.O.; Abdalla, S.; Papiol, S.; Schulze, T.G. The Genetics of Response to and Side Effects of Lithium Treatment in Bipolar Disorder: Future Research Perspectives. Front. Pharmacol 2021, 12, 638882. [Google Scholar] [CrossRef] [PubMed]
- Perlis, R.H.; Smoller, J.W.; Ferreira, M.A.R.; McQuillin, A.; Bass, N.; Lawrence, J.; Sachs, G.S.; Nimgaonkar, V.; Scolnick, E.M.; Gurling, H.; et al. A Genomewide Association Study of Response to Lithium for Prevention of Recurrence in Bipolar Disorder. Am. J. Psychiatry 2009, 166, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Lee, C.-S.; Lee, M.-T.M.; Ouyang, W.-C.; Chen, C.-C.; Chong, M.-Y.; Wu, J.-Y.; Tan, H.K.-L.; Lee, Y.-C.; Chuo, L.-J.; et al. Variant GADL1 and Response to Lithium Therapy in Bipolar I Disorder. N. Engl. J. Med. 2014, 370, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bergen, S.E.; Di Florio, A.; Karlsson, R.; Charney, A.; Ruderfer, D.M.; Stahl, E.A.; Chambert, K.D.; Moran, J.L.; Gordon-Smith, K.; et al. Genome-Wide Association Study Identifies SESTD1 as a Novel Risk Gene for Lithium-Responsive Bipolar Disorder. Mol. Psychiatry 2016, 21, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.G.; Alda, M.; Adli, M.; Akula, N.; Ardau, R.; Bui, E.T.; Chillotti, C.; Cichon, S.; Czerski, P.; Del Zompo, M.; et al. The International Consortium on Lithium Genetics (ConLiGen): An Initiative by the NIMH and IGSLI to Study the Genetic Basis of Response to Lithium Treatment. Neuropsychobiology 2010, 62, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Heilbronner, U.; Degenhardt, F.; Adli, M.; Akiyama, K.; Akula, N.; Ardau, R.; Arias, B.; Backlund, L.; Banzato, C.E.M.; et al. Genetic Variants Associated with Response to Lithium Treatment in Bipolar Disorder: A Genome-Wide Association Study. Lancet 2016, 387, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; Hsu, Y.H.; Shekhtman, T.; et al. Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes with Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study. JAMA Psychiatry 2018, 75, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Dembińska-Krajewska, D.; Kliwicki, S.; Chłopocka-Woźniak, M.; Rybakowski, J. The Effectiveness of Prophylactic Use of Lithium in Bipolar Disorder and Schizotypal Traits (in Polish). Pharmakother Psychiatr Neurol. 2012, 28, 153–158. [Google Scholar]
- Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Cearns, M.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; Hsu, Y.H.; et al. Association of Polygenic Score for Major Depression with Response to Lithium in Patients with Bipolar Disorder. Mol Psychiatry 2021, 26, 2457–2470. [Google Scholar] [CrossRef]
- Coombes, B.J.; Millischer, V.; Batzler, A.; Larrabee, B.; Hou, L.; Papiol, S.; Heilbronner, U.; Adli, M.; Akiyama, K.; Akula, N.; et al. Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study. Complex Psychiatry 2021, 7, 80–89. [Google Scholar] [CrossRef]
- Herrera-Rivero, M.; Adli, M.; Akiyama, K.; Akula, N.; Amare, A.T.; Ardau, R.; Arias, B.; Aubry, J.M.; Backlund, L.; Bellivier, F.; et al. Exploring the Genetics of Lithium Response in Bipolar Disorders. Int. J. Bipolar Disord. 2024, 12, 20. [Google Scholar] [CrossRef]
- Le Clerc, S.; Lombardi, L.; Baune, B.T.; Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Cearns, M.; Heilbronner, U.; et al. HLA-DRB1 and HLA-DQB1 Genetic Diversity Modulates Response to Lithium in Bipolar Affective Disorders. Sci. Rep. 2021, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Ou, A.H.; Rosenthal, S.B.; Adli, M.; Akiyama, K.; Akula, N.; Alda, M.; Amare, A.T.; Ardau, R.; Arias, B.; Aubry, J.M.; et al. Lithium Response in Bipolar Disorder Is Associated with Focal Adhesion and PI3K-Akt Networks: A Multi-Omics Replication Study. Transl. Psychiatry 2024, 14, 109. [Google Scholar] [CrossRef]
- Amare, A.T.; Thalamuthu, A.; Schubert, K.O.; Fullerton, J.M.; Ahmed, M.; Hartmann, S.; Papiol, S.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; et al. Association of Polygenic Score and the Involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder. Mol. Psychiatry 2023, 28, 5251–5261. [Google Scholar] [CrossRef] [PubMed]
- Marie-Claire, C.; Lejeune, F.X.; Mundwiller, E.; Ulveling, D.; Moszer, I.; Bellivier, F.; Etain, B. A DNA Methylation Signature Discriminates between Excellent and Non-Response to Lithium in Patients with Bipolar Disorder Type 1. Sci. Rep. 2020, 10, 12239. [Google Scholar] [CrossRef]
- Marie-Claire, C.; Courtin, C.; Bellivier, F.; Scott, J.; Etain, B. Methylomic Biomarkers of Lithium Response in Bipolar Disorder: A Proof of Transferability Study. Pharmaceuticals 2022, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla-López, M.; Acosta-Díez, M.; Mitjans, M.; Giménez-Palomo, A.; Saiz, P.A.; Barrot-Feixat, C.; Jiménez, E.; Papiol, S.; Ruiz, V.; Gavín, P.; et al. Lithium Response in Bipolar Disorder: Epigenome-Wide DNA Methylation Signatures and Epigenetic Aging. Eur. Neuropsychopharmacol. 2024, 85, 23–31. [Google Scholar] [CrossRef]
- Brown, K.M.; Tracy, D.K. Lithium: The Pharmacodynamic Actions of the Amazing Ion. Ther. Adv. Psychopharmacol. 2013, 3, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Outhred, T. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding. CNS Drugs 2016, 30, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Current Understanding of Bipolar Disorder: Toward Integration of Biological Basis and Treatment Strategies. Psychiatry Clin. Neurosci. 2019, 73, 526–540. [Google Scholar] [CrossRef] [PubMed]
- Guilliot, S.; Gauthier, S.; Touchon, J.; Soto, M.E. Lithium, a Treatment Option for Alzheimer’s Disease? A Review of Existing Evidence and Discussion on Future Perspectives. J. Alzheimers Dis. 2023, 96, 473–482. [Google Scholar] [CrossRef]
- Adli, M.; Hollinde, D.L.; Stamm, T.; Wiethoff, K.; Tsahuridu, M.; Kirchheiner, J.; Heinz, A.; Bauer, M. Response to Lithium Augmentation in Depression Is Associated with the Glycogen Synthase Kinase 3-Beta-50T/C Single Nucleotide Polymorphism. Biol. Psychiatry 2007, 62, 1295–1302. [Google Scholar] [CrossRef]
- Karati, D.; Meur, S.; Roy, S.; Mukherjee, S.; Debnath, B.; Jha, S.K.; Sarkar, B.K.; Naskar, S.; Ghosh, P. Glycogen Synthase Kinase 3 (GSK3) Inhibition: A Potential Therapeutic Strategy for Alzheimer’s Disease. Naunyn-Schmiedeberg Arch. Pharmacol. 2024, 2024, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Singulani, M.P.; De Paula, V.J.R.; Forlenza, O.V. Mitochondrial Dysfunction in Alzheimer’s Disease: Therapeutic Implications of Lithium. Neurosci. Lett. 2021, 760, 136078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakrajda, K.; Rybakowski, J.K. The Mechanisms of Lithium Action: The Old and New Findings. Pharmaceuticals 2025, 18, 467. https://doi.org/10.3390/ph18040467
Sakrajda K, Rybakowski JK. The Mechanisms of Lithium Action: The Old and New Findings. Pharmaceuticals. 2025; 18(4):467. https://doi.org/10.3390/ph18040467
Chicago/Turabian StyleSakrajda, Kosma, and Janusz K. Rybakowski. 2025. "The Mechanisms of Lithium Action: The Old and New Findings" Pharmaceuticals 18, no. 4: 467. https://doi.org/10.3390/ph18040467
APA StyleSakrajda, K., & Rybakowski, J. K. (2025). The Mechanisms of Lithium Action: The Old and New Findings. Pharmaceuticals, 18(4), 467. https://doi.org/10.3390/ph18040467