Next Issue
Volume 18, May
Previous Issue
Volume 18, March
 
 

Pharmaceuticals, Volume 18, Issue 4 (April 2025) – 162 articles

Cover Story (view full-size image): Lithium is an alkali metal found in mineral form in nature, from which it can be extracted and processed into various lithium salts. Research on lithium’s use as a neuroprotector in Alzheimer’s disease (AD) and other neurodegenerative diseases is grounded in its well-established role as a mood stabilizer. Preclinical studies have shown that lithium, a potent inhibitor of the enzyme glycogen synthase kinase-3β (GSK-3β), can reduce amyloid and tau pathology, attenuate neuronal cell death, and improve cognitive function in animal models of AD. Translational research indicates that lithium may protect against AD by reducing apoptosis, inflammation, and oxidative stress and stimulating neurotrophic factors. This review outlines the timeline from lithium’s discovery to the current understanding of its properties and provides an overview of its main mechanisms of neuroprotective action. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 3945 KiB  
Article
Medicinal Phytocompounds as Potential Inhibitors of p300-HIF1α Interaction: A Structure-Based Screening and Molecular Dynamics Simulation Study
by Muhammad Suleman, Abrar Mohammad Sayaf, Sohail Aftab, Mohammed Alissa, Abdullah Alghamdi, Suad A. Alghamdi, Mohammed A. Alshehri, Kar Kheng Yeoh, Sergio Crovella and Abdullah A. Shaito
Pharmaceuticals 2025, 18(4), 602; https://doi.org/10.3390/ph18040602 - 21 Apr 2025
Abstract
Background: Hypoxia plays a key role in cancer progression, mainly by stabilizing and activating hypoxia-inducible factor-1 (HIF-1). For HIF-1 to function under low oxygen conditions, it must interact with the transcriptional coactivator p300, a critical step for promoting cancer cell survival and adaptation [...] Read more.
Background: Hypoxia plays a key role in cancer progression, mainly by stabilizing and activating hypoxia-inducible factor-1 (HIF-1). For HIF-1 to function under low oxygen conditions, it must interact with the transcriptional coactivator p300, a critical step for promoting cancer cell survival and adaptation in hypoxic environments. Methods: Consequently, we used drug design and molecular simulation techniques to screen phytochemical databases, including traditional Chinese and African medicine sources, for compounds that could disrupt the p300/HIF-1 interaction. Results: In this study, we identified potential compounds with high docking scores such as EA-176920 (−8.719), EA-46881231 (−8.642), SA-31161 (−9.580), SA-5280863 (−8.179), NE-5280362 (−10.287), NE-72276 (−9.017), NA-11210533 (−10.366), NA-11336960 (−7.818), TCM-5281792 (−12.648), and TCM-6441280 (−9.470 kcal/mol) as lead compounds. Furthermore, the compound with the highest docking score from each database (EA-176920, SA-31161, NE-5280362, NA-11210533, and TCM-5281792) was subjected to further analysis. The stable binding affinity of these compounds with p300 was confirmed by Post-simulation binding free energy (−22.0020 kcal/mol, −25.4499 kcal/mol, −32.4530 kcal/mol, −33.9918 kcal/mol, and −57.7755 kcal/mol, respectively) and KD analysis. Moreover, the selected compounds followed the Lipinski rules with favorable ADMET properties like efficient intestinal absorption, high water solubility, and no toxicity. Conclusions: Our findings highlight the potential of natural compounds to target key protein–protein interactions in cancer and lay the groundwork for future in vitro and in vivo studies to explore their therapeutic potential. Specifically, disrupting the p300/HIF-1 interaction could interfere with hypoxia-driven pathways that promote tumor growth, angiogenesis, and metastasis, offering a promising strategy to suppress cancer progression at the molecular level. Full article
Show Figures

Figure 1

32 pages, 1564 KiB  
Systematic Review
Assessing Omega-3 Therapy and Its Cardiovascular Benefits: What About Icosapent Ethyl? A Systematic Review and Meta-Analysis
by Nathália Mendes Machado, Maria Vitória Barroso Oliveira, Karina Quesada, Jesselina Francisco dos Santos Haber, Ricardo José Tofano, Claudio José Rubira, Tereza Lais Menegucci Zutin, Rosa Direito, Eliana de Souza Bastos Mazuqueli Pereira, Camila Marcondes de Oliveira, Ricardo de Alvares Goulart, Vitor Engrácia Valenti, Kátia Portero Sloan, Lance Alan Sloan, Lucas Fornari Laurindo and Sandra Maria Barbalho
Pharmaceuticals 2025, 18(4), 601; https://doi.org/10.3390/ph18040601 - 20 Apr 2025
Abstract
Background: Lipid-lowering therapies are an option for stabilizing lipid levels. Icosapent ethyl (IPE) is a highly purified formulation of eicosapentaenoic acid, which can reduce lipid action, improve plaque stabilization, reduce platelet aggregation, lower TG, and prevent cardiovascular events. IPE is frequently used with [...] Read more.
Background: Lipid-lowering therapies are an option for stabilizing lipid levels. Icosapent ethyl (IPE) is a highly purified formulation of eicosapentaenoic acid, which can reduce lipid action, improve plaque stabilization, reduce platelet aggregation, lower TG, and prevent cardiovascular events. IPE is frequently used with statins to manage elevated TG levels. However, the evidence on IPE as a lipid-lowering agent is limited, and no updated systematic review and meta-analysis have been published considering the recent advancements in the field and newly published studies. Therefore, we aim to fill this gap. Methods: We used the PRISMA guidelines and the PICO (Population, Intervention, Comparison, and Outcome) framework to conduct this review, aiming to answer the question, “Can IPE benefit patients at cardiovascular risk?” GRADE was used to evaluate evidence levels to adhere to the highest criteria. Results: Predominantly, the evaluated population presented TG levels between ≥135 mg/dL and 500 mg/dL and LDL-C levels between >40 mg/dL and ≤100 mg/dL. The included studies showed a reduction in TG and LDL-C and a decrease in cardiovascular events. It means that, according to our systematic review evidence analysis, IPE has been effective in lowering blood lipid levels, including TG, and reducing cardiovascular death and events, such as non-fatal stroke or hospitalization for unstable angina. However, it is worth noting that these results were primarily from patients undergoing statin therapy. According to our meta-analysis, IPE may not be considered a lipid-lowering drug, as limited action associated with its use was evident in the quantitative results. However, caution is necessary, as only two studies were suitable for inclusion due to the differing outcomes in the analyzed samples. Conclusions: Despite the quantitative synthesis, IPE possesses anti-inflammatory, anti-thrombotic, and anti-atherogenic properties, highly related to cardiovascular protection. Based on our included studies, IPE was considered a promising therapy for atherosclerotic cardiovascular disease in conjunction with other lipid-lowering therapies, particularly statins, for patients with extremely high TG levels. The limitations of the reviewed studies may include small sample sizes, varying outcomes, and a small duration of interventions. Future clinical trials with similar outcomes, sample sizes, and intervention durations must be designed, and updated meta-analyses must be published in the following years to fully assess the effects of IPE as a lipid-lowering and cardiovascular protector drug. Full article
(This article belongs to the Special Issue Pharmacotherapy of Dyslipidemias, 2nd Edition)
Show Figures

Figure 1

12 pages, 3114 KiB  
Article
Fluorine-18-Labeled Positron Emission Tomography Probe Targeting Activated p38α: Design, Synthesis, and In Vivo Evaluation in Rodents
by Mikiya Futatsugi, Anna Miyazaki, Yasukazu Kanai, Naoya Kondo and Takashi Temma
Pharmaceuticals 2025, 18(4), 600; https://doi.org/10.3390/ph18040600 - 20 Apr 2025
Abstract
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in [...] Read more.
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in brown adipose tissue (BAT), and it contributes to the suppression of obesity and diabetes. The noninvasive imaging of activated p38α could help elucidate diverse pathological processes, including metabolic and inflammatory conditions. This study aimed to develop and evaluate a novel fluorine-18-labeled positron emission tomography (PET) probe for imaging activated p38α in vivo. Methods: We designed 6-(4-[18F]fluoro-2-fluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)-pyrido[2,3-d]pyrimidin-7(8H)-one ([18F]R1487) by replacing a fluorine atom in R1487, which is a highly selective p38α inhibitor, with 18F. A tributylstannyl precursor was reacted with [18F]KF in the presence of a copper catalyst to synthesize [18F]R1487. Biodistribution studies and PET/computed tomography (CT) were performed on normal mice to evaluate the in vivo potential of [18F]R1487. Results: [18F]R1487 was obtained with a decay-corrected radiochemical conversion of 30.6 ± 5.6% and a decay-corrected radiochemical yield of 6.9 ± 3.6% with a radiochemical purity of >99% after reversed-phase high-performance liquid chromatography purification. The biodistribution study demonstrated high and rapid radioactivity accumulation in BAT (16.3 ± 2.7 %ID/g at 5 min post-injection), with a consistently high BAT-to-blood ratio (>5 over 2 h post-injection). PET/CT imaging successfully visualized BAT with high contrast. Conclusions: These results suggest that [18F]R1487 is a promising PET probe for imaging activated p38α in vivo, which has potential applications for pathophysiological conditions such as inflammation, cancer, and metabolic disorders. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

25 pages, 3505 KiB  
Article
Phenolic Acid Investigation and In Vitro Antioxidant and Antiacetylcholinesterase Potentials of Galeopsis spp. (Lamiaceae) from Romanian Flora
by Roxana Maria Golu, Cornelia Bejenaru, Ludovic Everard Bejenaru, Adina-Elena Segneanu, Andrei Biţă, Antonia Radu, Adriana Cosmina Tîrnă, Maria Viorica Ciocîlteu, George Dan Mogoşanu, Johny Neamţu and Oana Elena Nicolaescu
Pharmaceuticals 2025, 18(4), 599; https://doi.org/10.3390/ph18040599 - 20 Apr 2025
Abstract
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content [...] Read more.
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content (TPC), total flavonoid content (TFC), and phenolic acid profile in the roots, aerial parts, and leaves from three wild-grown Galeopsis spp. (G. bifida Boenn., G. speciosa Mill., and G. tetrahit L.), along with their antioxidant and acetylcholinesterase (AChE) inhibitory potentials. Methods: The ultra-high-performance liquid chromatography/ultraviolet/mass spectrometry (HPLC/UV/MS) method was used for the identification and quantification of key phenolic acids. The spectrophotometric method was applied for the determination of TPC, TFC, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and also the ferric-reducing antioxidant power (FRAP). High-performance thin-layer chromatography (HPTLC) was employed for the assessment of in situ antioxidant (DPPH assay) and AChE inhibitory potentials. Results: Galeopsis spp. exhibit significant polyphenol accumulation. Chlorogenic acid was the most abundant compound, with the highest levels detected in G. tetrahit leaves (22,347.907 ± 1117.395 μg/g), followed by G. tetrahit aerial parts (11,678.509 ± 583.925 μg/g) and G. speciosa leaves (8712.628 ± 435.631 μg/g). G. tetrahit leaves had the highest DDPH radical scavenging activity, with a half-maximal inhibitory concentration (IC50) of 0.458 ± 0.03 mg/mL, demonstrating a markedly stronger antioxidant effect. Leaves consistently showed the strongest DPPH activity across all species, with G. speciosa leaves also displaying a low IC50 value of 0.789 ± 0.03 mg/mL, comparable to G. tetrahit. Aerial parts exhibited an intermediate effect, with G. bifida aerial parts showing an IC50 of 8.102 ± 0.49 mg/mL, while G. tetrahit aerial parts demonstrated stronger activity at 1.511 ± 0.11 mg/mL. AChE inhibition activity increased progressively from the roots to aerial parts to leaves, with leaves consistently exhibiting the strongest inhibitory effects across all Galeopsis spp. G. tetrahit leaves had the strongest inhibition, with an IC50 of 4.002 ± 0.32 mg/mL, followed by G. speciosa leaves (6.92 ± 0.14 mg/mL) and G. bifida leaves (6.97 ± 0.68 mg/mL). Conclusions: Our study provides a comprehensive analysis of the phenolic acid content, in vitro antioxidant activity, and neuroprotective potential of three Galeopsis spp. (G. bifida, G. speciosa, and G. tetrahit) from the southwestern Romanian flora. Full article
Show Figures

Graphical abstract

36 pages, 8994 KiB  
Article
Identification of Microbial-Based Natural Products as Potential CYP51 Inhibitors for Eumycetoma Treatment: Insights from Molecular Docking, MM-GBSA Calculations, ADMET Analysis, and Molecular Dynamics Simulations
by Tilal Elsaman, Mohamed Khalid Alhaj Awadalla, Malik Suliman Mohamed, Eyman Mohamed Eltayib and Magdi Awadalla Mohamed
Pharmaceuticals 2025, 18(4), 598; https://doi.org/10.3390/ph18040598 - 20 Apr 2025
Abstract
Background/Objectives: Eumycetoma, caused by Madurella mycetomatis, is a chronic fungal infection with limited treatment options and increasing drug resistance. CYP51, a key enzyme in ergosterol biosynthesis, is a well-established target for azole antifungals. However, existing azole drugs demonstrate limited efficacy in treating [...] Read more.
Background/Objectives: Eumycetoma, caused by Madurella mycetomatis, is a chronic fungal infection with limited treatment options and increasing drug resistance. CYP51, a key enzyme in ergosterol biosynthesis, is a well-established target for azole antifungals. However, existing azole drugs demonstrate limited efficacy in treating eumycetoma. Microbial-based natural products, with their structural diversity and bioactivity, offer a promising source for novel CYP51 inhibitors. This study aimed to identify potential Madurella mycetomatis CYP51 inhibitors from microbial natural products using molecular docking, MM-GBSA calculations, ADMET analysis, and molecular dynamics (MD) simulations. Methods: Virtual screening was conducted on a library of microbial-based natural products using an in-house homology model of Madurella mycetomatis CYP51, with itraconazole as the reference drug. The top compounds from initial docking were refined through Standard and Extra Precision docking. MM-GBSA calculations assessed binding affinities, and ADMET analysis evaluated drug-like properties. Compounds with favorable properties underwent MD simulations. Results: The computational investigations identified 34 compounds with better docking scores and binding affinity than itraconazole. Of these, 9 compounds interacted with the heme group and key residues in the active site of Madurella mycetomatis CYP51. In silico pharmacokinetic profiling identified 3 compounds as promising candidates, and MD simulations confirmed their potential as CYP51 inhibitors. Conclusions: The study highlights microbial-derived natural products, particularly monacyclinone G, H, and I, as promising candidates for Madurella mycetomatis CYP51 inhibition, with the potential for treating eumycetoma, requiring further experimental validation. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Graphical abstract

27 pages, 3238 KiB  
Article
Synthesis and Neurotropic Activity of New 5-Piperazinopyrazolo[3,4-c]-2,7-naphthyridines and Isoxazolo[5,4-c]-2,7-naphthyridines
by Samvel N. Sirakanyan, Elmira K. Hakobyan, Athina Geronikaki, Domenico Spinelli, Anthi Petrou, Victor G. Kartsev, Hasmik A. Yegoryan, Hasmik V. Jughetsyan, Mariam E. Manukyan, Ruzanna G. Paronikyan, Tatevik A. Araqelyan and Anush A. Hovakimyan
Pharmaceuticals 2025, 18(4), 597; https://doi.org/10.3390/ph18040597 - 19 Apr 2025
Viewed by 49
Abstract
Background/Objectives: Approximately 1% of people worldwide suffer from epilepsy. The development of safer and more effective antiepileptic medications (AEDs) is still urgently needed because all AEDs have some unwanted side effects and roughly 30% of epileptic patients cannot stop having seizures when [...] Read more.
Background/Objectives: Approximately 1% of people worldwide suffer from epilepsy. The development of safer and more effective antiepileptic medications (AEDs) is still urgently needed because all AEDs have some unwanted side effects and roughly 30% of epileptic patients cannot stop having seizures when taking current AEDs. It should be noted that the derivatives of pyrazolo[3,4-b]pyridine are important core structures in many drug substances. The aim of this study is to synthesize new derivatives of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines and 9,11-dimethylpyrimido[1′,2′:1,5]pyrazolo[3,4-c]-2,7-naphthyridines for the evaluation of their neurotropic activity. Methods: The synthesis of the target compounds was performed starting from 1-amino-3-chloro-2,7-naphthyridines and using well-known methods. The structures of all the synthesized compounds were confirmed by spectroscopic data. Compounds were studied for their potential neurotropic activities (anticonvulsant, sedative, anti-anxiety, and antidepressive), as well as side effects, in 450 white mice of both sexes and 50 male Wistar rats. The anticonvulsant effect of the newly synthesized compounds was investigated by using the following tests: pentylenetetrazole, thiosemicarbazide-induced convulsions, and maximal electroshock. The psychotropic properties of the selected compounds were evaluated by using the following tests: the Open Field test, the Elevated Plus Maze (EPM), the Forced Swimming test, and Rotating Rod Test to study muscle relaxation. For the docking studies, AutoDock 4 (version 4.2.6) was used, as well as the structures of the GABAA receptor (PDB ID: 4COF), the SERT transporter (PDB ID: 3F3A), and the 5-HT1A receptor (PDB ID: 3NYA) obtained from the Protein Data Bank. Results: A series of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines (3aj) and 9,11-dimethylpyrimido[1′,2′:1,5]pyrazolo[3,4-c]-2,7-naphthyridines (4aj), as well as new heterocyclic systems, i.e., isoxazolo[5,4-c]-2,7-naphthyridines 6ad, were synthesized and evaluated for their neurotropic activity. The investigation showed that some of these compounds (3a,b,d,fi and 4a,d,f,i) display high anticonvulsant activity, especially in the test of antagonism with pentylenetetrazol, surpassing the well-known antiepileptic drug ethosuximide. Thus, the most active compounds in the pentylenpotetrazole test are 3h, 3i, and 4i; the ED50 of compound 4i is 23.8, and the therapeutic index is more than 33.6, which is the highest among these three active compounds. On the other hand, they simultaneously exhibit psychotropic (anxiolytic, antidepressant, or sedative) or behavioral depressant) effects. The effective compounds do not cause myorelaxation at the tested doses and have high therapeutic indices. Docking on the most active compounds, i.e., 3h, 3i, and 4i, is in agreement with the experimental results. Conclusions: The studies reveled that some of these compounds (3i, 4a, and 4i) display high anticonvulsant and psychotropic activities. The most active compounds contained methyl and diphenylmethyl groups in the piperazine ring. The docking studies identified compounds 3i, 4i, and 4a as the most potent anticonvulsants, showing strong affinity for GABAA, 5-HT1A receptors, and the SERT transporter. Notably, compound 4i formed two hydrogen bonds with Thr176 and Arg180 on GABAA and exhibited a binding energy (−8.81 kcal/mol) comparable to that of diazepam (−8.90 kcal/mol). It also showed the strongest binding to SERT (−7.28 kcal/mol), stabilized by interactions with Gly439, Ile441, and Arg11. Furthermore, 4i displayed the best docking score with 5-HT1A (−9.10 kcal/mol) due to multiple hydrogen bonds and hydrophobic interactions, supporting its potential as a dual-acting agent targeting both SERT and 5-HT1A. Full article
(This article belongs to the Special Issue Pyrazole and Thiazole Derivatives in Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 1974 KiB  
Article
In Vitro Percutaneous Absorption of Permeation-Enhancing Estrogen Formulations
by Guiyun Song, Kendice Ip, Bruce Biundo, Maria Carvalho, A. J. Day, August S. Bassani, Hui Song, Benigno C. Valdez and Daniel Banov
Pharmaceuticals 2025, 18(4), 596; https://doi.org/10.3390/ph18040596 - 19 Apr 2025
Viewed by 53
Abstract
Background/Objectives: Hormone Replacement Therapy (HRT) is commonly prescribed to women in need to restore the deficiency of hormones. Estrogens, in particular estradiol (E2) and estriol (E3), are associated with side effects when given orally. As such, estrogen is topically applied on the [...] Read more.
Background/Objectives: Hormone Replacement Therapy (HRT) is commonly prescribed to women in need to restore the deficiency of hormones. Estrogens, in particular estradiol (E2) and estriol (E3), are associated with side effects when given orally. As such, estrogen is topically applied on the skin for the delivery of the hormone. The objective of this in vitro study is to evaluate the percutaneous absorption of compounded estradiol 0.06% and bi-est E3/E2 0.1%/0.06% in aqueous and anhydrous proprietary permeation-enhancing bases, in comparison with the commercially available estradiol transdermal gel (ESTROGel®). Methods: The In Vitro Permeation Test (IVPT) was used and validated for the objectives of this study. The strength of estradiol/estriol in five test formulations was determined using Ultra Performance Liquid Chromatography (UPLC). Results: ESTROGel exhibited a rapid increase in the rate of skin absorption of estradiol within 0.5 h post-application. This peak was followed by a rapid decline in flux within 4 h, and then a slower decline by 16 h post-application. The initial rapid increase for ESTROGel was much faster than the rate of the four test compounded formulations, which each exhibited a slow and steady increase in the rate of skin absorption of estradiol with a peak flux within 6 h, and a steady absorption within 16 h of application. Conclusions: The compounded bases facilitated a steady percutaneous absorption of estradiol, without quick peaking or declining, which is one of the desired characteristics in HRT. Compounding pharmacists and practitioners may consider estradiol compounded formulations as a viable option for hormone delivery to patients. Full article
(This article belongs to the Topic Personalized Drug Formulations)
Show Figures

Figure 1

12 pages, 622 KiB  
Article
Efficacy and Safety of Isatuximab, Carfilzomib, and Dexamethasone (IsaKd) in Multiple Myeloma Patients at the First Relapse After Autologous Stem Cell Transplantation and Lenalidomide Maintenance: Results from the Multicenter, Real-Life AENEID Study
by Nicola Sgherza, Olga Battisti, Paola Curci, Concetta Conticello, Salvatore Palmieri, Daniele Derudas, Candida Germano, Enrica Antonia Martino, Giuseppe Mele, Roberta Della Pepa, Francesca Fazio, Anna Mele, Bernardo Rossini, Giulia Palazzo, Daniela Roccotelli, Simona Rasola, Maria Teresa Petrucci, Domenico Pastore, Giuseppe Tarantini, Fabrizio Pane, Massimo Gentile, Francesco Di Raimondo, Emanuela Resta and Pellegrino Mustoadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(4), 595; https://doi.org/10.3390/ph18040595 - 19 Apr 2025
Viewed by 57
Abstract
Background: In the randomized, phase-3 IKEMA trial, the triplet isatuximab, carfilzomib, and dexamethasone (IsaKd) demonstrated superior clinical benefit compared to those of carfilzomib and dexamethasone alone in patients with relapsed/refractory multiple myeloma after 1–3 prior treatments. Methods: Our real-world, AENEID study [...] Read more.
Background: In the randomized, phase-3 IKEMA trial, the triplet isatuximab, carfilzomib, and dexamethasone (IsaKd) demonstrated superior clinical benefit compared to those of carfilzomib and dexamethasone alone in patients with relapsed/refractory multiple myeloma after 1–3 prior treatments. Methods: Our real-world, AENEID study aimed to evaluate the efficacy and safety of IsaKd in patients who relapsed after frontline lenalidomide treatment, poorly represented in the IKEMA trial. Specifically, in the present multicenter analysis, we enrolled eighty-two patients who received, between April 2022 and September 2024 and outside of clinical trials, at least one cycle of IsaKd as a second-line treatment at the first relapse after induction therapy, autologous stem cell transplantation (ASCT), and lenalidomide maintenance. Results: After a median follow-up time of 12.9 months (range, 1–77), the overall response rate, at least a very good partial response rate, and median progression-free survival time were 79.3%, 56.1%, and 24.4 months, respectively. This slightly lower performance compared to that in the IKEMA study may be attributed to the well-known poor prognostic impact of lenalidomide refractoriness (len-R), developed by all our patients during maintenance therapy, and to a higher proportion of patients with extramedullary disease present in our series, which was identified as the only factor significantly affecting the PFS in multivariable analysis. The median overall survival was not reached, as in the pivotal trial, while the 1-year survival probability was 85.1%. Regarding the safety profile, our findings were consistent with those of the IKEMA trial, with no new safety signals reported. Conclusions: These real-world data support the use of IsaKd as a valuable option for len-R MM patients relapsing after the first-line therapy, including ASCT and lenalidomide maintenance. Full article
Show Figures

Figure 1

20 pages, 9461 KiB  
Article
Enhanced Topical Delivery of Methotrexate via Transferosome-Loaded Microneedle Array Patch: Formulation, Optimization, and In Vitro–In Vivo Assessment
by Snehal Shinde, Anil Kumar Singh, Vijay R. Chidrawar, Amarjitsing Rajput and Sudarshan Singh
Pharmaceuticals 2025, 18(4), 594; https://doi.org/10.3390/ph18040594 - 18 Apr 2025
Viewed by 142
Abstract
Background: Conventional approaches in treating psoriasis demonstrate several complications. methotrexate (MTX) has been frequently used for its efficacy in managing moderate to severe psoriasis. However, MTX acts as an antagonist in regular dosage, which creates a patient compliance issue with undesirable consequences for [...] Read more.
Background: Conventional approaches in treating psoriasis demonstrate several complications. methotrexate (MTX) has been frequently used for its efficacy in managing moderate to severe psoriasis. However, MTX acts as an antagonist in regular dosage, which creates a patient compliance issue with undesirable consequences for patients, which necessitates development of an innovative approach to enhance skin permeation. Therefore, this study examines the improved topical administration of MTX utilizing a transferosome-loaded microneedle (MNs) array patch for the management of psoriasis. Methods: A design of experiment was used assess the effect of phospholipid content and edge activator type on vesicle size and entrapment efficiency (EE) to fabricate and optimize transferosome-loaded MTX. Furthermore, the MTX was incorporated within MNs and assessed for in vitro-ex vivo-in vivo parameters. Results: The morphology result revealed vesicles mean diameter of 169.4 ± 0.40 nm and EE of 69 ± 0.48 (%). Compared to traditional formulations (MTX patch and gel), the optimized transferosome-loaded dissolving MN array patch showed a substantial increase in diffusion of MTX tested over rat skin. Furthermore, an enhanced therapeutic benefit at the application site through cumulative drug release profiles suggested sustained release of MTX over 24 h. Moreover, in vivo experiments showed that the MN array patch exhibited higher accumulation, compared to conventional formulation tested. In addition, the plasma concentration measurements demonstrated a reduction in systemic exposure to MTX, diminishing the possibility of intricacy while preserving localized therapeutic efficacy. The capability of the MN array patch to lance the epidermal layers was proven by histological assessments. Conclusions: Thus, transferosome-loaded MNs is a viable method of delivering MTX topically with prolonged drug release and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

24 pages, 1454 KiB  
Article
Timbe (Acaciella angustissima) as an Alternative Source of Compounds with Biological Activity: Antidiabetic
by Diana Karina Rangel-Sandoval, Lucia Guerrero-Becerra, Consuelo Lomas-Soria, Amanda Kim Rico-Chávez, José Antonio Cervantes-Chávez, Luis Antonio Reyes-Castro, Angélica Morales-Miranda and Ana Angélica Feregrino-Pérez
Pharmaceuticals 2025, 18(4), 593; https://doi.org/10.3390/ph18040593 - 18 Apr 2025
Viewed by 154
Abstract
Background/Objectives: Timbe (Acaciella angustissima) is a legume recognized for its environmental benefits, such as soil restoration, wildlife nutrition, and the presence of biologically active compounds. This study investigates the antioxidant, pharmacological, and antimicrobial properties of Timbe. Methods: The total phenolic content, [...] Read more.
Background/Objectives: Timbe (Acaciella angustissima) is a legume recognized for its environmental benefits, such as soil restoration, wildlife nutrition, and the presence of biologically active compounds. This study investigates the antioxidant, pharmacological, and antimicrobial properties of Timbe. Methods: The total phenolic content, flavonoids, and condensed tannins from Timbe flowers, seeds, and pods were quantified, and their antioxidant activity was evaluated using the DPPH and ABTS assays. Enzymatic activities were assessed through α-amylase, α-glucosidase, and ACE-I inhibition, and antimicrobial properties were tested against various bacterial strains. Results: The pods and flowers exhibited higher antioxidant capacities compared to seeds, effectively neutralizing free radicals. Flavonoids and condensed tannins showed positive correlations with antioxidant activity and the inhibition of α-amylase and α-glucosidase, suggesting the potential benefits of these metabolites in blood glucose control. Timbe also demonstrated ACE-I inhibition, particularly the flowers. Regarding antimicrobial activity, the pods displayed moderate inhibition against E. coli, K. pneumoniae, and S. aureus. Conclusions: The results indicate that different parts of Timbe (flowers, seeds, and pods) possess significant therapeutic potential for preventing and treating metabolic disorders and bacterial infections. Full article
(This article belongs to the Special Issue Natural Products in Diabetes Mellitus: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1977 KiB  
Article
Computational Screening and Experimental Evaluation of Wheat Proteases for Use in the Enzymatic Therapy of Gluten-Related Disorders
by Lyudmila V. Savvateeva, Olga E. Chepikova, Alena D. Solonkina, Artemiy A. Sakharov, Neonila V. Gorokhovets, Andrey V. Golovin and Andrey A. Zamyatnin, Jr.
Pharmaceuticals 2025, 18(4), 592; https://doi.org/10.3390/ph18040592 - 18 Apr 2025
Viewed by 136
Abstract
Background: Gluten-related disorders, particularly celiac disease, are triggered in susceptible individuals by the toxic effects of gluten, the major storage protein of wheat grains. This toxicity can be reduced by wheat glutenases. Members of the papain-like cysteine protease family, which can act in [...] Read more.
Background: Gluten-related disorders, particularly celiac disease, are triggered in susceptible individuals by the toxic effects of gluten, the major storage protein of wheat grains. This toxicity can be reduced by wheat glutenases. Members of the papain-like cysteine protease family, which can act in the human gastrointestinal tract, are promising candidates for the enzymatic treatment of celiac disease. Methods: Two wheat proteases were selected using AlphaFold2, produced in recombinant forms, and characterized. Their glutenase potentials under acidic or slightly acidic conditions were evaluated and compared with the properties of the previously characterized wheat glutenase Triticain-α. Results: All enzymes tested, Ta-P7, Ta-V6, and Triticain-α, were able to hydrolyze the model substrate (α-gliadin-derived epitope) in the pH range of 3.6–7.5. Nevertheless, Triticain-α performs the most efficient hydrolysis of the peptide substrate under the conditions of the gastrointestinal tract, according to its kinetic characteristics. In the wheat gluten degradation experiment at pH 4.6 and 37 °C, both Ta-P7 and Triticain-α cleaved the mixture almost completely within 5 min. In addition, Triticain-α and Ta-P7 significantly reduced the levels of toxic peptides compared to both intact gluten and gluten treated with pepsin-trypsin digestion as tested by the Ridascreen Gliadin Kit. Conclusions: Novel wheat proteases under investigation possess the expected glutenase activity to varying degrees; however, Triticain-α is a primary candidate for potential use in the enzymatic therapy of gluten-related disorders. Full article
(This article belongs to the Special Issue Plant-Based Bioactive Products for Pharmaceutical Applications)
Show Figures

Graphical abstract

26 pages, 5853 KiB  
Article
Kinin B1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments
by Carolina Batista, João Victor Roza Cruz, Michele Siqueira, João Bosco Pesquero, Joice Stipursky and Fabio de Almeida Mendes
Pharmaceuticals 2025, 18(4), 591; https://doi.org/10.3390/ph18040591 - 18 Apr 2025
Viewed by 149
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical [...] Read more.
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

37 pages, 5283 KiB  
Project Report
Physicochemical Properties and Molecular Insights of Favipiravir and Roflumilast Solid Dispersions for COVID-19 Treatment
by Abdul Rauf and Saad Salman
Pharmaceuticals 2025, 18(4), 590; https://doi.org/10.3390/ph18040590 - 18 Apr 2025
Viewed by 82
Abstract
Background/Objectives: Fixed-dose combinations (FDCs) offer significant advantages for patients and healthcare systems by improving adherence and reducing pill burden. However, developing multi-drug formulations remains challenging due to complexities in drug compatibility, stability, and dissolution behavior. The COVID-19 pandemic has necessitated innovative therapeutic approaches. [...] Read more.
Background/Objectives: Fixed-dose combinations (FDCs) offer significant advantages for patients and healthcare systems by improving adherence and reducing pill burden. However, developing multi-drug formulations remains challenging due to complexities in drug compatibility, stability, and dissolution behavior. The COVID-19 pandemic has necessitated innovative therapeutic approaches. This study aims to develop and evaluate an FDC containing FR (an antiviral drug) and RT (a PDE4 inhibitor) for potential COVID-19 treatment. Methods: The proposed dual-layer FDC was formulated to achieve immediate release of RT using Klucel EXF and controlled release of FR using a combination of Klucel HXF and Compritol ATO888. Critical quality attributes, including drug–excipient compatibility, solid-state properties, tablet uniformity, and dissolution kinetics, were assessed. RT and FR quantification methods were developed and validated per international guidelines. Compatibility studies were conducted by combining excipients in fixed ratios with APIs, followed by stability testing. Results: No degradation or adverse interactions were observed between APIs and excipients. RT exhibited rapid dissolution within 30 min, while FR release was effectively controlled through a gel-forming matrix and lipid barrier. Bulk powder and tablet physical parameters met pharmacopeial standards, and content uniformity between layers was maintained. The formulation demonstrated a stable dissolution profile for both drugs, ensuring consistent drug release. Conclusions: The novel FDC of RT and FR exhibits favorable physicochemical properties, a stable dissolution profile, and potential for improved treatment efficacy in COVID-19 patients. By optimizing drug release mechanisms and ensuring formulation stability, this FDC could serve as a pharmaco-economically viable alternative to existing therapies, enhancing patient compliance and treatment outcomes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

30 pages, 16466 KiB  
Review
Natural Antifungal Alkaloids for Crop Protection: An Overview of the Latest Synthetic Approaches
by Denise Dozio, Francesca Sacchi, Andrea Pinto, Sabrina Dallavalle, Francesca Annunziata and Salvatore Princiotto
Pharmaceuticals 2025, 18(4), 589; https://doi.org/10.3390/ph18040589 - 18 Apr 2025
Viewed by 186
Abstract
Alkaloids are nitrogen-containing compounds naturally occurring in plants, microorganisms, and marine organisms. Potent biological activities have been reported to date, ranging from neuroprotective to antioxidant and anticancer effects. Alkaloids have recently gained attention as potential antifungal agents for crop protection due to their [...] Read more.
Alkaloids are nitrogen-containing compounds naturally occurring in plants, microorganisms, and marine organisms. Potent biological activities have been reported to date, ranging from neuroprotective to antioxidant and anticancer effects. Alkaloids have recently gained attention as potential antifungal agents for crop protection due to their broad spectrum of activity, eco-friendly nature, and ability to overcome some of the issues associated with synthetic fungicides, such as resistance development and environmental contamination. Several efforts have been made to obtain natural and nature-derived alkaloids endowed with significant activity against numerous pathogenic fungal strains. In this review, we collect synthetic strategies developed over the past decade to produce alkaloid fungicides for crop protection. Special emphasis is given to recent advancements in obtaining pure natural compounds and more potent analogs endowed with tailored and optimized properties. Full article
(This article belongs to the Special Issue Natural Products-Assisted Organic Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 294 KiB  
Review
Hormonal Treatment of Endometriosis: A Narrative Review
by Elvin Piriyev, Sven Schiermeier and Thomas Römer
Pharmaceuticals 2025, 18(4), 588; https://doi.org/10.3390/ph18040588 - 17 Apr 2025
Viewed by 110
Abstract
Background: Endometriosis is one of the most common gynecological diseases, affecting up to 10–15% of women of reproductive age. It is a chronic, estrogen-dependent condition that often presents with heterogeneous symptoms, complicating diagnosis and delaying treatment. Methods: This is a narrative [...] Read more.
Background: Endometriosis is one of the most common gynecological diseases, affecting up to 10–15% of women of reproductive age. It is a chronic, estrogen-dependent condition that often presents with heterogeneous symptoms, complicating diagnosis and delaying treatment. Methods: This is a narrative review based on a comprehensive analysis of recent literature regarding hormonal treatment options for endometriosis, including primary and adjuvant therapies. Results: Combined oral contraceptives (COCs) are effective in reducing dysmenorrhea, but show limited benefit for other symptoms and may not prevent disease progression. Progestins, particularly dienogest, demonstrate superior long-term efficacy with favorable side-effect profiles. GnRH agonists and antagonists are reserved for second-line treatment due to side effects and hypoestrogenism, but can significantly reduce endometriotic lesions. The levonorgestrel intrauterine system (LNG-IUS) is especially effective in patients with adenomyosis. Conclusions: Hormonal therapies are central to the management of endometriosis. Progestins are considered the most suitable long-term option. Despite promising results, evidence quality varies, and further studies are needed to establish long-term efficacy, patient-specific outcomes, and direct comparisons between agents. Full article
(This article belongs to the Special Issue Pharmacotherapy of Endometriosis)
23 pages, 3615 KiB  
Article
Lipophilic Extracts of Portulaca oleracea L.: Analysis of Bioactive Fatty Acids Targeting Microbial and Cancer Pathways
by Dejan Stojković, Jelena Živković, Stefani Bolevich, Gokhan Zengin, Mehmet Veysi Cetiz, Sergey Bolevich and Marina Soković
Pharmaceuticals 2025, 18(4), 587; https://doi.org/10.3390/ph18040587 - 17 Apr 2025
Viewed by 69
Abstract
Background/Objectives: Portulaca oleracea L. (purslane) is a widely distributed plant known for its medicinal and nutritional properties. This study aims to evaluate the fatty acid composition and bioactivities of crude lipophilic extracts (chloroform/methanol 2:1) from purslane collected in Serbia and Greece, with [...] Read more.
Background/Objectives: Portulaca oleracea L. (purslane) is a widely distributed plant known for its medicinal and nutritional properties. This study aims to evaluate the fatty acid composition and bioactivities of crude lipophilic extracts (chloroform/methanol 2:1) from purslane collected in Serbia and Greece, with a focus on its antimicrobial and anticancer potential. Methods: Chemical analysis was conducted to determine the fatty acid composition of the extracts. Antibacterial activity was assessed using standard microdilution assays, while antibiofilm assays evaluated the extracts’ ability to inhibit biofilm formation. Cytotoxicity was tested on cancer cell lines (MCF7, HeLa, CaCo2, HepG2) and normal keratinocyte cells (HaCaT). Molecular docking and dynamics simulations were performed to explore the interactions of bioactive fatty acids with microbial and cancer-related proteins. Results: The analysis revealed significant levels of polyunsaturated fatty acids, with linoleic acid as the predominant fatty acid in both samples (31.42% and 34.51%). The Greek extract exhibited stronger antibacterial activity than the Serbian extract, particularly against Aspergillus versicolor, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiofilm assays showed up to 89.54% destruction at MIC levels, with notable reductions in exopolysaccharide and extracellular DNA production, especially for Greek samples. Cytotoxicity testing indicated moderate effects on cancer cell lines (IC50 = 178.17–397.31 µg/mL) while being non-toxic to keratinocytes. Molecular docking identified strong interactions between key fatty acids and microbial and cancer-related proteins. Conclusions: These results highlight purslane’s potential as a source of bioactive compounds, particularly in antimicrobial and anticancer applications. The findings suggest that purslane extracts could be developed for therapeutic purposes targeting microbial infections and cancer. Full article
Show Figures

Graphical abstract

24 pages, 1098 KiB  
Article
Biomarker-Driven Pharmacokinetics and Efficacy of Polymyxin B in Critically Ill Patients with XDR-GN Pneumonia
by Wei Zuo, Qianlin Wang, Longxiang Su, Jiaxin Yu, Hongwei Fan, Qiang Fu, Yun Long and Bo Zhang
Pharmaceuticals 2025, 18(4), 586; https://doi.org/10.3390/ph18040586 - 17 Apr 2025
Viewed by 193
Abstract
Background: Achieving pharmacokinetic/pharmacodynamic (PK/PD) targets is critical for improving treatment success, particularly in critically ill patients. This study investigates the role of inflammatory biomarkers and their influence on the PK/PD characteristics of polymyxin B (PMB) in patients with extensively drug-resistant Gram-negative (XDR-GN) bacterial [...] Read more.
Background: Achieving pharmacokinetic/pharmacodynamic (PK/PD) targets is critical for improving treatment success, particularly in critically ill patients. This study investigates the role of inflammatory biomarkers and their influence on the PK/PD characteristics of polymyxin B (PMB) in patients with extensively drug-resistant Gram-negative (XDR-GN) bacterial nosocomial pneumonia. Methods: Serial blood and/or bronchoalveolar lavage fluid (BALF) samples were collected at specified time points and analyzed for PMB and/or inflammatory biomarkers, including IL-6 and IL-10. Clinical data were also recorded, and their correlations with PK parameters were further analyzed. Results: Among the 27 enrolled patients, 22 (81.5%) achieved treatment success. The pharmacokinetic parameters of PMB included a maximum plasma concentration (Cmax) of 8.3 µg/mL, clearance (CL) of 1.55 L/h, volume of distribution (Vd) of 30.44 L, half-life (t1/2) of 19.56 h, steady-state area under the plasma concentration–time curve from time 0 to 24 h (AUCss,0–24h) of 110.08 h·µg/mL, and a plasma protein-binding ratio of 85.53%. The AUCss,0–24h metric was identified as a robust predictor of clinical efficacy, with an optimal cutoff value of 77.27 h·µg/mL. Notably, 48.15% of patients achieved the target AUCss,0–24h range of 50–100 h·µg/mL, with 76.95% of these patients attaining treatment success. Another 48.15% of patients exceeded this target, and 92.31% of this subgroup achieved treatment success. PMB demonstrated limited pulmonary penetration, with an epithelial lining fluid (ELF)/plasma ratio of 15.69% [16.86, 18.15]. Furthermore, TNF-α and the IL-6/IL-10 ratio were significantly correlated with PMB PK parameters. Conclusions: Our and others’ studies suggest heterogeneity of PMB PK parameters in critically ill patients. The majority of critically ill patients achieved or surpassed the recommended PK/PD targets and attained treatment success through intravenous administration of PMB at a simplified fixed dose. However, PMB did not achieve satisfactory pulmonary concentrations, suggesting that its efficacy may involve alternative mechanisms. The modulation of inflammatory responses may play a pivotal role in the treatment of severe infections, highlighting the potential for biomarker-guided therapeutic strategies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

21 pages, 605 KiB  
Review
Synergizing Success: The Role of Anlotinib Combinations in Advanced Non-Small Cell Lung Cancer Treatment
by Helal F. Hetta, Hashim M. Aljohani, Nizar Sirag, Hassabelrasoul Elfadil, Ayman Salama, Rand Al-Twalhy, Danah Alanazi, Manal D. Al-johani, Jumanah H. Albalawi, Rinad M. Al-Otaibi, Raghad A. Alsharif and Reem Sayad
Pharmaceuticals 2025, 18(4), 585; https://doi.org/10.3390/ph18040585 - 16 Apr 2025
Viewed by 230
Abstract
Anlotinib, a novel receptor tyrosine kinase inhibitor that is taken orally, targets several RTKs and is authorized as a third-line treatment for patients with advanced non-small cell lung cancer (NSCLC). Anlotinib is also used in combination with immunotherapy or chemotherapy for advanced NSCLC. [...] Read more.
Anlotinib, a novel receptor tyrosine kinase inhibitor that is taken orally, targets several RTKs and is authorized as a third-line treatment for patients with advanced non-small cell lung cancer (NSCLC). Anlotinib is also used in combination with immunotherapy or chemotherapy for advanced NSCLC. We aimed to explore the efficacy and safety of anlotinib-based regimens in NSCLC treatment, focusing on combination therapies. We also addressed challenges that hinder oncologists from using it, such as toxicity and resistance mechanisms. A systematic approach involves searching the National Institute of Health PubMed, Scopus, MedLine, and Web of Science databases up to April 2024. Relevant studies were identified and analyzed for their methodologies, outcomes, and patient characteristics. Findings revealed that numerous effective combination regimens, such as anlotinib with platinum-based chemotherapy and anlotinib combined with PD-1 blockades, have shown positive results in terms of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). On the other hand, NSCLC treatment faces hurdles due to drug resistance and its toxicity profile. These challenges underscore the need for continued research and optimization of treatment strategies. Full article
(This article belongs to the Special Issue Cancer Chemoradiotherapy)
Show Figures

Figure 1

14 pages, 12806 KiB  
Article
Evaluation of Chitosan-Based Axiostat as Hemostatic Dressing for Endovascular Procedures in Patients with Leriche Syndrome on Anticoagulant Therapy
by Paolo Perri, Federica Curcio, Michele De Luca, Paolo Piro, Sonia Trombino and Roberta Cassano
Pharmaceuticals 2025, 18(4), 584; https://doi.org/10.3390/ph18040584 - 16 Apr 2025
Viewed by 122
Abstract
Background/Objectives: The safe completion of a non-invasive procedure is crucial to the success of an endovascular approach. Chitosan, a natural polysaccharide derived from chitin, is an ideal material for the study and application of medical devices in post-operative wound management. Methods: The present [...] Read more.
Background/Objectives: The safe completion of a non-invasive procedure is crucial to the success of an endovascular approach. Chitosan, a natural polysaccharide derived from chitin, is an ideal material for the study and application of medical devices in post-operative wound management. Methods: The present work is based on a retrospective study conducted on a sample of patients treated with Axiostat (a sterile, single-use, non-absorbable dressing), composed of 100% chitosan and designed to instantly stop bleeding through a mucus adhesion mechanism for the treatment of conditions such as Leriche’s syndrome. The objective was to evaluate the efficacy and safety of the hemostatic Axiostat dressing in patients undergoing anticoagulant and/or antiplatelet therapy in whom endovascular procedures using the axillary artery as an access site are performed to treat Leriche syndrome. Results: The obtained results showed that Axiostat is safe and effective in promoting hemostasis at the axillary vascular access site even when prolonged hemostasis was required in patients on antiplatelet and anticoagulant therapy. The mean time to hemostasis was 5.75 min in all types of patients considered. Full article
Show Figures

Figure 1

20 pages, 2359 KiB  
Article
Prognostic Factors and Talaporfin Sodium Concentration in Photodynamic Therapy for Recurrent Grade 4 Glioma
by Mikoto Onodera, Shuji Kitahara, Yasuto Sato, Takakazu Kawamata, Yoshihiro Muragaki and Ken Masamune
Pharmaceuticals 2025, 18(4), 583; https://doi.org/10.3390/ph18040583 - 16 Apr 2025
Viewed by 136
Abstract
Background: Although extensive resection improves the prognosis of gliomas, it risks impairing critical brain functions. Photodynamic therapy (PDT) utilizing talaporfin sodium (TS) targets tumor cells upon light activation. Despite its approval in Japan, TS application remains restricted, and factors influencing its efficacy are [...] Read more.
Background: Although extensive resection improves the prognosis of gliomas, it risks impairing critical brain functions. Photodynamic therapy (PDT) utilizing talaporfin sodium (TS) targets tumor cells upon light activation. Despite its approval in Japan, TS application remains restricted, and factors influencing its efficacy are unclear. We aimed to identify TS efficacy determinants to optimize treatment outcomes. Methods: Data from 171 patients with grade 4 glioma who underwent surgery and PDT at Tokyo Women’s Medical University Hospital between January 2017 and March 2024 were retrospectively analyzed. Clinical variables evaluated included age, sex, genotype, Karnofsky Performance Status (KPS), serum albumin (Alb) levels, MIB-1 expression levels, and medication history. TS concentrations in tumor tissues were quantitatively assessed in 82 patients (41 primary, 41 recurrent). Survival outcomes were analyzed. RNA-seq was performed on the three highest and three lowest TS concentration samples with significant TS concentration variations to investigate corresponding gene expression changes. Results: Multivariate analysis identified KPS (hazard ratio [95% confidence interval]: 0.96 [0.93–0.99], p = 0.01) and Alb (3.68 [1.05–13.76], p = 0.047) as independent prognostic factors. In recurrent cases, higher TS concentrations were significantly associated with improved survival (p = 0.0454). RNA-seq analysis indicated decreased expression of ACTB and PDPN genes in samples with lower TS concentrations, suggesting potential resistance mechanisms. Conclusions: TS concentration is a critical determinant of PDT efficacy, especially in recurrent glioma, highlighting its prognostic significance. Alb may affect treatment outcomes by mediating TS binding. RNA-seq findings imply that low TS concentrations may suppress immune and stress response-related genes, potentially diminishing PDT sensitivity. Full article
(This article belongs to the Special Issue New Platforms for Cancer Treatment—Emerging Advances)
Show Figures

Graphical abstract

11 pages, 1225 KiB  
Systematic Review
Exploring the Pharmacokinetics of Drugs in Disabled Saudi Patients: A Systematic Review
by Faleh Alqahtani, Saeed A. Al Awadh and Muhammad Fawad Rasool
Pharmaceuticals 2025, 18(4), 582; https://doi.org/10.3390/ph18040582 - 16 Apr 2025
Viewed by 177
Abstract
Background/Objectives: Disability is a term that involves mental, intellectual, or sensory impairment resulting in the loss of one’s ability to walk or perform the activities necessary to live in a society. This study aims to collect all the data regarding the absorption, [...] Read more.
Background/Objectives: Disability is a term that involves mental, intellectual, or sensory impairment resulting in the loss of one’s ability to walk or perform the activities necessary to live in a society. This study aims to collect all the data regarding the absorption, distribution, and disposition of drugs in disabled Saudi patients, i.e., patients suffering from epilepsy, cancer, cardiovascular diseases, etc., and then compare these results with data reported in other ethnicities. Methods: An exhaustive online search used the key terms in Google Scholar, PubMed, Cochrane Library, and Science Direct to extract all articles that met the eligibility criteria. All research studies containing pharmacokinetic (PK) parameters (area under the curve from 0 to infinity (AUC0–∞), maximal plasma concentration (Cmax), clearance (CL), volume of distribution, time to reach maximum plasma concentration, and half-life) were included in this review. Results: In pediatric epileptic patients, carbamazepine showed a notable decrease in Cmax with increasing age, which may be due to ontogenetic changes in its disposition. The AUC0–∞ of busulphan in adult hematopoietic stem cell transplantation patients was recorded as 4392.5 ± 1354.65 μg·h/mL, with high inter-individual variability. Moreover, the CL of vancomycin was reported to be 25% higher among cancer patients in comparison to non-cancer subjects. Conclusions: The complications in disabled patients due to alterations in cytochrome P450 enzymes, pathophysiology, genetics, and ethnicity emphasize the significance of patient-centered drug dosing. These findings may aid healthcare physicians in refining therapeutic care in this population. Full article
(This article belongs to the Special Issue Population Pharmacokinetics and Pharmacogenetics)
Show Figures

Graphical abstract

16 pages, 1742 KiB  
Article
Binding Affinity of Synthetic Cannabinoids to Human Serum Albumin: Site Characterization and Interaction Insights
by Rita M. G. Santos, Rita Lima, Sara Cravo, Pedro Alexandrino Fernandes, Fernando Remião and Carla Fernandes
Pharmaceuticals 2025, 18(4), 581; https://doi.org/10.3390/ph18040581 - 16 Apr 2025
Viewed by 175
Abstract
Background/Objectives: High-performance affinity chromatography (HPAC) was used to investigate the binding affinity of a series of synthetic cannabinoids, a widely abused class of new psychoactive substances, to human serum albumin (HSA) and obtain insights into the binding sites. To better understand the recognition [...] Read more.
Background/Objectives: High-performance affinity chromatography (HPAC) was used to investigate the binding affinity of a series of synthetic cannabinoids, a widely abused class of new psychoactive substances, to human serum albumin (HSA) and obtain insights into the binding sites. To better understand the recognition mechanisms, molecular docking studies were conducted. Methods: Binding affinity was assessed through zonal elution approach Additionally, displacement chromatography with site-specific probes provided insights into the HSA binding sites of five synthetic cannabinoids. Results: That these drugs exhibit extensive binding to HSA, with values ranging from 98.7% to 99.9%. Competition for site I was observed between warfarin and four synthetic cannabinoids (5F-AMB, AB-PINACA, AMB-FUBINACA, and AB-CHMINACA). Furthermore, AB-CHMINACA also competed with L-tryptophan for site II. The binding affinity of all synthetic cannabinoids increased in the presence of (S)-ibuprofen. Molecular docking studies supported the experimental findings, reinforcing the insights gained. Conclusions: The key novelty of this study lies in analyzing, for the first time, the binding affinity of synthetic cannabinoids to HSA through HPAC and molecular docking. These results may improve our understanding of their toxicokinetic behavior and help in predicting possible competitive interactions that could influence HSA binding and, consequently, their activity and toxicity. This study is the first to describe the binding affinity of synthetic cannabinoids to HSA, elucidate their recognition mechanisms, identify binding sites, and characterize their interactions with the protein. Full article
Show Figures

Graphical abstract

25 pages, 7873 KiB  
Review
Recent Developments of 1,3,4-Thiadiazole Compounds as Anticancer Agents
by Serena Indelicato, David Bongiorno, Manuela Mauro and Stella Cascioferro
Pharmaceuticals 2025, 18(4), 580; https://doi.org/10.3390/ph18040580 - 16 Apr 2025
Viewed by 189
Abstract
The World Health Organization has recently underlined the increasing global burden of cancer, with a particularly alarming impact on underserved populations. In recent years, 1,3,4-thiadiazole has emerged as a versatile pharmacophore to obtain bioactive compounds. The pharmacological properties of this ring are primarily [...] Read more.
The World Health Organization has recently underlined the increasing global burden of cancer, with a particularly alarming impact on underserved populations. In recent years, 1,3,4-thiadiazole has emerged as a versatile pharmacophore to obtain bioactive compounds. The pharmacological properties of this ring are primarily attributed to its role as a bioisostere of pyrimidine, the core structure of three nucleic bases. This structural feature endows 1,3,4-thiadiazole derivatives with the ability to interfere with DNA replication processes. Additionally, the mesoionic behavior of this heterocycle gives it important properties, such as the ability to cross biological membranes and interact with target proteins. Noteworthy, in analogy to the other sulfur heterocycles, the presence of C-S σ* orbitals, conferring small regions of low electron density on the sulfur atom, makes interaction with the target easier. This review focuses on the most promising anticancer agents with 1,3,4-thiadiazole structure reported in the past five years, providing information that may be useful to medicinal chemists who intend to develop new anticancer derivatives. Full article
Show Figures

Graphical abstract

18 pages, 3144 KiB  
Article
Comparative Forced Degradation Study of Anticomplement C5 Biosimilar and Originator Monoclonal Antibodies
by Merve Celik Yamaci, Ceren Pamukcu, Yigit Erdemgil, Ahmet Emin Atik, Zeynep Zulfiye Yildirim Keles and Ozge Can
Pharmaceuticals 2025, 18(4), 579; https://doi.org/10.3390/ph18040579 - 16 Apr 2025
Viewed by 168
Abstract
Background/Objectives: The stress testing of biotherapeutic products is a critical component of drug development, enabling the assessment of stability, biosimilarity, and degradation pathways. Subjecting biosimilar monoclonal antibodies to controlled stress conditions yields essential insights into their structural and functional integrity, informing formulation [...] Read more.
Background/Objectives: The stress testing of biotherapeutic products is a critical component of drug development, enabling the assessment of stability, biosimilarity, and degradation pathways. Subjecting biosimilar monoclonal antibodies to controlled stress conditions yields essential insights into their structural and functional integrity, informing formulation optimization and mitigating risks before clinical trials. In this study, biosimilar products were comprehensively characterized and compared with originator products under forced degradation. The aim was to expose the products to different stress conditions such as oxidative, pH, thermal, freeze/thaw, and agitation. The products were then tested at defined time points using validated analytical methods. Methods: This study employed size-exclusion chromatography to detect aggregated forms. Isoelectric focusing characterized protein charge variants (e.g., acidic/basic isoforms) from post-translational modifications, while capillary electrophoresis quantified product-related impurities (aggregates and fragments). In addition, a complement assay was used to determine the efficacy and potency under specific stress conditions. Results: Our findings showed that biosimilar and originator products exhibited similar degradation profiles. The biosimilar monoclonal antibody was found to be analytically similar to the originator product in terms of critical parameters related to efficacy and safety under various stress conditions such as aggregation profile, biological activity, and charge variant distribution. Conclusions: Forced degradation studies facilitated the comprehensive and well-validated characterization of the structure and biological activity of biosimilar monoclonal antibody products. Full article
(This article belongs to the Special Issue Biosimilars Development Strategies)
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Phytochemical Profiling and Biological Evaluation of Dianthus sylvestris subsp. aristidis: A Chromatographic and Mass Spectrometry Approach to Uncovering Bioactive Metabolites for Dermatological and Metabolic Disorder Management
by Amina Bouzana, Zohra Chekroud, Imène Becheker, Fatima Kamah, Nora Sakhraoui, Chawki Bensouici, Fehmi Boufahja, Sulaiman A. Alsalamah, Mohammed I. Alghonaim, Stefania Garzoli and Hamdi Bendif
Pharmaceuticals 2025, 18(4), 578; https://doi.org/10.3390/ph18040578 - 16 Apr 2025
Viewed by 190
Abstract
Background/Objectives: This study provides the first comprehensive phytochemical composition and biological evaluation of Dianthus sylvestris subsp. aristidis (Batt.) Greuter & Burdet, a plant endemic to Algeria with unexplored pharmacological potential. The objective is to identify novel bioactive metabolites in the plant’s extracts [...] Read more.
Background/Objectives: This study provides the first comprehensive phytochemical composition and biological evaluation of Dianthus sylvestris subsp. aristidis (Batt.) Greuter & Burdet, a plant endemic to Algeria with unexplored pharmacological potential. The objective is to identify novel bioactive metabolites in the plant’s extracts and assess their potential applications for skincare and metabolic disorder management, addressing gaps in the current understanding of its medicinal value. Methods: Liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) profiling was used to analyze the hydromethanolic (HMeOH) leaf extract and identify bioactive compounds. The biological activities of HMeOH, ethyl acetate (EtOAc), and butanolic (n-BuOH) extracts were tested for cytotoxicity using the brine shrimp lethality test, photoprotective potential by calculating the sun protection factor (SPF), and enzymatic inhibitory activities against alpha-amylase, urease, and tyrosinase. Results: The LC-ESI-MS/MS profiling of the MeOH extract identified 22 bioactive compounds, including phenolic acids and flavonoids, some of which have not been previously reported in this species. Cytotoxicity tests showed that all extracts were non-toxic (half-lethal concentration (LC50) > 100 micrograms per milliliter). The SPF values indicated significant photoprotective potential, with EtOAc (SPF = 45.19 ± 0.73) and n-BuOH (SPF = 43.81 ± 0.59) extracts showing high sun protection activity. The n-BuOH extract exhibited strong alpha-amylase inhibitory activity (half-maximal inhibitory concentration (IC50) = 307.08 micrograms per milliliter), surpassing the standard acarbose (IC50 = 3650.93 micrograms per milliliter), suggesting potential applications in diabetes management. Conclusions: Dianthus sylvestris subsp. aristidis demonstrates significant pharmacological potential as a source of bioactive secondary metabolites for skincare and metabolic disorder management. These findings provide new insights into the plant’s therapeutic potential and set a foundation for future pharmacological and clinical investigations. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

35 pages, 7644 KiB  
Review
Drug Discovery for Histone Deacetylase Inhibition: Past, Present and Future of Zinc-Binding Groups
by Gustavo Salgado Pires, Heber Victor Tolomeu, Daniel Alencar Rodrigues, Lídia Moreira Lima, Carlos Alberto Manssour Fraga and Pedro de Sena Murteira Pinheiro
Pharmaceuticals 2025, 18(4), 577; https://doi.org/10.3390/ph18040577 - 16 Apr 2025
Viewed by 262
Abstract
Histone deacetylases (HDACs) are key regulators of gene expression, influencing chromatin remodeling and playing a crucial role in various physiological and pathological processes. Aberrant HDAC activity has been linked to cancer, neurodegenerative disorders, and inflammatory diseases, making these enzymes attractive therapeutic targets. HDAC [...] Read more.
Histone deacetylases (HDACs) are key regulators of gene expression, influencing chromatin remodeling and playing a crucial role in various physiological and pathological processes. Aberrant HDAC activity has been linked to cancer, neurodegenerative disorders, and inflammatory diseases, making these enzymes attractive therapeutic targets. HDAC inhibitors (HDACis) have gained significant attention, particularly those containing zinc-binding groups (ZBGs), which interact directly with the catalytic zinc ion in the enzyme’s active site. The structural diversity of ZBGs profoundly impacts the potency, selectivity, and pharmacokinetics of HDACis. While hydroxamic acids remain the most widely used ZBGs, their limitations, such as metabolic instability and off-target effects, have driven the development of alternative scaffolds, including ortho-aminoanilides, mercaptoacetamides, alkylhydrazides, oxadiazoles, and more. This review explores the structural and mechanistic aspects of different ZBGs, their interactions with HDAC isoforms, and their influence on inhibitor selectivity. Advances in structure-based drug design have allowed the fine-tuning of HDACi pharmacophores, leading to more selective and efficacious compounds with improved drug-like properties. Understanding the nuances of ZBG interactions is essential for the rational design of next-generation HDACis, with potential applications in oncology, neuroprotection, and immunotherapy. Full article
Show Figures

Graphical abstract

24 pages, 2317 KiB  
Article
Bioactivities and Chemotaxonomy of Four Heracleum Species: A Comparative Study Across Plant Parts
by Tugce Ince Kose, Gamze Benli Yardimci, Damla Kirci, Derya Cicek Polat, Betul Demirci, Mujde Eryilmaz and Ceyda Sibel Kilic
Pharmaceuticals 2025, 18(4), 576; https://doi.org/10.3390/ph18040576 - 16 Apr 2025
Viewed by 186
Abstract
Background/Objectives: This study investigates the phytochemical profile, essential oil composition, and bioactivities—including antioxidant, antimicrobial, antibio-film, and anti-quorum sensing (QS) activities—of four Heracleum L. species (H. crenatifolium Boiss, H. paphlagonicum Czeczott, H. sphondylium subsp. montanum Schleich. ex Gaudin, and H. pastinacifolium subsp. [...] Read more.
Background/Objectives: This study investigates the phytochemical profile, essential oil composition, and bioactivities—including antioxidant, antimicrobial, antibio-film, and anti-quorum sensing (QS) activities—of four Heracleum L. species (H. crenatifolium Boiss, H. paphlagonicum Czeczott, H. sphondylium subsp. montanum Schleich. ex Gaudin, and H. pastinacifolium subsp. incanum (Boiss. & A.Huet) P.H.Davis). Methods: Total phenolic and flavonoid contents were quantified using the Folin–Ciocalteu and aluminum chloride colorimetric methods, respectively. Essential oils were extracted by hydrodistillation and analyzed via Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography–Mass Spectrometry (GC–MS), while Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) evaluated chemical variability among the species. Antioxidant activities were assessed using DPPH and ABTS free radical scavenging assays. Antimicrobial activity was assessed using the broth microdilution method to determine Minimum Inhibitory Concentration (MIC) values, while antibiofilm activity was evaluated using an in vitro microplate-based biofilm model against Pseudomonas aeruginosa PAO1. Anti-QS activity was analyzed using a disc diffusion assay with Chromobacterium violaceum ATCC 12472 as the reporter strain. Results: It was observed that the amounts of total phenolic compounds and total flavonoids were higher in root extracts than in aerial parts extracts for the four species in this study (H. sphondylium subsp. montanum excluding phenolic content). In the analysis of essential oil, it was determined that the major component in the roots was mostly myristicin, and in the fruits it was mostly octyl acetate. Phenolic and flavonoid contents were positively correlated with antioxidant activity. Methanol and n-hexane extracts of H. pastinacifolium (aerial parts) and n-hexane extracts of H. paphlagonicum (root) exhibited notable antimicrobial activity, primarily against Gram-positive bacteria, but none of the extracts showed activity against Klebsiella pneumoniae ATCC 13383 or P. aeruginosa ATCC 27853. Among methanol extracts, H. pastinacifolium (aerial parts) exhibited the highest antibiofilm activity (73.2%), while H. paphlagonicum (aerial parts) showed the highest activity among n-hexane extracts (75.5%). All n-hexane extracts exhibited anti-QS activity, whereas the methanol extracts showed no activity. Conclusions: These findings underscore the chemical diversity and bioactive potential of Heracleum species, contributing to the chemotaxonomic understanding of the genus and supporting their potential applications in medicine and industry. To our knowledge, this is the first study that reveals the antibiofilm and anti-QS properties of these Heracleum species. Full article
Show Figures

Graphical abstract

16 pages, 3371 KiB  
Article
A Prospective Randomized Pilot Study on the Efficacy of a Dietary Supplementation Regimen of Vitamin E and Selenium for the Prevention of Fluoroquinolone-Induced Tendinopathy
by Oana-Maria Mișcă, Liviu-Coriolan Mișcă, Bogdan Huzum, Andreea-Adriana Neamţu, Simona Cerbu, Daniel-Raul Chioibaș, Petrișor Zorin Crăiniceanu and Andrei Gheorghe Marius Motoc
Pharmaceuticals 2025, 18(4), 575; https://doi.org/10.3390/ph18040575 - 15 Apr 2025
Viewed by 151
Abstract
Background: Fluoroquinolone-induced tendinopathy is a clinically significant adverse effect associated with this class of antibiotics, particularly affecting the Achilles tendon. Despite its growing recognition, the precise pathophysiological mechanisms remain incompletely understood, with hypotheses referencing increased matrix metalloproteinase activity, collagen degradation, and oxidative [...] Read more.
Background: Fluoroquinolone-induced tendinopathy is a clinically significant adverse effect associated with this class of antibiotics, particularly affecting the Achilles tendon. Despite its growing recognition, the precise pathophysiological mechanisms remain incompletely understood, with hypotheses referencing increased matrix metalloproteinase activity, collagen degradation, and oxidative stress. Methods: This prospective randomized pilot study evaluates the potential protective effectiveness of vitamin E and selenium supplementation in mitigating fluoroquinolone-induced tendinopathy. The study was conducted on 25 patients receiving 500 mg/day levofloxacin antibiotherapy, randomly divided into a control group and an experimental group—vitamin E (400 IU/day) and selenium (200 µg/day), oral supplementation for 28 days. Clinical assessment of the pain level through the VAS score and of functionality through the VISA-A score was performed, alongside ultrasound imaging of the Achilles tendon. To assess potential toxicity and ensure adherence to the supplementation protocol, serial biochemical analyses of serum vitamin E and selenium were performed at predetermined intervals. Results: A significant improvement was observed in pain scores (p = 0.0120) and functional outcomes (p = 0.0340) when comparing the control and experimental groups at the three-month follow-up. Ultrasound analysis revealed reduced tendon thickness and neovascularization, supporting structural recovery. Although the incidence of tendinopathy was lower in the interventional group (13.3% vs. 40%), statistical significance was not reached, possibly due to the small sample size. Conclusions: These findings suggest that antioxidant supplementation with vitamin E and selenium may provide a protective effect against fluoroquinolone-induced tendinopathy, warranting further investigation in larger randomized clinical trials. Full article
(This article belongs to the Special Issue Fluoroquinolones)
Show Figures

Figure 1

26 pages, 5850 KiB  
Article
Lipid-Based Nanoformulations of [6]-Gingerol for the Chemoprevention of Benzo[a] Pyrene-Induced Lung Carcinogenesis: Preclinical Evidence
by Faris Alrumaihi, Ali Yousif Babiker and Arif Khan
Pharmaceuticals 2025, 18(4), 574; https://doi.org/10.3390/ph18040574 - 15 Apr 2025
Viewed by 182
Abstract
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive [...] Read more.
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive efficacy in benzo[a]pyrene (BaP)-induced lung carcinogenesis. Methods: 6-G-Lip was synthesized using a modified thin-film hydration technique and characterized for size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE%), and release kinetics. The chemopreventive effects were assessed in BaP-induced lung cancer in Swiss albino mice, with prophylactic 6-G-Lip administration from two weeks before BaP exposure through 21 weeks. Cancer biomarkers, antioxidant enzyme activity, reactive oxygen species (ROS) generation, induction of apoptosis, and histopathological alterations were analyzed. Results: 6-G-Lip exhibited a particle size of 129.7 nm, a polydispersity index (PDI) of 0.16, a zeta potential of −18.2 mV, and an encapsulation efficiency (EE%) of 91%, ensuring stability and effective drug loading. The formulation exhibited a controlled release profile, with 26.5% and 47.5% of [6]-G released in PBS and serum, respectively, at 72 h. 6-G-Lip significantly lowered cancer biomarkers, restored antioxidant defenses (SOD: 5.60 U/min/mg protein; CAT: 166.66 μm H2O2/min/mg protein), reduced lipid peroxidation (MDA: 3.3 nm/min/mg protein), and induced apoptosis (42.2%), highlighting its chemopreventive efficacy. Conclusions: This study is the first to prepare, characterize, and evaluate PEGylated [6]-G-Lip for the chemoprevention of lung cancer. It modulates oxidative stress, restores biochemical homeostasis, and selectively induces apoptosis. These findings support 6-G-Lip as a promising nanotherapeutic strategy for cancer prevention. Full article
Show Figures

Graphical abstract

19 pages, 5086 KiB  
Review
From Olive Tree to Treatment: Nano-Delivery Systems for Enhancing Oleuropein’s Health Benefits
by Maha Nasr and Salma H. Katary
Pharmaceuticals 2025, 18(4), 573; https://doi.org/10.3390/ph18040573 - 15 Apr 2025
Viewed by 260
Abstract
Oleuropein is a natural polyphenolic compound isolated from olive trees (Olea europaea). Besides the strong antioxidant effect of oleuropein, it has many pharmacological activities such as anticancer, antidiabetic, anti-inflammatory, antihypertensive, and many other activities. Thus, oleuropein could be used alone or [...] Read more.
Oleuropein is a natural polyphenolic compound isolated from olive trees (Olea europaea). Besides the strong antioxidant effect of oleuropein, it has many pharmacological activities such as anticancer, antidiabetic, anti-inflammatory, antihypertensive, and many other activities. Thus, oleuropein could be used alone or with other drugs to prevent and treat many diseases. Despite its promising health benefits, oleuropein is highly prone to hydrolysis inside and outside the human body, in addition to a poorly identified pharmacokinetic profile and poor bioavailability. Many nanocarrier delivery systems have overcome the delivery limitations of oleuropein in order to maximize its therapeutic benefits. Therefore, this review article sheds light on nano-delivery systems explored until the current date, aiming to enhance oleuropein’s bioavailability and therapeutic impact by improving its pharmacokinetic properties and addressing its stability challenges. Continued research into innovative nanotechnology solutions will be crucial in unlocking the full potential of oleuropein as a powerful nutraceutical and pharmaceutical agent. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop