The Crucial Question About Contrast-Induced Nephropathy (CIN): Should It Affect Clinical Practice?
Abstract
:1. Introduction
1.1. Definitions and Criteria
1.2. Historical Context and Evolution
1.3. Pathogenesis
1.4. Risk Factors
1.4.1. Intrinsic
1.4.2. Extrinsic
1.5. Emerging Biomarkers and Diagnostic Tools
1.6. Prevention Strategies
1.7. Advances in Imaging Technology
2. Controversies and Counterarguments
2.1. GFR Under 30 mL/min/1.73 m2
2.2. Meta-Analyses and Literature Analysis
2.3. Intensive Care Unit and Emergency Department Patients
2.4. Single-Centre Studies
2.5. Multicentre
2.6. Summary
3. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartels, E.D.; Brun, G.C.; Gammeltoft, A.; Gjørup, P.A. Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med. Scand. 1954, 150, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, S.; Aronson, D.; Hinson, J.S. Contrast-associated acute kidney injury is a myth: Yes. Intensive Care Med. 2018, 44, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Zungur, M.; Gul, I.; Tastan, A.; Damar, E.; Tavli, T. Predictive Value of the Mehran Score for Contrast-Induced Nephropathy after Transcatheter Aortic Valve Implantation in Patients with Aortic Stenosis. Cardiorenal Med. 2016, 6, 279–288. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.S.; McDonald, R.J.; Carter, R.E.; Katzberg, R.W.; Kallmes, D.F.; Williamson, E.E. Risk of intravenous contrast material-mediated acute kidney injury: A propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 2014, 271, 65–73. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Comin, J.; Williamson, E.E.; Katzberg, R.W.; Murad, M.H.; Kallmes, D.F. Frequency of acute kidney injury following intravenous contrast medium administration: A systematic review and meta-analysis. Radiology 2013, 267, 119–128. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- McDonald, R.J.; McDonald, J.S.; Bida, J.P.; Carter, R.E.; Fleming, C.J.; Misra, S.; Williamson, E.E.; Kallmes, D.F. Intravenous contrast material-induced nephropathy: Causal or coincident phenomenon? Radiology 2013, 267, 106–118. [Google Scholar] [CrossRef]
- Hinson, J.S.; Ehmann, M.R.; Fine, D.M.; Fishman, E.K.; Toerper, M.F.; Rothman, R.E.; Klein, E.Y. Risk of acute kidney injury after intravenous contrast media administration. Ann. Emerg. Med. 2017, 69, 577–586.e4. [Google Scholar] [CrossRef]
- Hinson, J.S.; Al Jalbout, N.; Ehmann, M.R.; Klein, E.Y. Acute kidney injury following contrast media administration in the septic patient: A retrospective propensity-matched analysis. J. Crit. Care 2019, 51, 111–116. [Google Scholar] [CrossRef]
- Rudnick, M.R.; Leonberg-Yoo, A.K.; Litt, H.I.; Cohen, R.M.; Hilton, S.; Reese, P.P. The Controversy of Contrast-Induced Nephropathy with Intravenous Contrast: What Is the Risk? Am. J. Kidney Dis. 2020, 75, 105–113. [Google Scholar] [CrossRef]
- Barrett, B.J.; Carlisle, E.J. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 1993, 188, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.C.; Häberle, L.; Müller, V.; Bautz, W.; Uder, M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: Meta-analysis of randomized controlled trials. Radiology 2009, 250, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Buschur, M.; Aspelin, P. Contrast media: History and chemical properties. Interv. Cardiol. Clin. 2014, 3, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Andrew, E.; Sveen, K.; Renaa, T.; Dahlstrøm, K. Phase II studies in urography, cardioangiography and cerebral angiography with iohexol. An evaluation of the clinical trial program and the clinical findings. Eur. J. Radiol. 1983, 3, 194–201. [Google Scholar]
- Nordby, A.; Halgunset, J.; Haugen, O.A. Effects of radiographic contrast media on monolayer cell cultures. Investig. Radiol. 1986, 21, 234–239. [Google Scholar] [CrossRef]
- Yang, X.; Huang, W.; Liu, W.; Zhu, Y.; Xu, Y.; Yang, G.; Tang, L.; Zhu, X. The influence of contrast agent’s osmolarity on iodine delivery protocol in coronary computed tomography angiography: Comparison between iso-osmolar iodixanol-320 and low-osmolar iomeprol-370. J. Comput. Assist. Tomogr. 2018, 42, 62–67. [Google Scholar] [CrossRef]
- McCullough, P.A. Contrast-induced acute kidney injury. J. Am. Coll. Cardiol. 2008, 51, 1419–1428. [Google Scholar]
- Rudnick, M.R.; Kesselheim, A.; Goldfarb, S. Contrast-induced nephropathy: How it develops, how to prevent it. Cleve. Clin. J. Med. 2006, 73, 75–80. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y.; et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021, 11, 1845–1863. [Google Scholar] [CrossRef]
- Szeto, H.H.; Liu, S.; Soong, Y.; Wu, D.; Darrah, S.F.; Cheng, F.-Y.; Zhao, Z.; Ganger, M.; Tow, C.Y.; Seshan, S.V. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 2011, 22, 1041–1052. [Google Scholar] [CrossRef]
- Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019, 26, 101254. [Google Scholar] [CrossRef]
- Davenport, M.S.; Khalatbari, S.; Cohan, R.H.; Dillman, J.R.; Myles, J.D.; Ellis, J.H. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: Risk stratification by using estimated glomerular filtration rate. Radiology 2013, 268, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Zeleke, T.K.; Kemal, L.K.; Mehari, E.A.; Sema, F.D.; Seid, A.M.; Mekonnen, G.A.; Abebe, R.B. Nephrotoxic drug burden and predictors of exposure among patients with renal impairment in Ethiopia: A multi-center study. Heliyon 2024, 10, e24618. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Wu, A.; Shin, J.-I.; Sang, Y.; Alexander, G.C.; Secora, A.; Inker, L.A.; Coresh, J.; Chang, A.R.; Grams, M.E. Association of metformin use with risk of lactic acidosis across the range of kidney function: A community-based cohort study. JAMA Intern. Med. 2018, 178, 903–910. [Google Scholar] [CrossRef]
- Yasrebi-de Kom, I.A.R.; Dongelmans, D.A.; Abu-Hanna, A.; Schut, M.C.; de Lange, D.W.; van Roon, E.N.; de Jonge, E.; Bouman, C.S.C.; de Keizer, N.F.; Jager, K.J.; et al. Acute kidney injury associated with nephrotoxic drugs in critically ill patients: A multicenter cohort study using electronic health record data. Clin. Kidney J. 2023, 16, 2549–2558. [Google Scholar] [CrossRef]
- Moideen, A. P0584 A comparative study on the incidence of contrast induced nephropathy following intra-arterial versus intravenous contrast administration. Nephrol. Dial. Transpl. 2020, 35. [Google Scholar] [CrossRef]
- Stacul, F.; van der Molen, A.J.; Reimer, P.; Webb, J.A.W.; Thomsen, H.S.; Morcos, S.K.; Almén, T.; Aspelin, P.; Bellin, M.-F.; Clement, O.; et al. Contrast induced nephropathy: Updated ESUR Contrast Media Safety Committee guidelines. Eur. Radiol. 2011, 21, 2527–2541. [Google Scholar] [CrossRef]
- McDonald, J.S.; Leake, C.B.; McDonald, R.J.; Gulati, R.; Katzberg, R.W.; Williamson, E.E.; Kallmes, D.F. Acute kidney injury after intravenous versus intra-arterial contrast material administration in a paired cohort. Investig. Radiol. 2016, 51, 804–809. [Google Scholar] [CrossRef]
- Rudnick, M.R.; Goldfarb, S.; Wexler, L.; Ludbrook, P.A.; Murphy, M.J.; Halpern, E.F.; Hill, J.A.; Winniford, M.; Cohen, M.B.; Van Fossen, D.B. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: A randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995, 47, 254–261. [Google Scholar] [CrossRef]
- Wang, K.; Duan, C.-Y.; Wu, J.; Liu, Y.; Bei, W.-J.; Chen, J.-Y.; He, P.C.; Liu, Y.-H.; Tan, N. Predictive value of neutrophil gelatinase-associated lipocalin for contrast-induced acute kidney injury after cardiac catheterization: A meta-analysis. Can. J. Cardiol. 2016, 32, 1033.e19–1033.e29. [Google Scholar] [CrossRef]
- Fortalesa Melo, J.I.; Chojniak, R.; Costa Silva, D.H.; Oliveira Junior, J.C.; Vieira Bitencourt, A.G.; Holanda Silva, D.; Guimarães, M.D.; Silva, H.C.S.; Dias, D.G.T.; Rodrigues, W.C.; et al. Use of cystatin C and serum creatinine for the diagnosis of contrast-induced nephropathy in patients undergoing contrast-enhanced computed tomography at an oncology centre. PLoS ONE 2015, 10, e0122877. [Google Scholar] [CrossRef]
- Liao, B.; Nian, W.; Xi, A.; Zheng, M. Evaluation of a diagnostic test of serum neutrophil gelatinase-associated lipocalin (NGAL) and urine KIM-1 in contrast-induced nephropathy (CIN). Med. Sci. Monit. 2019, 25, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, G.; Ribitsch, W.; Otto, R.; Portugaller, R.H.; Quehenberger, F.; Truschnig-Wilders, M.; Zweiker, R.; Stiegler, P.; Brodmann, M.; Weinhandl, K.; et al. Early detection and intervention using neutrophil gelatinase-associated lipocalin (NGAL) may improve renal outcome of acute contrast media induced nephropathy: A randomized controlled trial in patients undergoing intra-arterial angiography (ANTI-CIN Study). BMC Nephrol. 2011, 12, 39. [Google Scholar] [CrossRef]
- Ribichini, F.; Graziani, M.; Gambaro, G.; Pasoli, P.; Pighi, M.; Pesarini, G.; Abaterusso, C.; Yabarek, T.; Brunelleschi, S.; Rizzotti, P.; et al. Early creatinine shifts predict contrast-induced nephropathy and persistent renal damage after angiography. Am. J. Med. 2010, 123, 755–763. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, Q.; Peng, C.; Li, J.; Xuan, C.; Wang, N. Significance of combined detection of Cys-C, NGAL and KIM-1 in contrast induced nephropathy after coronary angiography. Eur. J. Exp. Biol. 2014, 4, 157–161. [Google Scholar]
- Tepel, M.; van der Giet, M.; Schwarzfeld, C.; Laufer, U.; Liermann, D.; Zidek, W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 2000, 343, 180–184. [Google Scholar] [CrossRef]
- Khalili, H.; Dashti-Khavidaki, S.; Tabifar, H.; Ahmadinejad, N.; Ahmadi, F. N-acetylcysteine in the prevention of contrast agent-induced nephrotoxicity in patients undergoing computed tomography studies. Therapy 2006, 3, 773–777. [Google Scholar] [CrossRef]
- Poletti, P.-A.; Saudan, P.; Platon, A.; Mermillod, B.; Sautter, A.-M.; Vermeulen, B.; Sarasin, F.P.; Becker, C.D.; Martin, P.-Y.I.v. N-acetylcysteine and emergency CT: Use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am. J. Roentgenol. 2007, 189, 687–692. [Google Scholar] [CrossRef]
- Sar, F.; Saler, T.; Ecebay, A.; Saglam, Z.A.; Ozturk, S.; Kazancioglu, R. The efficacy of N-acetylcysteine in preventing contrast-induced nephropathy in type 2 diabetic patients without nephropathy. J. Nephrol. 2010, 23, 478–482. [Google Scholar]
- Kitzler, T.M.; Jaberi, A.; Sendlhofer, G.; Rehak, P.; Binder, C.; Petnehazy, E.; Stacher, R.; Kotanko, P. Efficacy of vitamin E and N-acetylcysteine in the prevention of contrast induced kidney injury in patients with chronic kidney disease: A double blind, randomized controlled trial. Wien. Klin. Wochenschr. 2012, 124, 312–319. [Google Scholar] [CrossRef]
- Hsu, T.-F.; Huang, M.-K.; Yu, S.-H.; Yen, D.H.-T.; Kao, W.-F.; Chen, Y.-C.; Huang, M.-S. N-acetylcysteine for the prevention of contrast-induced nephropathy in the emergency department. Intern. Med. 2012, 51, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
- Traub, S.J.; Mitchell, A.M.; Jones, A.E.; Tang, A.; O’Connor, J.; Nelson, T.; Kellum, J.; Shapiro, N.I. N-acetylcysteine plus intravenous fluids versus intravenous fluids alone to prevent contrast-induced nephropathy in emergency computed tomography. Ann. Emerg. Med. 2013, 62, 511–520.e25. [Google Scholar] [CrossRef] [PubMed]
- Poletti, P.-A.; Platon, A.; De Seigneux, S.; Dupuis-Lozeron, E.; Sarasin, F.; Becker, C.D.; Perneger, T.; Saudan, P.; Martin, P.-Y. N-acetylcysteine does not prevent contrast nephropathy in patients with renal impairment undergoing emergency CT: A randomized study. BMC Nephrol. 2013, 14, 119. [Google Scholar] [CrossRef]
- Kama, A.; Yılmaz, S.; Yaka, E.; Dervişoğlu, E.; Doğan, N.Ö.; Erimşah, E.; Pekdemir, M. Comparison of short-term infusion regimens of N-acetylcysteine plus intravenous fluids, sodium bicarbonate plus intravenous fluids, and intravenous fluids alone for prevention of contrast-induced nephropathy in the emergency department. Acad. Emerg. Med. 2014, 21, 615–622. [Google Scholar] [CrossRef]
- Turedi, S.; Erdem, E.; Karaca, Y.; Tatli, O.; Sahin, A.; Turkmen, S.; Gunduz, A. The high risk of contrast-induced nephropathy in patients with suspected pulmonary embolism despite three different prophylaxis: A randomized controlled trial. Acad. Emerg. Med. 2016, 23, 1136–1145. [Google Scholar] [CrossRef]
- Kooiman, J.; Sijpkens, Y.W.J.; van Buren, M.; Groeneveld, J.H.M.; Ramai, S.R.S.; van der Molen, A.J.; Aarts, N.J.M.; van Rooden, C.J.; Cannegieter, S.C.; Putter, H.; et al. Randomised trial of no hydration vs. sodium bicarbonate hydration in patients with chronic kidney disease undergoing acute computed tomography-pulmonary angiography. J. Thromb. Haemost. 2014, 12, 1658–1666. [Google Scholar] [CrossRef]
- van Mourik, M.S.; van Kesteren, F.; Planken, R.N.; Stoker, J.; Wiegerinck, E.M.A.; Piek, J.J.; Tijssen, J.G.; Koopman, M.G.; Henriques, J.P.S.; Baan, J.; et al. Short versus conventional hydration for prevention of kidney injury during pre-TAVI computed tomography angiography. Neth. Heart J. 2018, 26, 425–432. [Google Scholar] [CrossRef]
- Walker, H.; Guthrie, G.D.; Lambourg, E.; Traill, P.; Zealley, I.; Plumb, A.; Bell, S. Systematic review and meta-analysis of prophylaxis use with intravenous contrast exposure to prevent contrast-induced nephropathy. Eur. J. Radiol. 2022, 153, 110368. [Google Scholar] [CrossRef]
- Miao, Y.; Zhong, Y.; Yan, H.; Li, W.; Wang, B.-Y.; Jin, J. Alprostadil plays a protective role in contrast-induced nephropathy in the elderly. Int. Urol. Nephrol. 2013, 45, 1179–1185. [Google Scholar] [CrossRef]
- Wang, J.; Ai, X.; Li, L.; Gao, Y.; Sun, N.; Li, C.; Sun, W. Alprostadil protects type 2 diabetes mellitus patients treated with metformin from contrast-induced nephropathy. Int. Urol. Nephrol. 2017, 49, 2019–2026. [Google Scholar] [CrossRef]
- Demir, M.; Kutlucan, A.; Akın, H.; Aydın, O.; Sezer, M.T. Comparison of different agents on radiographic contrast agent induced nephropathy. Electron. J. Gen. Med. 2008, 5, 222–227. [Google Scholar] [CrossRef]
- Gong, X.; Duan, Y.; Zheng, J.; Wang, Y.; Wang, G.; Norgren, S.; Hei, T.K. Nephroprotective effects of N-acetylcysteine amide against contrast-induced nephropathy through upregulating Thioredoxin-1, inhibiting ASK1/p38MAPK pathway, and suppressing oxidative stress and apoptosis in rats. Oxid. Med. Cell. Longev. 2016, 8715185. [Google Scholar] [CrossRef] [PubMed]
- Parikh, C.R.; Liu, C.; Mor, M.K.; Palevsky, P.M.; Kaufman, J.S.; Thiessen Philbrook, H.; Weisbord, S.D. Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: A substudy of the PRESERVE Trial. Am. J. Kidney Dis. 2020, 75, 187–194. [Google Scholar] [CrossRef]
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; van Ommen, V.; Wildberger, J.E. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017, 389, 1312–1322. [Google Scholar] [CrossRef]
- Shemirani, H.; Pourrmoghaddas, M. A randomized trial of saline hydration to prevent contrast-induced nephropathy in patients on regular captopril or furosemide therapy undergoing percutaneous coronary intervention. Saudi J. Kidney Dis. Transpl. 2012, 23, 280–285. [Google Scholar]
- Dirir, O.; Johnson, J.; Khwaja, A. Much ado about nothing: The impact of coronary angiography on kidney function in individuals with chronic kidney disease. Eur. Heart J. 2024, 45. [Google Scholar] [CrossRef]
- Abedini, Z.; Sari, A.A.; Foroushani, A.R.; Jaafaripooyan, E. Diffusion of advanced medical imaging technology, CT, and MRI scanners, in Iran: A qualitative study of determinants. Int. J. Health Plann. Manag. 2019, 34, e397–e410. [Google Scholar] [CrossRef]
- Sarracanie, M.; LaPierre, C.D.; Salameh, N.; Waddington, D.E.J.; Witzel, T.; Rosen, M.S. Low-cost high-performance MRI. Sci. Rep. 2015, 5, 15177. [Google Scholar] [CrossRef]
- Wald, L.L.; McDaniel, P.C.; Witzel, T.; Stockmann, J.P.; Cooley, C.Z. Low-cost and portable MRI. J. Magn. Reson. Imaging 2020, 52, 686–696. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Lieske, J.C.; Carter, R.E.; Katzberg, R.W.; Williamson, E.E.; Kallmes, D.F. Risk of acute kidney injury, dialysis, and mortality in patients with chronic kidney disease after intravenous contrast material exposure. Mayo Clin. Proc. 2015, 90, 1046–1053. [Google Scholar] [CrossRef]
- Garfinkle, M.A.; Stewart, S.; Basi, R. Incidence of CT contrast agent-induced nephropathy: Toward a more accurate estimation. AJR Am. J. Roentgenol. 2015, 204, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Ferrer Puchol, M.D.; Montesinos García, P.; Forment Navarro, M.; Sanz Rodrigo, E.; Blanco Pérez, E.; Taberner López, E. The administration of contrast media: Is there a risk of acute kidney injury? Radiologia 2019, 61, 306–314. [Google Scholar] [CrossRef]
- Ehrmann, S.; Quartin, A.; Hobbs, B.P.; Robert-Edan, V.; Cely, C.; Bell, C.; Lyons, G.; Pham, T.; Schein, R.; Geng, Y.; et al. Contrast-associated acute kidney injury in the critically ill: Systematic review and Bayesian meta-analysis. Intensive Care Med. 2017, 43, 785–794. [Google Scholar] [CrossRef]
- Aycock, R.D.; Westafer, L.M.; Boxen, J.L.; Majlesi, N.; Schoenfeld, E.M.; Bannuru, R.R. Acute kidney injury after computed tomography: A meta-analysis. Ann. Emerg. Med. 2018, 71, 44–53.e4. [Google Scholar] [CrossRef]
- Cramer, B.C.; Parfrey, P.S.; Hutchinson, T.A.; Baran, D.; Melanson, D.M.; Ethier, R.E.; Seely, J.F. Renal function following infusion of radiologic contrast material. A prospective controlled study. Arch. Intern. Med. 1985, 145, 87–89. [Google Scholar]
- Polena, S.; Yang, S.; Alam, R.; Gricius, J.; Gupta, J.R.; Badalova, N.; Chuang, P.; Gintautas, J.; Conetta, R. Nephropathy in critically ill patients without preexisting renal disease. Proc. West. Pharmacol. Soc. 2005, 48, 134–135. [Google Scholar]
- Newhouse, J.H.; Kho, D.; Rao, Q.A.; Starren, J. Frequency of serum creatinine changes in the absence of iodinated contrast material: Implications for studies of contrast nephrotoxicity. AJR Am. J. Roentgenol. 2008, 191, 376–382. [Google Scholar] [CrossRef]
- Rao, Q.A.; Newhouse, J.H. Risk of nephropathy after intravenous administration of contrast material: A critical literature analysis. Radiology 2006, 239, 392–397. [Google Scholar] [CrossRef]
- Heller, C.A.; Knapp, J.; Halliday, J.; O’Connell, D.; Heller, R.F. Failure to demonstrate contrast nephrotoxicity. Med. J. Aust. 1991, 155, 329–332. [Google Scholar] [CrossRef]
- Ng, C.S.; Shaw, A.D.; Bell, C.S.; Samuels, J.A. Effect of IV contrast medium on renal function in oncologic patients undergoing CT in ICU. AJR Am. J. Roentgenol. 2010, 195, 414–422. [Google Scholar] [CrossRef]
- McDonald, R.J.; McDonald, J.S.; Carter, R.E.; Hartman, R.P.; Katzberg, R.W.; Kallmes, D.F.; Williamson, E.E. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 2014, 273, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, M.; Rømsing, J.; Thomsen, H.S. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients. Eur. J. Radiol. 2014, 83, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, Y.; Yaseen, H.; Heyman, S.N.; Khamaisi, M. Negligible risk of acute renal failure among hospitalized patients after contrast-enhanced imaging with iodinated versus gadolinium-based agents. Investig. Radiol. 2019, 54, 312–318. [Google Scholar] [CrossRef]
- Barrios López, A.; García Martínez, F.; Rodríguez, J.I.; Montero-San-Martín, B.; Gómez Rioja, R.; Diez, J.; Martín-Hervás, C. Incidence of contrast-induced nephropathy after a computed tomography scan. Radiologia 2021, 63, 307–313. [Google Scholar] [CrossRef]
- Mueller, C.; Buerkle, G.; Buettner, H.J.; Petersen, J.; Perruchoud, A.P.; Eriksson, U.; Marsch, S.; Roskamm, H. Prevention of contrast media-associated nephropathy: Randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med. 2002, 162, 329–336. [Google Scholar] [CrossRef]
- Dussol, B.; Morange, S.; Loundoun, A.; Auquier, P.; Berland, Y. A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol. Dial. Transplant. 2006, 21, 2120–2126. [Google Scholar] [CrossRef]
- Delgado Acosta, F.; Jiménez Gómez, E.; Bravo Rey, I.; Valverde Moyano, R.; de Asís Bravo-Rodriguez, F.; Oteros Fernández, R. Contrast-induced nephropathy: A dilemma between loss of neurons or nephrons in the setting of endovascular treatment of acute ischemic stroke. Interv. Neuroradiol. 2020, 26, 33–37. [Google Scholar] [CrossRef]
- Lencioni, R.; Fattori, R.; Morana, G.; Stacul, F. Contrast-induced nephropathy in patients undergoing computed tomography (CONNECT)—A clinical problem in daily practice? A multicenter observational study. Acta Radiol. 2010, 51, 741–750. [Google Scholar] [CrossRef]
- Kooiman, J.; van de Peppel, W.R.; Sijpkens, Y.W.J.; Brulez, H.F.H.; de Vries, P.M.; Nicolaie, M.A.; Putter, H.; Huisman, M.V.; van der Kooij, W.; van Kooten, C.; et al. No increase in Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin excretion following intravenous contrast enhanced-CT. Eur. Radiol. 2015, 25, 1926–1934. [Google Scholar] [CrossRef]
Type of Contrast | Contrast Media | Osmolarity mosm/kg H2O | Iodine Concentration (mg/mL) |
---|---|---|---|
high osmolarity | Meglumine diatrizoate [15] | 2070 | 370 |
low osmolarity | Iohexol [15] | 880 | 350 |
low osmolarity | Iopamidol [15] | 616 | 300 |
iso-osmolar | Iodixanol-320 [16] | 290 | 320 |
Ordinal Number | Year of Publication | Author | Study Limitations | Main Outcome | Patients Population |
---|---|---|---|---|---|
1 | 1985 | Cramer et al. [65] | Small sample size | Previous uncontrolled studies may have overestimated the risk of renal failure induced by contrast material. | 193 enhanced CT 233 control |
2 | 1991 | Heller et al. [69] | Small sample size | There does not appear to be a risk of renal impairment from the use of high osmolality radiocontrast material. | 292 HOCM 187 LOCM 405 no contrast |
3 | 2002 | Mueller et al. [75] | Group could be bigger | Contrast media-associated nephropathy was significantly reduced with isotonic (0.7%, 95% confidence interval, 0.1–1.4%) vs. half-isotonic (2.0%, 95% confidence interval, 1.0–3.1%) hydration (p = 0.04). | 809 isotonic hydration 811 half-isotonic hydration |
4 | 2005 | Polena et al. [66] | Very small sample size | Data demonstrate that iodine contrast media for CT in ICU patients without pre-existing kidney disease can precipitate measurable nephropathic changes. | No data available |
5 | 2006 | Rao et al. [68] | Review | Properly controlled clinical studies of intravenously administered radiographic contrast media fail to demonstrate renal damage. | 3081 publications |
6 | 2006 | Dussol et al. [76] | Small sample size | There was no significant difference between the rate of renal failure in the different arms of the study. | 312 patients divided into 4 arms of different hydration protocol |
7 | 2008 | Newhouse et al. [67] | Retrospective study | The creatinine level increases in patients who are not receiving contrast material as often as it does. in published series of patients who are receiving contrast material. | 32,161 patients who had not received contrast material during the previous 10 days |
8 | 2010 | Ng et al. [70] | Retrospective study | Administration of IV contrast medium in oncologic ICU patients with relatively normal creatinine is associated with an increase in creatinine but not beyond that of simply undergoing CT or of a matched non-CT group in ICU. | 3848 ICU oncology patients |
9 | 2010 | Lencioni et al. [78] | Observational study, with a very small sample size | Use of the iso-osmolar agent iodixanol appears to be associated with a low incidence of CIN in at-risk patients. | 493 patients—multicenter |
10 | 2013 | McDonald et al. [5] | Review of nonrandomized studies | Controlled contrast medium-induced nephropathy studies demonstrate a similar incidence of AKI, dialysis, and death between the contrast medium group and control group. | 13 studies 25,950 patients |
11 | 2013 | McDonald et al. [7] | Retrospective study | Following adjustment for presumed risk factors, the incidence of CIN was not significantly different from contrast material-independent AKI. | 157,140 scans 53,439 unique patients |
12 | 2014 | McDonald et al. [4] | Retrospective study | The risk of AKI is independent of contrast material exposure, even in patients with eGFR of less than 30 mL/min/1.73 m². | 12,508 patients 1486 patients with GFR < 30 mL/min/1.73 m2 |
13 | 2014 | Mcdonald et al. [71] | Retrospective study | Intravenous contrast material administration was not associated with excess risk of AKI acute kidney injury, dialysis, or death, even among patients with comorbidities reported to predispose them to nephrotoxicity. | The 1:1 matching based on the propensity score yielded a cohort of 21,346 patients |
14 | 2014 | Azzouz et al. [72] | Small sample size | eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. | 716 patients |
15 | 2015 | McDonald et al. [60] | Retrospective study | Intravenous contrast material administration was not associated with an increased risk of AKI, emergent dialysis, and short-term mortality in a cohort of patients with diminished renal function. | 6902 patients (4496 CKD stage III, matched: 1220 contrast and 1220 noncontrast; 2086 CKD stage IV-V, matched: 491 contrast and 491 noncontrast |
16 | 2015 | Garfinkle et al. [61] | Retrospective study, small sample size especially with GFR under 30 mL/min/1.73 m2 | Incidences of acute kidney injury and dialysis after acute kidney injury attributable to contrast-enhanced CT were statistically insignificant across glomerular filtration rate (GFR) subgroups. | 2277 patients 47 patients GFR 15–29 21 patients GFR < 15 |
17 | 2015 | Koiman et al. [79] | Small sample size | KIM-1 and N-GAL excretion were unaffected by CE-CT both in patients with and without CI-AKI, suggesting that CI-AKI was not accompanied by tubular injury. | 511 patients |
18 | 2016 | Zungur et al. [3] | Very small sample size | The Mehran risk score (MS) is a predictor of CIN development after transcatheter aortic valve implantation (TAVI). The use of MS in clinical practice may decrease renal complications after TAVI. | 93 patients who underwent TAVI |
20 | 2017 | Hinson et al. [8] | Retrospective study | In the largest well-controlled study of acute kidney injury following contrast administration in the ED to date (2017), intravenous contrast was not associated with an increased frequency of acute kidney injury. | 16,801 patients Emergency Department |
21 | 2018 | Aycock et al. [64] | Meta-analysis of observational studies, risk of selection bias | Meta-analysis demonstrated that, compared with non-contrast CT, contrast-enhanced CT was not significantly associated with either acute kidney injury, need for renal replacement therapy, or all-cause mortality. | In total, 28 studies involving 107,335 participants were included in the final analysis, all of which were observational. |
22 | 2019 | Puchol et al. [62] | Retrospective study | The administration of intravenous contrast material in the patients studied is not associated with increased acute kidney injury. | 52,411 patients Emergency Department |
23 | 2019 | Hinson et al. [9] | Retrospective study | Contrast media administration was not associated with an increased incidence of AKI. | 4171 patients who met sepsis diagnostic criteria |
24 | 2019 | Gorelik et al. [73] | Retrospective and nonrandomized | With the current precautions undertaken, the real-life risk of postcontrast acute kidney injury (PC-AKI) among inpatients undergoing CT is insignificant. | 742 magnetic resonance imaging (MRI) 8089 iodine-based contrast agents (IBCA) |
25 | 2020 | Rudnick et al. [10] | Review, lack of methodology | In all patients at increased risk for CIN, the risk for CIN needs to be balanced by the risk of not performing an intravenous contrast-enhanced study. | No meta-analysis |
26 | 2020 | Delgado et al. [77] | Very small sample size | CIN is relatively common after endovascular treatment, whereas it does not increase the risk of renal replacement therapy. | 189 patients underwent endovascular treatment for acute ischemic stroke. |
27 | 2021 | López et al. [74] | Very small sample size | The incidence of contrast-induced nephropathy in patients with chronic renal failure and GFR 30mL-60mL/min/1.73 m2 is low. The biomarkers of renal function analyzed improve in patients who receive premedication and the minimum dose of contrast material. | 112 patients with chronic renal failure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżak, D.; Basiak, M.; Dec, A.; Hachuła, M.; Okopień, B. The Crucial Question About Contrast-Induced Nephropathy (CIN): Should It Affect Clinical Practice? Pharmaceuticals 2025, 18, 485. https://doi.org/10.3390/ph18040485
Krzyżak D, Basiak M, Dec A, Hachuła M, Okopień B. The Crucial Question About Contrast-Induced Nephropathy (CIN): Should It Affect Clinical Practice? Pharmaceuticals. 2025; 18(4):485. https://doi.org/10.3390/ph18040485
Chicago/Turabian StyleKrzyżak, Damian, Marcin Basiak, Adrianna Dec, Marcin Hachuła, and Bogusław Okopień. 2025. "The Crucial Question About Contrast-Induced Nephropathy (CIN): Should It Affect Clinical Practice?" Pharmaceuticals 18, no. 4: 485. https://doi.org/10.3390/ph18040485
APA StyleKrzyżak, D., Basiak, M., Dec, A., Hachuła, M., & Okopień, B. (2025). The Crucial Question About Contrast-Induced Nephropathy (CIN): Should It Affect Clinical Practice? Pharmaceuticals, 18(4), 485. https://doi.org/10.3390/ph18040485