Genetic Predisposition to Prediabetes in the Kazakh Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Patient Enrollment
2.2. Methods of This Study
2.3. Ethics Statement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Papazafiropoulou, A.K.; Papanas, N.; Melidonis, A.; Maltezos, E. Family History of Type 2 Diabetes: Does Having a Diabetic Parent Increase the Risk? Curr. Diabetes Rev. 2017, 13, 19–25. [Google Scholar] [CrossRef]
- Antosik, K.; Borowiec, M. Genetic Factors of Diabetes. Arch. Immunol. Ther. Exp. 2016, 64, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Wang, X.; Liu, D.; Zhang, X.; Cao, W.; Zheng, Y.; Guo, Z.; Li, D.; Xing, W.; et al. Next-Generation (Glycomic) Biomarkers for Cardiometabolic Health: A Community-Based Study of Immunoglobulin G N-Glycans in a Chinese Han Population. Omics 2019, 23, 649–659. [Google Scholar] [CrossRef]
- Gaulton, K.J. Mechanisms of Type 2 Diabetes Risk Loci. Curr. Diab. Rep. 2017, 17, 72. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes. Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef]
- Thipsawat, S. Intervention for Prevention of Type 2 Diabetes Mellitus Among Prediabetes: A Review of the Literature. SAGE Open Nurs. 2023, 9, 23779608231175581. [Google Scholar] [CrossRef]
- Kim, D.S.; Gloyn, A.L.; Knowles, J.W. Genetics of Type 2 Diabetes: Opportunities for Precision Medicine: JACC Focus Seminar. J. Am. Coll. Cardiol. 2021, 78, 496–512. [Google Scholar] [CrossRef]
- Prasad, R.B.; Groop, L. Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes 2015, 6, 87–123. [Google Scholar] [CrossRef] [PubMed]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; et al. Genome-Wide Association Analyses Identify 143 Risk Variants and Putative Regulatory Mechanisms for Type 2 Diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef]
- Magalhães, P.M.; Teixeira, J.E.; Bragada, J.P.; Duarte, C.M.; Bragada, J.A. Prevalence of Type 2 Diabetes, Impaired Fasting Glucose, and Diabetes Risk in an Adult and Older North-Eastern Portuguese Population. Healthcare 2023, 11, 712. [Google Scholar] [CrossRef]
- Ohn, J.H.; Kwak, S.H.; Cho, Y.M.; Lim, S.; Jang, H.C.; Park, K.S.; Cho, N.H. 10-Year Trajectory of β-Cell Function and Insulin Sensitivity in the Development of Type 2 Diabetes: A Community-Based Prospective Cohort Study. Lancet Diabetes Endocrinol. 2016, 4, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Sitasuwan, T.; Lertwattanarak, R. Prediction of Type 2 Diabetes Mellitus Using Fasting Plasma Glucose and HbA1c Levels among Individuals with Impaired Fasting Plasma Glucose: A Cross-Sectional Study in Thailand. BMJ Open 2020, 10, e041269. [Google Scholar] [CrossRef]
- World Health Organization; International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global Prevalence of Prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar] [CrossRef]
- Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [CrossRef] [PubMed]
- Koirala, S.; Sunnaa, M.; Bernier, T.; Oktay, A.A. The Role of Obesity as a Cardiac Disease Risk Factor in Patients with Type 2 Diabetes. Curr. Cardiol. Rep. 2024, 15, 1–12. [Google Scholar] [CrossRef]
- Galaviz, K.I.; Narayan, K.M.V.; Lobelo, F.; Weber, M.B. Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am. J. Lifestyle Med. 2018, 12, 4–20. [Google Scholar] [CrossRef]
- Kyrou, I.; Tsigos, C.; Mavrogianni, C.; Cardon, G.; Van Stappen, V.; Latomme, J.; Kivelä, J.; Wikström, K.; Tsochev, K.; Nanasi, A.; et al. Sociodemographic and Lifestyle-Related Risk Factors for Identifying Vulnerable Groups for Type 2 Diabetes: A Narrative Review with Emphasis on Data from Europe. BMC Endocr. Disord. 2020, 20, 134. [Google Scholar] [CrossRef]
- Winkley, K.; Thomas, S.M.; Sivaprasad, S.; Chamley, M.; Stahl, D.; Ismail, K.; Amiel, S.A. The Clinical Characteristics at Diagnosis of Type 2 Diabetes in a Multi-Ethnic Population: The South London Diabetes Cohort (SOUL-D). Diabetologia 2013, 56, 1272–1281. [Google Scholar] [CrossRef]
- Hostalek, U. Global Epidemiology of Prediabetes—Present and Future Perspectives. Clin. Diabetes Endocrinol. 2019, 5, 5. [Google Scholar] [CrossRef]
- Parizadeh, D.; Rahimian, N.; Akbarpour, S.; Azizi, F.; Hadaegh, F. Sex-Specific Clinical Outcomes of Impaired Glucose Status: A Long Follow-Up from the Tehran Lipid and Glucose Study. Eur. J. Prev. Cardiol. 2019, 26, 1080–1091. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; Conley, Y.P.; Primack, B.A.; Wang, J.; Lo, W.-J.; Li, C. A Genome-Wide Association Study of Prediabetes Status Change. Front. Endocrinol. 2022, 13, 881633. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.C.H.; Liu, L.; Xu, A.; Chan, Y.H.; Cheung, B.M.Y. Shared Genetic Architecture Between Periodontal Disease and Type 2 Diabetes: A Large Scale Genome-Wide Cross-Trait Analysis. Endocrine 2024, 85, 685–694. [Google Scholar] [CrossRef]
- Lecarpentier, Y.; Claes, V.; Vallée, A.; Hébert, J.-L. Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer. PPAR Res. 2017, 2017, 5879090. [Google Scholar] [CrossRef]
- PPARG Peroxisome Proliferator Activated Receptor Gamma [Homo Sapiens (Human)]. Atl. Genet. Cytogenet. Oncol. Haematol. 2009, 13, 417–421.
- Wang, C.; Li, X.; Huang, Z.; Qian, J. Quantitative Assessment of the Influence of PPARG P12A Polymorphism on Gestational Diabetes Mellitus Risk. Mol. Biol. Rep. 2013, 40, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-C.; Chou, P.-L.; Wung, S.-F. Geographic Diversity in Genotype Frequencies and Meta-Analysis of the Association between Rs1801282 Polymorphisms and Gestational Diabetes Mellitus. Diabetes Res. Clin. Pract. 2018, 143, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Song, J.; Park, K.W. The Multifaceted Factor Peroxisome Proliferator-Activated Receptor γ (PPARγ) in Metabolism, Immunity, and Cancer. Arch. Pharm. Res. 2015, 38, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Song, Y.; Zhang, Y.; Liang, B.; Deng, Y.; Tang, T.; Ye, Y.C.; Hou, H.Y.; Wang, C.C. Novel Genetic Variants of PPARγ2 Promoter in Gestational Diabetes Mellitus and Its Molecular Regulation in Adipogenesis. Front. Endocrinol. 2020, 11, 499788. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L.J.; Scholtens, D.M.; Sandler, V.; Hayes, M.G. Genetics of Gestational Diabetes Mellitus and Maternal Metabolism. Curr. Diab. Rep. 2016, 16, 15. [Google Scholar] [CrossRef]
- Mao, H.; Li, Q.; Gao, S. Meta-Analysis of the Relationship between Common Type 2 Diabetes Risk Gene Variants with Gestational Diabetes Mellitus. PLoS ONE 2012, 7, e45882. [Google Scholar] [CrossRef] [PubMed]
- Svyatova, G.; Berezina, G.; Danyarova, L.; Kuanyshbekova, R.; Urazbayeva, G. Genetic Predisposition to Gestational Diabetes Mellitus in the Kazakh Population. Diabetes Metab. Syndr. 2022, 16, 102675. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xie, F.; Xie, X.Q.; Liu, Y. Study on the Correlation between PPARγ Gene Polymorphism with Gestational Diabetes Mellitus in Han Chinese in Hubei. Mod. J. Integr. Tradit. Chin. West Med. 2012, 21, 1838–1840. [Google Scholar] [CrossRef]
- Mondal, A.K.; Das, S.K.; Baldini, G.; Chu, W.S.; Sharma, N.K.; Hackney, O.G.; Zhao, J.; Grant, S.F.A.; Elbein, S.C. Genotype and Tissue-Specific Effects on Alternative Splicing of the Transcription Factor 7-like 2 Gene in Humans. J. Clin. Endocrinol. Metab. 2010, 95, 1450–1457. [Google Scholar] [CrossRef]
- Ferreira, M.C.; da Silva, M.E.R.; Fukui, R.T.; Arruda-Marques, M.D.C.; dos Santos, R.F. TCF7L2 Correlation in Both Insulin Secretion and Postprandial Insulin Sensitivity. Diabetol. Metab. Syndr. 2018, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ou, J.; Li, L.; Yang, Y.; Zhao, J.; Wu, R. The Wnt Signaling Pathway Effector TCF7L2 Mediates Olanzapine-Induced Weight Gain and Insulin Resistance. Front. Pharmacol. 2018, 9, 379. [Google Scholar] [CrossRef]
- Ding, W.; Xu, L.; Zhang, L.; Han, Z.; Jiang, Q.; Wang, Z.; Jin, S. Meta-Analysis of Association between TCF7L2 Polymorphism Rs7903146 and Type 2 Diabetes Mellitus. BMC Med. Genet. 2018, 19, 38. [Google Scholar] [CrossRef]
- Lou, L.; Wang, J.; Wang, J. Genetic Associations between Transcription Factor 7 Like 2 Rs7903146 Polymorphism and Type 2 Diabetes Mellitus: A Meta-Analysis of 115,809 Subjects. Diabetol. Metab. Syndr. 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, J.L.; Martínez-Larrad, M.T.; Zabena, C.; Pérez-Barba, M.; Serrano-Ríos, M. Association of Variants of the TCF7L2 Gene with Increases in the Risk of Type 2 Diabetes and the Proinsulin:Insulin Ratio in the Spanish Population. Diabetologia 2008, 51, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.; Jehangir, A.; Liu, Y. Two TCF7L2 Variants Associated with Type 2 Diabetes in the Han Nationality Residents of China. J. Coll. Physicians Surg. Pak. 2018, 28, 794–797. [Google Scholar] [PubMed]
- Danquah, I.; Othmer, T.; Frank, L.K.; Bedu-Addo, G.; Schulze, M.B.; Mockenhaupt, F.P. The TCF7L2 Rs7903146 (T) Allele Is Associated with Type 2 Diabetes in Urban Ghana: A Hospital-Based Case–Control Study. BMC Med. Genet. 2013, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Cropano, C.; Santoro, N.; Groop, L.; Dalla Man, C.; Cobelli, C.; Galderisi, A.; Kursawe, R.; Pierpont, B.; Goffredo, M.; Caprio, S. The Rs7903146 Variant in the TCF7L2 Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care 2017, 40, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Bahaaeldin, A.M.; Seif, A.A.; Hamed, A.I.; Kabiel, W.A.Y. Transcription Factor 7-Like-2 (TCF7L2) Rs7903146 (C/T) Polymorphism in Patients with Type 2 Diabetes Mellitus. Dubai Diabetes Endocrinol. J. 2020, 26, 112–118. [Google Scholar] [CrossRef]
- Acharya, S.; Al-Elq, A.; Al-Nafaie, A.; Muzaheed, M.; Al-Ali, A. Type 2 Diabetes Mellitus Susceptibility Gene TCF7L2 Is Strongly Associated with Hyperglycemia in the Saudi Arabia Population of the Eastern Province of Saudi Arabia. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3100–3106. [Google Scholar]
- Saadi, H.; Nagelkerke, N.; Carruthers, S.G.; Benedict, S.; Abdulkhalek, S.; Reed, R.; Lukic, M.; Nicholls, M.G. Association of TCF7L2 Polymorphism with Diabetes Mellitus, Metabolic Syndrome, and Markers of Beta Cell Function and Insulin Resistance in a Population-Based Sample of Emirati Subjects. Diabetes Res. Clin. Pract. 2008, 80, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Guewo-Fokeng, M.; Sobngwi, E.; Atogho-Tiedeu, B.; Donfack, O.S.; Noubiap, J.J.N.; Ngwa, E.N.; Mato-Mofo, E.P.; Fosso, P.P.; Djahmeni, E.; Djokam-Dadjeu, R.; et al. Contribution of the TCF7L2 Rs7903146 (C/T) Gene Polymorphism to the Susceptibility to Type 2 Diabetes Mellitus in Cameroon. J. Diabetes Metab. Disord. 2015, 14, 26. [Google Scholar] [CrossRef]
- Pourahmadi, M.; Erfanian, S.; Moradzadeh, M.; Jahromi, A.S. Non-Association between Rs7903146 and Rs12255372 Polymorphisms in Transcription Factor 7-Like 2 Gene and Type 2 Diabetes Mellitus in Jahrom City, Iran. Diabetes Metab. J. 2015, 39, 512–517. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chang, T.-J.; Jiang, Y.-D.; Kuo, S.-S.; Lee, K.-C.; Chiu, K.C.; Chuang, L.-M. Association Study of the Genetic Polymorphisms of the Transcription Factor 7-like 2 (TCF7L2) Gene and Type 2 Diabetes in the Chinese Population. Diabetes 2007, 56, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Xie, Z.; Zhang, D. Association of the Rs7903146 Polymorphism in Transcription Factor 7-like 2 (TCF7L2) Gene with Gestational Diabetes Mellitus: A Meta-Analysis. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2013, 29, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Včelák, J.; Vejražková, D.; Vaňková, M.; Lukášová, P.; Bradnová, O.; Hálková, T.; Bešťák, J.; Andělová, K.; Kvasničková, H.; Hoskovcová, P.; et al. T2D Risk Haplotypes of the TCF7L2 Gene in the Czech Population Sample: The Association with Free Fatty Acids Composition. Physiol. Res. 2012, 61, 229–240. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th Edition. 2021. Available online: https://diabetesatlas.org (accessed on 17 May 2024).
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Beverly, E.A.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Darville, A.; Das, S.R.; Ekhlaspour, L.; et al. Introduction and Methodology: Standards of Care in Diabetes—2024. Available online: https://doi.org/10.2337/dc24-SINT (accessed on 15 May 2024).
- Goyal, S.; Rani, J.; Bhat, M.A.; Vanita, V. Genetics of Diabetes. World J. Diabetes 2023, 14, 656–679. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.N.; Chun-Kwan, O.; Luk, A.O.Y. Young-Onset Diabetes in East Asians: From Epidemiology to Precision Medicine. Endocrinol. Metab. 2024, 39, 239–254. [Google Scholar] [CrossRef]
No. | Gene Name | Chromosome | rs | Position |
---|---|---|---|---|
1 | PPARG | 3 | rs1801282 | 12351626 |
2 | TCF7L2 | 10 | rs7903146 | 112998590 |
Gene Name | rs | MAF | N | A1 | A2 | GENO | Conformity of Genotype Distributions to Hardy–Weinberg Equilibrium | ||
---|---|---|---|---|---|---|---|---|---|
O (HET) | E (HET) | p | |||||||
PPARG | rs1801282 | 0.1378 | 1800 | C | G | 1338/428/34 | 0.2378 | 0.2376 | 1 |
TCF7L2 | rs7903146 | 0.1521 | 1801 | C | T | 1298/458/45 | 0.2543 | 0.258 | 0.5233 |
Population | N | MAF | χ2 | p |
---|---|---|---|---|
PPARG rs1801282 | ||||
Kazakhstan | 1800 | 0.1378 | ||
Europe | 503 | 0.120 | 1.73 | 0.189 |
East Asia | 504 | 0.026 | 92.02 * | <0.001 |
South Asia | 489 | 0.120 | 1.828 | 0.177 |
England | 91 | 0.121 | 0.209 | 0.648 |
Spain | 107 | 0.117 | 0.227 | 0.635 |
Italy | 107 | 0.084 | 2.494 | 0.115 |
China | 103 | 0.049 | 6.730 * | 0.010 |
Japan | 104 | 0.029 | 10.194 * | 0.002 |
Vietnam | 99 | 0.01 | 13.427 * | <0.001 |
Bangladesh | 86 | 0.11 | 0.765 | 0.382 |
India | 103 | 0.092 | 2.119 | 0.146 |
Pakistan | 96 | 0.141 | 0.050 | 0.824 |
TCF7L2 rs7903146 | ||||
Kazakhstan | 1801 | 0.1521 | ||
Europe | 503 | 0.317 | 105.41 | <0.001 |
East Asia | 504 | 0.023 | 114.31 | <0.001 |
South Asia | 489 | 0.299 | 83.79 | <0.001 |
England | 91 | 0.258 | 6.626 * | 0.011 |
Spain | 107 | 0.397 | 42.234 * | <0.001 |
Italy | 107 | 0.374 | 36.105 * | <0.001 |
China | 103 | 0.024 | 13.846 * | <0.001 |
Japan | 104 | 0.029 | 12.027 * | <0.001 |
Vietnam | 99 | 0.01 | 15.294 * | <0.001 |
Bangladesh | 86 | 0.279 | 9.945 * | 0.002 |
India | 103 | 0.282 | 12.194 * | <0.001 |
Pakistan | 96 | 0.25 | 6.592 * | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svyatova, G.; Berezina, G.; Murtazaliyeva, A.; Dyussupov, A.; Belyayeva, T.; Faizova, R.; Dyussupova, A. Genetic Predisposition to Prediabetes in the Kazakh Population. Curr. Issues Mol. Biol. 2024, 46, 10913-10922. https://doi.org/10.3390/cimb46100648
Svyatova G, Berezina G, Murtazaliyeva A, Dyussupov A, Belyayeva T, Faizova R, Dyussupova A. Genetic Predisposition to Prediabetes in the Kazakh Population. Current Issues in Molecular Biology. 2024; 46(10):10913-10922. https://doi.org/10.3390/cimb46100648
Chicago/Turabian StyleSvyatova, Gulnara, Galina Berezina, Alexandra Murtazaliyeva, Altay Dyussupov, Tatyana Belyayeva, Raida Faizova, and Azhar Dyussupova. 2024. "Genetic Predisposition to Prediabetes in the Kazakh Population" Current Issues in Molecular Biology 46, no. 10: 10913-10922. https://doi.org/10.3390/cimb46100648
APA StyleSvyatova, G., Berezina, G., Murtazaliyeva, A., Dyussupov, A., Belyayeva, T., Faizova, R., & Dyussupova, A. (2024). Genetic Predisposition to Prediabetes in the Kazakh Population. Current Issues in Molecular Biology, 46(10), 10913-10922. https://doi.org/10.3390/cimb46100648