Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Sample Collection and Analysis
2.2.1. Cytomorphological Analysis
2.2.2. Biochemistry Markers Analysis
2.2.3. Flow Cytometry
2.2.4. HLA Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Litz, C.E.; Brunning, R.D. 2 Chronic lymphoproliferative disorders: Classification and diagnosis. Baillieres Clin. Haematol. 1993, 6, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.; Kantarjian, H.; Roberts, W.M.; Keating, M.; Freireich, E.; Albitar, M. Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch. Pathol. Lab. Med. 2000, 124, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Shanafelt, T.D.; Eichhorst, B. Chronic lymphocytic leukaemia. Lancet 2018, 391, 1524–1537. [Google Scholar] [CrossRef] [PubMed]
- Rozman, C.; Montserrat, E. Chronic lymphocytic leukemia. N. Engl. J. Med. 1995, 333, 1052–1057. [Google Scholar] [CrossRef]
- Lee, J.S.; Dixon, D.O.; Kantarjian, H.M.; Keating, M.J.; Talpaz, M. Prognosis of chronic lymphocytic leukemia: A multivariate regression analysis of 325 untreated patients. Blood 1987, 69, 929–936. [Google Scholar] [CrossRef]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical Staging of Chronic Lymphocytic Leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef]
- Letestu, R.; Lévy, V.; Eclache, V.; Baran-Marszak, F.; Vaur, D.; Naguib, D.; Schischmanoff, O.; Katsahian, S.; Nguyen-Khac, F.; Davi, F.; et al. Prognosis of Binet stage A chronic lymphocytic leukemia patients: The strength of routine parameters. Blood 2010, 116, 4588–4590. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.; Kater, A.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 32, 23–33. [Google Scholar] [CrossRef]
- Society, Leukemia & Lymphoma. Leukemia & Lymphoma Society. 2016. Available online: https://www.lls.org/leukemia/chronic-lymphocytic-leukemia/diagnosis/cll-staging (accessed on 2 August 2024).
- Amaya-Chanaga, C.I.; Rassenti, L.Z. Biomarkers in chronic lymphocytic leukemia: Clinical applications and prognostic markers. Best. Pr. Res. Clin. Haematol. 2016, 29, 79–89. [Google Scholar] [CrossRef]
- Vosoughi, T.; Bagheri, M.; Hosseinzadeh, M.; Ehsanpour, A.; Davari, N.; Saki, N. CD markers variations in chronic lymphocytic leukemia: New insights into prognosis. J. Cell. Physiol. 2019, 234, 19420–19439. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, S.; Gurnari, C.; Rubio, M.T.; Visconte, V.; Lenz, T.L. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front. Immunol. 2022, 13, 944872. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.M. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand. J. Immunol. 2015, 82, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Maruntelu, I.; Preda, C.M.; Sandra, I.; Istratescu, D.; Chifulescu, A.E.; Manuc, M.; Diculescu, M.; Talangescu, A.; Tugui, L.; Manuc, T.; et al. HLA Genotyping in Romanian Adult Patients with Celiac Disease, their First-degree Relatives and Healthy Persons. J. Gastrointest. Liver Dis. 2022, 31, 191–197. [Google Scholar] [CrossRef]
- Mărunţelu, I.; Cristea, B.M.; Omer, S.; Preda, C.M.; Constantinescu, I. Relevance of HLA gene polymorphisms in Romanian patients with chronic renal insufficiency undergoing renal transplantation. J. Clin. Lab. Anal. 2021, 35, e24075. [Google Scholar] [CrossRef]
- Ursu, L.; Calenic, B.; Diculescu, M.; Dima, A.; Constantinescu, I. HLA Alleles and KIR Genes in Romanian Patients with Chronic Hepatitis C. J. Gastrointestin Liver Dis. 2020, 4, 29. [Google Scholar] [CrossRef]
- Tălăngescu, A.; Calenic, B.; Mihăilescu, D.F.; Tizu, M.; Marunțelu, I.; Constantinescu, A.E.; Constantinescu, I. Molecular Analysis of HLA Genes in Romanian Patients with Chronic Hepatitis B Virus Infection. Curr. Issues Mol. Biol. 2024, 46, 1064–1077. [Google Scholar] [CrossRef]
- Tizu, M.; Calenic, B.; Maruntelu, I.; Caragea, A.M.; Talangescu, A.; Ursu, L.; Rotarescu, C.; Surugiu, M.; Constantinescu, A.E.; Constantinescu, I. Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients—Case Control Study. Med. Sci. 2024, 12, 14. [Google Scholar] [CrossRef]
- Gragert, L.; Fingerson, S.; Albrecht, M.; Maiers, M.; Kalaycio, M.; Hill, B.T. Fine-mapping of HLA associations with chronic lymphocytic leukemia in US populations. Blood 2014, 124, 2657–2665. [Google Scholar] [CrossRef]
- Delmas-Marsalet, Y.; Hors, J.; Colombani, J.; Dausset, J. Study of HL-A genotypes in a case of familial chronic lymphocytic leukaemia (CLL). Tissue Antigens 2008, 4, 441–445. [Google Scholar] [CrossRef]
- Dyer, P.A.; Ridway, J.C.; Flanagan, N.G. HLA-A, B and DR antigens in chronic lymphocytic leukaemia. Dis. Markers 1986, 4, 231–237. [Google Scholar] [PubMed]
- Machulla, H.; Schaaf, A.; Kujat, G.; Langner, J.; Müller, L.; Schönermarck, U. Association of chronic lymphocytic leukemia with specific alleles of the HLA-DR4:DR53:DQ8 haplotype in German patients. Int. J. Cancer 2001, 92, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Tizu, M.; Calenic, B.; Hârza, M.; Cristea, B.M.; Maruntelu, I.; Caragea, A.M.; Talangescu, A.; Dima, A.; Constantinescu, A.E.; Constantinescu, I. HLA Gene Polymorphisms in Romanian Patients with Chronic Lymphocytic Leukemia. Genet. Res. 2024, 2024, 1–9. [Google Scholar] [CrossRef]
- Baumann, T.; Delgado, J.; Santacruz, R.; Martínez-Trillos, A.; Royo, C.; Navarro, A.; Pinyol, M.; Rozman, M.; Pereira, A.; Villamor, N.; et al. Chronic lymphocytic leukemia in the elderly: Clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica 2014, 99, 1599–1604. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- Schilhabel, A.; Walter, P.J.; Cramer, P.; von Tresckow, J.; Kohlscheen, S.; Szczepanowski, M.; Laqua, A.; Fischer, K.; Eichhorst, B.; Böttcher, S.; et al. CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis. Cancers 2022, 14, 4917. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Matutes, E.; Morilla, A.M.; Morilla, R.M.; Owusu-Ankomah, K.A.; Rafiq-Mohammed, F.; del Giudice, I.; Catovsky, D. Diagnostic significance of CD20 and FMC7 expression in B-cell disorders. Am. J. Clin. Pathol. 2003, 120, 754–759. [Google Scholar] [CrossRef]
- Rodrigues, C.; Laranjeira, P.; Pinho, A.; Silva, I.; Silva, S.; Coucelo, M.; Oliveira, A.C.; Simões, A.T.; Damásio, I.; Silva, H.M.; et al. CD20+ T cells in monoclonal B cell lymphocytosis and chronic lymphocytic leukemia: Frequency, phenotype and association with disease progression. Front. Oncol. 2024, 14, 1380648. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Beum, P.V.; Solga, M.D.; DiLillo, D.J.; Lindorfer, M.A.; Hess, C.E.; Densmore, J.J.; Williams, M.E.; Taylor, R.P. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J. Immunol. 2004, 172, 3280–3288. [Google Scholar] [CrossRef]
- Esteban, R.-E.; Christianne, B.; Alvaro, A.; Demichelis-Gómez, R. Prognostic Effect of CD20 Expression in Adult B-cell Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2018, 18, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Maljaei, S.; Asvadi-E-Kermani, I.; Eivazi-E-Ziaei, J.; Nikanfar, A.; Vaez, J. Usefulness of CD45 density in the diagnosis of B-cell chronic lymphoproliferative disorders. Indian. J. Med. Sci. 2005, 59, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, M.J.; Guenther, K.L.; Shults, K.E.; Stelzer, G.T. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am. J. Clin. Pathol. 1993, 100, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Ratei, R.; Sperling, C.; Karawajew, L.; Schott, G.; Schrappe, M.; Harbott, J.; Riehm, H.; Ludwig, W.-D. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann. Hematol. 1998, 77, 107–114. [Google Scholar] [CrossRef]
- Cario, G.; Rhein, P.; Mitlöhner, R.; Zimmermann, M.; Bandapalli, O.R.; Romey, R.; Moericke, A.; Ludwig, W.-D.; Ratei, R.; Muckenthaler, M.U.; et al. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2013, 99, 103–110. [Google Scholar] [CrossRef]
- Özdemir, Ç.; Yavaşoğlu, F.; Şenol, Y.; Şahin, M.; Köken, T. A comparison of bone marrow flow cytometry findings and bone marrow biopsy immunohistochemical findings in chronic lymphocytic leukemia/small lymphocytic lymphoma: A methodological study. Eskiseh. Med. J. 2023, 4, 34–40. [Google Scholar]
- Sorigue, M.; Juncà, J.; Sarrate, E.; Grau, J. Expression of CD43 in chronic lymphoproliferative leukemias. Cytom. Part B Clin. Cytom. 2017, 94, 136–142. [Google Scholar] [CrossRef]
- Falay, M.; Öztürk, B.A.; Güneş, K.; Kalpakçı, Y.; Dağdaş, S.; Ceran, F.; Özet, G. The Role of CD200 and CD43 Expression in Differential Diagnosis between Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma. Turk. J. Hematol. 2018, 35, 94–98. [Google Scholar] [CrossRef]
- Salem, D.A.; Scott, D.; McCoy, C.S.; Liewehr, D.J.; Venzon, D.J.; Arons, E.; Kreitman, R.J.; Stetler-Stevenson, M.; Yuan, C.M. Differential Expression of CD43, CD81, and CD200 in Classic Versus Variant Hairy Cell Leukemia. Cytom. Part B Clin. Cytom. 2019, 96, 275–282. [Google Scholar] [CrossRef]
- Vela, J.G.; Delgado, I.; Benito, L.; Monteserin, M.; Alonso, L.G.; Somolinos, N.; Andreu, M.; Oña, F. CD79b expression in B cell chronic lymphocytic leukemia: Its implication for minimal residual disease detection. Leukemia 1999, 13, 1501–1505. [Google Scholar] [CrossRef]
- Allan, J.N.; Bhavsar, E.B.; Vaisitti, T.; Sarno, V.; Liu, Y.; Arruga, F.; Joyce, M.; Schulz, M.; Deaglio, S.; Furman, R.R.; et al. CD79b Expression in Richter’s Transformation. Blood 2019, 134 (Suppl. S1), 4279. [Google Scholar] [CrossRef]
- Kimby, E.; Mellstedt, H.; Björkholm, M.; Holm, G. Clonal cell surface structures related to differentiation, activation and homing in B-cell chronic lymphocytic leukemia and monoclonal lymphocytosis of undetermined significance. Eur. J. Haematol. 1989, 43, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Robak, T.; Krawczyńska, A.; Cebula-Obrzut, B.; Urbaniak, M.; Iskierka-Jażdżewska, E.; Robak, P. Atypical Chronic Lymphocytic Leukemia—The Current Status. Cancers 2023, 15, 4427. [Google Scholar] [CrossRef]
- Dighiero, G.; Hamblin, T.J. Chronic lymphocytic leukaemia. Lancet 2008, 371, 1017–1029. [Google Scholar] [CrossRef]
- Miller, M.L.; Fishleder, A.J.; Tubbs, R.R. The expression of CD22 (Leu 14) and CD11c (LeuM5) in chronic lymphoproliferative disorders using two-color flow cytometric analysis. Am. J. Clin. Pathol. 1991, 96, 100–108. [Google Scholar] [CrossRef]
- Tembhare, P.R.; Marti, G.; Wiestner, A.; Degheidy, H.; Farooqui, M.; Kreitman, R.J.; Jasper, G.A.; Yuan, C.M.; Liewehr, D.; Venzon, D.; et al. Quantification of expression of antigens targeted by antibody-based therapy in chronic lymphocytic leukemia. Am. J. Clin. Pathol. 2013, 140, 813–818. [Google Scholar] [CrossRef]
- Jovanovic, D.; Djurdjevic, P.; Andjelkovic, N.; Zivic, L. Possible role of CD22, CD79b and CD20 expression in distinguishing small lymphocytic lymphoma from chronic lymphocytic leukemia. Wspolczesna Onkol. Oncol. 2014, 1, 29–33. [Google Scholar] [CrossRef]
- Hashemi, M.; Rostami, S. CD38 gene polymorphisms and genetic susceptibility to chronic lymphocytic leukemia. Iran. J. Blood Cancer 2022, 14, 16–21. [Google Scholar] [CrossRef]
- Maďarová, M.; Mucha, R.; Hresko, S.; Makarová, Z.; Gdovinová, Z.; Szilasiová, J.; Vitková, M.; Guman, T.; Štecová, N.; Dobransky, T. Identification of new phosphorylation sites of CD23 in B-cells of patients with chronic lymphocytic leukemia. Leuk. Res. 2018, 70, 25–33. [Google Scholar] [CrossRef]
- Dragovic-Ivancevic, T.; Kraguljac-Kurtovic, N.; Knezevic, V.; Bogdanovic, A.; Mihaljevic, B.; Bozic, B.; Gotic, M. The role of immunophenotyping in differential diagnosis of chronic lymphocytic leukemia. Srp. Arh. Celok. Lek. 2014, 142, 197–203. [Google Scholar] [CrossRef]
- Briani, C.; Visentin, A.; Cavallaro, T.; Cacciavillani, M.; Cabrini, I.; Ferrari, S.; Zambello, R.; Trentin, L. Primary neurolymphomatosis as clinical onset of chronic lymphocytic leukemia. Ann. Hematol. 2016, 96, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Espasa, A.; Tapia, G.; Vergara, S.; Raya, M.; Junca, J.; Sorigue, M. Flow cytometric expression of CD71, CD81, CD44 and CD39 in B cell lymphoma. Scand. J. Clin. Lab. Investig. 2021, 81, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Afacan-Öztürk, H.; Falay, M.; Albayrak, M.; Yıldız, A.; Öztürk, Ҫ.P.; Maral, S.; Özet, G. CD81 Expression in the Differential Diagnosis of Chronic Lymphocytic Leukemia. Clin. Lab. 2019, 65, 313–317. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Seymour, J.F.; Kater, A.P.; Fischer, K. Should Undetectable Minimal Residual Disease Be the Goal of Chronic Lymphocytic Leukemia Therapy? Hematol. Clin. N. Am. 2021, 35, 775–791. [Google Scholar] [CrossRef]
- Lanza, F.; Maffini, E.; Rondoni, M.; Massari, E.; Faini, A.C.; Malavasi, F. CD22 Expression in B-Cell Acute Lymphoblastic Leukemia: Biological Significance and Implications for Inotuzumab Therapy in Adults. Cancers 2020, 12, 303. [Google Scholar] [CrossRef]
- Olson, T.S.; Frost, B.F.; Duke, J.L.; Dribus, M.; Xie, H.M.; Prudowsky, Z.D.; Furutani, E.; Gudera, J.; Shah, Y.B.; Ferriola, D.; et al. Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities. J. Clin. Investig. 2022, 7. [Google Scholar] [CrossRef] [PubMed]
- Solanki, H.; Mishra, V.C.; Tiwari, A.K.; Kakkar, N.; Vashisht, N.; Raina, V.; Sharma, G. Human Leukocyte Antigen Associations with Acute Leukemia: An Indian perspective. Indian. J. Med. Paediatr. Oncol. 2020, 41, 850–858. [Google Scholar] [CrossRef]
- Taylor, G.M.; Dearden, S.; Ravetto, P.; Ayres, M.; Watson, P.; Hussain, A.; Greaves, M.; Alexander, F.; Eden, O.B.; UKCCS Investigators. United Kingdom Childhood Cancer Study. Genetic susceptibility to childhood common acute lymphoblastic leukaemia is associated with polymorphic peptide-binding pocket profiles in HLA-DPB1*0201. Hum. Mol. Genet. 2002, 11, 1585–1597. [Google Scholar] [CrossRef]
- Aung, F.M.; Litchtiger, B.; Khouri, I. Comparison of HLA Alleles in Follicular Lymphoma and Chronic Lymphocytic Leukemia Patients Referred for Allogeneic Stem Cell Transplantation. Blood 2012, 120, 4218. [Google Scholar] [CrossRef]
- Tchilian, E.Z.; Wallace, D.L.; Wells, R.S.; Flower, D.R.; Morgan, G.; Beverley, P.C.L. A Deletion in the Gene Encoding the CD45 Antigen in a Patient with SCID. J. Immunol. 2001, 166, 1308–1313. [Google Scholar] [CrossRef]
- Altin, J.G.; Sloan, E.K. The role of CD45 and CD45-associated molecules in T cell activation. Immunol. Cell Biol. 1997, 75, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.L. The regulation of B- and T-lymphocyte activation by the transmembrane protein tyrosine phosphatase CDML. Curr. Opin. Cell Biol. 1994, 6, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Epstein, P.N. CD45 Immunohistochemistry in Mouse Kidney. Bio Protoc. 2021, 11, e4230. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, F.; Durrieu, F.; Briais, A.; Dumain, P.; Belloc, F.; Bascans, E.; Reiffers, J.; Boisseau, M.R.; Bernard, P. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia 1997, 11, 1878–1886. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Singh, J.; Verma, D.; Kumar, R.; Bakhshi, S.; Tanwar, P.; Singh, A.R.; Chopra, A. Prognostic significance of CD45 antigen expression in pediatric acute lymphoblastic leukemia. Blood Cells Mol. Dis. 2021, 89, 102562. [Google Scholar] [CrossRef]
- Gredelj-Simec, N.; Jelić-Puskarić, B.; Ostojić, A.; Siftar, Z.; Fiala, D.; Kardum-Skelin, I.; Vrhovac, R.; Jaksić, B. [Diagnostic and prognostic significance of CD45 cell surface antigen expression in hematologic malignancies with main focus on acute leukemias]. Acta Med. Croat. Cas. Hravat. Akad. Med. Znan. 2011, 65, 45–52. [Google Scholar]
- Gonsalves, W.I.; Timm, M.M.; Rajkumar, S.; Morice, W.G.; Dispenzieri, A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; Leung, N.; Kapoor, P.; et al. The prognostic significance of CD45 expression by clonal bone marrow plasma cells in patients with newly diagnosed multiple myeloma. Leuk. Res. 2016, 44, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, D.; Lotay, A.; Gachard, N.; Marfak, I.; Faucher, J.-L.; Trimoreau, F.; Guérin, E.; Bordessoule, D.; Jaccard, A.; Feuillard, J. Very low levels of surface CD45 reflect CLL cell fragility, are inversely correlated with trisomy 12 and are associated with increased treatment-free survival. Am. J. Hematol. 2013, 88, 747–753. [Google Scholar] [CrossRef]
- Carulli, G.; Cannizzo, E.; Zucca, A.; Buda, G.; Orciuolo, E.; Marini, A.; Petrini, M. CD45 expression in low-grade B-cell non-Hodgkin’s lymphomas. Leuk. Res. 2008, 32, 263–267. [Google Scholar] [CrossRef]
- Karell, K.; Louka, A.S.; Moodie, S.J.; Ascher, H.; Clot, F.; Greco, L.; Ciclitira, P.J.; Sollid, L.M.; Partanen, J. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: Results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 2003, 64, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, D.A.; Wei, C.; Qian, Y.; Rosenberg, A.F.; Sanz, I. Advances in human B cell phenotypic profiling. Front. Immunol. 2012, 3, 302. [Google Scholar] [CrossRef] [PubMed]
- Maeshima, A.M.; Taniguchi, H.; Fujino, T.; Saito, Y.; Ito, Y.; Hatta, S.; Yuda, S.; Makita, S.; Fukuhara, S.; Munakata, W.; et al. Immunohistochemical CD20-negative change in B-cell non-Hodgkin lymphomas after rituximab-containing therapy. Ann. Hematol. 2020, 99, 2141–2148. [Google Scholar] [CrossRef]
- Katchi, T.; Liu, D. Diagnosis and treatment of CD20 negative B cell lymphomas. Biomark. Res. 2017, 5, 1–5. [Google Scholar] [CrossRef]
- Dinner, S.; Liedtke, M. Antibody-based therapies in patients with acute lymphoblastic leukemia. Hematology 2018, 2018, 9–15. [Google Scholar] [CrossRef]
- Alausa, M.; Almagro, U.; Siddiqi, N.; Zuiderweg, R.; Medipalli, R.; Hariharan, S. Refractory acute kidney transplant rejection with CD20 graft infiltrates and successful therapy with rituximab. Clin. Transplant. 2004, 19, 137–140. [Google Scholar] [CrossRef]
- Dahlgren, U.S.; Bennet, W. ABO-Incompatible Liver Transplantation—A Review of the Historical Background and Results. Int. Rev. Immunol. 2019, 38, 118–128. [Google Scholar] [CrossRef]
- Chu, P.G.; Loera, S.; Huang, Q.; Weiss, L.M. Lineage determination of CD20- B-Cell neoplasms: An immunohistochemical study. Am. J. Clin. Pathol. 2006, 126, 534–544. [Google Scholar] [CrossRef]
- Zhang, X.M.; Aguilera, N. New immunohistochemistry for B-cell lymphoma and Hodgkin lymphoma. Arch. Pathol. Lab. Med. 2014, 138, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- EL Ansary, M.M.; Mohammed, L.A.; Hassan, T.H.; Baraka, A.; Ahmed, A.A. Human leukocyte antigen-DRB1 polymorphism in childhood acute lymphoblastic leukemia. Mol. Clin. Oncol. 2014, 3, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Arons, E.; Adams, S.; Venzon, D.J.; Pastan, I.; Kreitman, R.J. Class II human leucocyte antigen DRB1*11 in hairy cell leukaemia patients with and without haemolytic uraemic syndrome. Br. J. Haematol. 2014, 166, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Morsi, M.; Elgharbawy, M.; Hamed, N.; Mamdouh, H.; Arafa, S.A.E. HLA DRB1 alleles in association with acute and chronic myeloid leukemia and evaluation of their role as markers for selection of the line of treatment. Egypt. J. Med. Microbiol. 2022, 31, 37–42. [Google Scholar] [CrossRef]
- Fuhlbrigge, R.C.; King, S.L.; Sackstein, R.; Kupper, T.S. CD43 is a ligand for E-selectin on CLA+ human T cells. Blood 2006, 107, 1421–1426. [Google Scholar] [CrossRef]
- Gillissen, M.A.; de Jong, G.; Kedde, M.; Yasuda, E.; Levie, S.E.; Moiset, G.; Hensbergen, P.J.; Bakker, A.Q.; Wagner, K.; Villaudy, J.; et al. Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv. 2017, 1, 1551–1564. [Google Scholar] [CrossRef]
- Hsieh, Y.; Lin, C.; Tsao, C.; Hsieh, P.; Tzeng, C.; Chuang, S. Aberrant expression of CD19 and CD43 in a patient with therapy-related acute myeloid leukemia and a history of mantle cell lymphoma. Kaohsiung J. Med. Sci. 2009, 25, 389–394. [Google Scholar] [CrossRef]
- J, K.P.; Hobday, K.S.; Ziesmer, S.; Caron, B.L. Demonstration of distinct antigenic profiles of small B-cell lymphomas by paraffin section immunohistochemistry. Am. J. Clin. Pathol. 1999, 112, 319–329. [Google Scholar]
- Naeim, F.; Nagesh Rao, P.; Song, S.X.; Phan, R.T. Principles of Immunophenotyping. In Atlas of Hematopathology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 561–566. [Google Scholar] [CrossRef]
- Dorfman, D.M.; Shahsafaei, A.; Alonso, M.A. Utility of CD200 immunostaining in the diagnosis of primary mediastinal large B cell lymphoma: Comparison with MAL, CD23, and other markers. Mod. Pathol. 2012, 25, 1637–1643. [Google Scholar] [CrossRef]
- Schlette, E.; Medeiros, L.J.; Keating, M.; Lai, R. CD79b expression in chronic lymphocytic leukemia. Association with trisomy 12 and atypical immunophenotype. Arch. Pathol. Lab. Med. 2003, 127, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Del Poeta, G.; Del Principe, M.I.; Zucchetto, A.; Buccisano, F.; Simotti, C.; Maurillo, L.; Giannì, L.; Bulian, P.; Venditti, A.; Coletta, A.; et al. High CD79b Expression Predicts a Poor Outcome in B-Cell Chronic Lymphocytic Leukemia (B-CLL). Blood 2008, 112, 1054. [Google Scholar] [CrossRef]
- McCarron, K.F.; Hammel, J.P.; Hsi, E.D. Usefulness of CD79b Expression in the Diagnosis of B-Cell Chronic Lymphoproliferative Disorders. Am. J. Clin. Pathol. 2000, 113, 805–813. [Google Scholar] [CrossRef]
- Falay, M.; Serdar, M.A.; Dalgali, H.; Uçar, M.A.; Dagdaş, S.; Özet, G. Which Markers Should the used for Diagnostic Chronic Lymphocytic Leukemia Immunophenotyping Scoring System by Flow Cytometry? Clin. Lab. 2019, 65, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Boyer, T.; Guihard, S.; Roumier, C.; Peyrouze, P.; Gonzales, F.; Berthon, C.; Quesnel, B.; Preudhomme, C.; Behal, H.; Duhamel, A.; et al. Tetraspanin CD81 is an adverse prognostic marker in acute myeloid leukemia. Oncotarget 2016, 7, 62377–62385. [Google Scholar] [CrossRef]
- Floren, M.; Gillette, J.M. Acute myeloid leukemia: Therapy resistance and a potential role for tetraspanin membrane scaffolds. Int. J. Biochem. Cell Biol. 2021, 137, 106029. [Google Scholar] [CrossRef]
- Gonzales, F.; Peyrouze, P.; Boyer, T.; Guihard, S.; Sevrin, F.; Laurent, D.; Plesa, A.; Barthelemy, A.; Bongiovanni, A.; Preudhomme, C.; et al. Tetraspanin CD81 Supports Cancer Stem Cell Function and Represents a Therapeutic Vulnerability in Acute Myeloid Leukemia. Blood 2023, 142, 168. [Google Scholar] [CrossRef]
- Colbert, J.D.; Cruz, F.M.; Baer, C.E.; Rock, K.L. Tetraspanin-5–mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc. Natl. Acad. Sci. USA 2022, 119, e2122188119. [Google Scholar] [CrossRef]
- Maecker, H.T. Human CD81 directly enhances Th1 and Th2 cell activation, but preferentially induces proliferation of Th2 cells upon long-term stimulation. BMC Immunol. 2003, 4, 1–14. [Google Scholar] [CrossRef] [PubMed Central]
- Zhou, M.; Qiu, H.; Chen, T.; Xiao, R.; Yang, J.; Cen, L.; Li, J.; Miao, K. Human leukocyte antigen (HLA)-DRB1*14 is associated with a high incidence of acute lymphocytic leukemia. Onkologie 2012, 35, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Orouji, E.; Afshari, J.T.; Badiee, Z.; Shirdel, A.; Alipour, A. Association between HLA-DQB1 gene and patients with acute lymphoblastic leukemia (ALL). Int. J. Hematol. 2012, 95, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.H.; Momeni-Varposhti, Z.; Roshandel, E.; Sankanian, G.; Rouzbahani, N.H.; Ghorban, K.; Rajaeinejad, M.; Hajifathali, A. Association of HLA alleles with hematologic malignancies. Gene Rep. 2021, 25, 101346. [Google Scholar] [CrossRef]
- Oza, A.M.; Tonks, S.; Lim, J.; Fleetwood, M.A.; Lister, T.A.; Bodmer, J.G. A clinical and epidemiological study of human leukocyte antigen-DPB alleles in Hodgkin’s disease. Cancer Res. 1994, 54, 5101–5105. [Google Scholar] [PubMed]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Orchard, J.A.; Ibbotson, R.E.; Davis, Z.; Thomas, P.W.; Stevenson, F.K.; Oscier, D.G. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002, 99, 1023–1029. [Google Scholar] [CrossRef]
- Ibrahim, S.; Keating, M.; Do, K.-A.; O’Brien, S.; Huh, Y.O.; Jilani, I.; Lerner, S.; Kantarjian, H.M.; Albitar, M. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001, 98, 181–186. [Google Scholar] [CrossRef]
- Patten, P.E.M.; Buggins, A.G.S.; Richards, J.; Wotherspoon, A.; Salisbury, J.; Mufti, G.J.; Hamblin, T.J.; Devereux, S. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 2008, 111, 5173–5181. [Google Scholar] [CrossRef]
- Malavasi, F.; Deaglio, S.; Funaro, A.; Ferrero, E.; Horenstein, A.L.; Ortolan, E.; Vaisitti, T.; Aydin, S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 2008, 88, 841–886. [Google Scholar] [CrossRef]
- Aydin, S.; Rossi, D.; Bergui, L.; D’Arena, G.; Ferrero, E.; Bonello, L.; Omedé, P.; Novero, D.; Morabito, F.; Carbone, A.; et al. CD38 gene polymorphism and chronic lymphocytic leukemia: A role in transformation to Richter syndrome? Blood 2008, 111, 5646–5653. [Google Scholar] [CrossRef]
- Del Poeta, G.; Maurillo, L.; Venditti, A.; Buccisano, F.; Epiceno, A.M.; Capelli, G.; Tamburini, A.; Suppo, G.; Battaglia, A.; Del Principe, M.I.; et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood 2001, 98, 2633–2639. [Google Scholar] [CrossRef] [PubMed]
Gender | Age (Years) | |||
---|---|---|---|---|
Total | Male (%) | Female (%) | Mean | |
CLL patients * | 66 | 57.5% | 42.4% | 63.2 |
Controls | 100 | 55% | 45% | 34.3 |
Parameter | Determined Levels | Reference Interval | % of Patients Outside the Reference Interval |
---|---|---|---|
WBC * (103 µL−1) | 11.31–89.05 | 3.98–10 | 87.88% |
Hemoglobin (g × dL−1) | 11.39 ± 2.66 | 11.2–17.5 | 39.39% |
Lymphocytes (103 µL−1) | 4.58–50.55 | 1.8–3.74 | 92.06% |
% Lymphocytes | 64.09 ± 25.5 | 19.3–53.1 | 79.37% |
Neutrophils (103 µL−1) | 1.99–5.39 | 1.56–6.13 | 34.92% |
% Neutrophils | 3.7–32.9 | 34–71.1 | 85.71% |
Eosinophils (103 µL−1) | 0.065–0.3 | 0.04–0.54 | 28.57% |
% Eosinophils | 0.1–1.3 | 0.7–7 | 61.29% |
Thrombocytes (103 µL−1) | 149.72 ± 77.18 | 150–450 | 53.85% |
Erithrocytes (103 µL−1) | 3.86 ± 1.03 | 3.93–6.08 | 43.08% |
LDH (U/L) | 373.02 ± 111.53 | 208–378 | 46.97% |
CRP (mg/L) | 2.5–7.5 | 0–3 | 66.67% |
Marker | Number of Positive Patients | Percent of Positive Patients | Number of Weak Positive Patients | Percent of Weak Positive Patients | Number of Negative Patients | Percent of Negative Patients |
---|---|---|---|---|---|---|
CD20 | 18 | 27.27% | 40 | 60.61% | 8 | 12.12% |
CD45 | 57 | 86.36% | 2 | 3.03% | 7 | 10.61% |
CD43 | 12 | 18.18% | 19 | 28.79% | 35 | 53.03% |
CD79b | 7 | 10.61% | 22 | 33.33% | 37 | 56.06% |
CD5 | 29 | 43.94% | 26 | 39.39% | 10 | 15.15% |
CD22 | 7 | 10.61% | 12 | 18.18% | 47 | 71.21% |
CD23 | 53 | 80.30% | 7 | 10.61% | 6 | 9.09% |
CD81 | 3 | 4.55% | 16 | 24.24% | 47 | 71.21% |
Biomarker | HLA | p-Value |
---|---|---|
CD20 | HLA-DRB1*11:04:01 | 0.028521 |
HLA-DRB1*15:02:01 | 0.041458 | |
HLA-DPA1*01:03:01 | 0.046239 | |
HLA-B*49:01:01 | 0.043283 | |
CD45 | HLA-C*07:01:01 | 0.047395 |
HLA-DQA1*05:01:01 | 0.032716 | |
HLA-DQA1*01:02:02 | 0.01544 | |
CD79b | HLA-DPA1*02:01:02 | 0.024732 |
HLA-A*32:01:01 | 0.024347 | |
CD23 | HLA-B*39:01:01 | 0.007212 |
HLA-A* 11:01:01 | 0.017837 | |
CD43 | HLA-DRB1*15:01:01 | 0.038263 |
CD22 | HLA-B*49:01:01 | 0.000472 |
HLA-C*07:01:01 | 0.025517 | |
HLA-DPB1*02:01:02 | 0.038567 | |
HLA-DRB1*07:01:01 | 0.02458 | |
CD81 | HLA-DPB1*04:02:01 | 0.002678 |
HLA-DQA1*01:04:01 | 0.000192 | |
HLA-DQB1*05:03:01 | 0.000621 | |
HLA-DRB1*14:01:01 | 0.000065 |
Biomarker | HLA | Correlation | HLA Presence | OR | Sup 95% CI | Inf 95% CI |
---|---|---|---|---|---|---|
CD20 | HLA-DRB1*11:04:01 | Positive | 33.33% of the patients with strong CD20 expression and 12.5% of the patients with weak or no CD20 expression | 3.5 | 12.853 | 0.953 |
HLA-DRB1*15:02:01 | Negative | 25% of the patients with no CD20 expression and 6.9% of the patients with weak or strong CD20 expression | 4.5 | 0.676 | 29.948 | |
HLA-B*49:01:01 | Positive | 16.66% of the patients with strong CD20 expression and 2.08% of the patients with weak or no CD20 expression | 9.4 | 0.909 | 97.26 | |
CD45 | HLA-C*07:01:01 | Postive | Only in patients with strong CD45 expression; in 33.33% of the patients | - | - | |
HLA-DQA1*05:01:01 | Postive | Only in patients with strong CD45 expression; in 36.84% of the patients | - | - | - | |
HLA-DQA1*01:02:02 | Negative | 28.57% of the patients with no CD45 expression; 6.78% of the patients with weak or strong expression | 5.5 | 37.84 | 0.8 | |
CD79b | HLA-DPA1*02:01:02 | Positive | 42.86% of the patients with strong CD79b expression and 3.39% of the patients with weak or absent CD79b expression | 21.375 | 167.12 | 2.73 |
HLA-A* 32:01:01 | Negative | Only in patients with no CD79b expression; in 18.92% of the patients with negative CD79b | - | - | - | |
CD23 | HLA-B*39:01:01 | Negative | 23.08% of the patients with weak or no CD23 expression and 3.77% of the patients with strong CD23 expression | 7.65 | 51.83 | 1.13 |
HLA-A* 11:01:01 | Negative | 15.39% of the patients with weak or no CD23 expression and 3.77% of the patients with strong CD23 expression | 4.64 | 36.58 | 0.59 | |
CD43 | HLA-DRB1*15:01:01 | Positive | 41.66% of the patients with strong CD43 expression and 11.11% of the patients with weak or absent CD43 expression | 5.71 | 23.82 | 1.37 |
CD22 | HLA-B*49:01:01 | Positive | 42.86% of the patients with strong CD22 expression and 1.7% of the patients with weak or absent CD22 expression | 43.5 | 519.27 | 3.64 |
HLA-C*07:01:01 | Positive | 42.11% of the patients with strong or weak CD22 expression and 23.4% of the patients with no CD22 expression | 2.38 | 7.4 | 0.766 | |
HLA-DPB1*02:01:02 | Positive | 71.43% of the patients with strong CD22 expression and 28.81% of the patients with weak or absent CD22 expression | 6.18 | 34.98 | 1.09 | |
HLA-DRB1*07:01:01 | Negative | Only in patients with no CD22 expression; in 28.81% of the patients with negative CD22 | - | - | - | |
CD81 | HLA-DPB1*04:02:01 | Negative | 44.68% of the patients with no CD81 expression and 5.26% of the patients with weak or strong CD81 expression | 14.54 | 118.04 | 1.79 |
HLA-DQA1*01:04:01 | Positive | 21.05% of the patients with strong or weak CD81 expression and 2.13% of the patients with no CD81 expression | 12.27 | 118.44 | 1.16 | |
HLA-DQB1*05:03:01 | Positive | 26.32% of the patients with strong or weak CD81 expression and 4.26% of the patients with no CD81 expression | 8.04 | 46.06 | 1.4 | |
HLA-DRB1*14:01:01 | Positive | 26.32% of the patients with strong or weak CD81 expression and 2.13% of the patients with no CD81 expression | 16.43 | 152.61 | 1.77 |
Marker | Role | References |
---|---|---|
CD20 | CD20 is a biomarker for normal and neoplastic and mature and immature B cells | [26] |
CD20+ cells are usually associated with the cytotoxic CD8+ category, followed by the helper CD4+ compartment | [27] | |
In healthy individuals, CD20+ cell counts are significantly higher when compared to those observed in patients with CLL | [28] | |
Utilizing engineered or alternative anti-CD20 monoclonal antibodies (mAbs) could enhance the efficacy of immunotherapy for chronic lymphocytic leukemia | [29] | |
Survival rates in acute lymphoblastic leukemia (ALL) are higher in patients without CD20 expression (CD20−) compared to those with CD20 expression (CD20+) | [30] | |
CD45 | CD45 is a specific marker for CLL and plays a critical role in the diagnosis and classification of this disease | [31] |
CD45 is employed in differential diagnosis to distinguish between typical CLL and non-CLL B cell Chronic Lymphoproliferative Disorders (CLPDs) | [32] | |
Its expression is critical for identifying and categorizing lymphocyte subpopulations within hematological conditions, thereby facilitating a more precise clinical assessment and enabling targeted therapeutic strategies | [33] | |
CD45 expression demonstrates statistically significant variations across different ethnic groups; therefore, it could be utilized for diagnostic purposes and disease categorization in the fields of public health science and geoepidemiology | [34] | |
CD43 | The majority of circulating B cells do not express CD43, except for a small subset of activated B cells. Additionally, CD43 expression is noted at varying levels across a spectrum of B cell lymphomas. | [35] |
[36] | ||
CD43 can be considered as definitive markers in atypical CLL patients with potential for use in the differential diagnosis of typical/atypical CLL | [37] | |
[38] | ||
CD79 | CD79 is a critical component of the B cell receptor complex, playing key roles in B cell activation, development, cell survival and homeostatis | [39] [40] |
CD79 is a valuable marker for monitoring minimal residual disease (MRD) in patients with CLL. As a marker, it enables the detection of persistent CLL cells post-treatment, aiding in the evaluation of therapeutic efficacy and the prediction of potential disease recurrence | ||
Elevated CD79 expression is associated with poor prognosis in CLL and may also indicate the potential for complications | ||
CD22 | CD22 is usually expressed on mature B cells and less on immature B cells | [41] [42] [43] [44] [45] [46] |
CD22 is involved in B cell survival, development and homeostatis | ||
Monoclonal antibodies that target CD22 have been developed to target and deplete malignant/autoreactive B cells | ||
Altered expression of CD22 affects the progression and treatment of CLL | ||
Individuals with CLL that express lymphadenopathy and/or splenomegaly tend to be CD22+ | ||
CD22 is more positively correlated with accute lymphoblastic leukemia than chronic lymphoblastic leukemia | ||
Due to its critical roles in modulating B cell receptor signaling, CD22 presents a promising therapeutic target for immunosuppressive interventions in future clinical applications | ||
CD23 | CD23 is mainly expressed in B lymphocytes and is actively involved in mediating allergic reactions through regulation of IgE production | [47] |
High levels of CD 23 expression are common in CLL and are used to differentiate chronic lymphocytic leukemia from other B cell malignancies | [48] | |
Blood-soluble levels of CD23 serve as a prognostic marker in CLL | [49] | |
CD23 is a potential therapeutic target with several mAb designed to block its activity, leading to better disease control | [50] | |
CD81 | CD81 is a transmembrane protein expressed by cells of the immune system, including B and T cells | [38] [51] [52] [53] |
Is involved in B cell activation and proliferation and in T cell adhesion and signaling | ||
CD81 expression on leukemia cells acts as a diagnostic marker for specific types of leukemia | ||
It alters the interaction between leukemia cells and T cells and may impair the response of the immune system to leukemia | ||
It may represent therapeutic targets with mAb acting as inhibitors of CD81 and enhancing the clearance of leukemia cells. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tizu, M.; Calenic, B.; Constantinescu, A.-E.; Bratei, A.A.; Stoia, R.A.; Popa, M.C.-G.; Constantinescu, I. Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance. Curr. Issues Mol. Biol. 2024, 46, 10008-10025. https://doi.org/10.3390/cimb46090598
Tizu M, Calenic B, Constantinescu A-E, Bratei AA, Stoia RA, Popa MC-G, Constantinescu I. Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance. Current Issues in Molecular Biology. 2024; 46(9):10008-10025. https://doi.org/10.3390/cimb46090598
Chicago/Turabian StyleTizu, Maria, Bogdan Calenic, Alexandra-Elena Constantinescu, Alexandru Adrian Bratei, Razvan Antonio Stoia, Mihnea Catalin-Gabriel Popa, and Ileana Constantinescu. 2024. "Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance" Current Issues in Molecular Biology 46, no. 9: 10008-10025. https://doi.org/10.3390/cimb46090598
APA StyleTizu, M., Calenic, B., Constantinescu, A.-E., Bratei, A. A., Stoia, R. A., Popa, M. C.-G., & Constantinescu, I. (2024). Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance. Current Issues in Molecular Biology, 46(9), 10008-10025. https://doi.org/10.3390/cimb46090598