Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems
Abstract
:1. Introduction
2. Viral Delivery
3. Virus-like Particle Delivery
4. Lipid Nanoparticle Delivery
5. Extracellular Vesicles Delivery
6. Other Nanomaterial-Based Delivery
6.1. Polymeric Nanoparticles
6.2. Peptide-Derived Nanoparticles
6.3. Inorganic Nanoparticles
7. Perspectives
Funding
Conflicts of Interest
References
- Wang, F.; Li, P.; Chu, H.C.; Lo, P.K. Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, G.K.; Khullar, N.; Sidhu, I.S.; Navik, U.S.; Reddy, A.P.; Reddy, P.H.; Bhatti, J.S. Emerging role of non-coding RNA in health and disease. Metab. Brain Dis. 2021, 36, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247 Pt 1, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Muth, C.C. ASO Therapy: Hope for Genetic Neurological Diseases. JAMA 2018, 319, 644–646. [Google Scholar] [CrossRef]
- Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. MicroRNAs in metabolism. Acta Physiol. 2017, 219, 346–361. [Google Scholar] [CrossRef]
- Lewin, A.S.; Hauswirth, W.W. Ribozyme gene therapy: Applications for molecular medicine. Trends Mol. Med. 2001, 7, 221–228. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Malakondaiah, S.; Julius, A.; Ponnambalam, D.; Gunthoti, S.S.; Ashok, J.; Krishana, P.S.; Rebecca, J. Gene silencing by RNA interference: A review. Genome Instab. Dis. 2024, 5, 225–241. [Google Scholar] [CrossRef]
- Garbo, S.; Maione, R.; Tripodi, M.; Battistelli, C. Next RNA Therapeutics: The Mine of Non-Coding. Int. J. Mol. Sci. 2022, 23, 7471. [Google Scholar] [CrossRef]
- Saw, P.E.; Song, E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep. Med. 2024, 5, 101555. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.; Wu, Y.; Park, J.; Kim, J.S.; Li, Q.; Choi, J.; Shin, N.; Lan, M.; Cai, Y.; Lee, J.; et al. RNA Nanomedicine: Delivery Strategies and Applications. Aaps J. 2023, 25, 95. [Google Scholar] [CrossRef]
- Dammes, N.; Peer, D. Paving the Road for RNA Therapeutics. Trends Pharmacol. Sci. 2020, 41, 755–775. [Google Scholar] [CrossRef]
- Bai, W.; Yang, D.; Zhao, Y.; Li, G.; Liu, Z.; Xiong, P.; Quan, H.; Wu, X.; Chen, P.; Kong, X.; et al. Multi-step engineered adeno-associated virus enables whole-brain mRNA delivery. bioRxiv 2024. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, B.-W.; Zhai, S.-N.; Liu, C.-X.; Wu, H.; Zhu, B.-Q.; Wei, M.-Y.; Wei, J.; Yang, L.; Chen, L.-L. Circular RNA aptamers ameliorate AD-relevant phenotypes by targeting PKR. bioRxiv 2024. [Google Scholar] [CrossRef]
- Amado, D.A.; Robbins, A.B.; Smith, A.R.; Whiteman, K.R.; Chillon Bosch, G.; Chen, Y.; Fuller, J.A.; Izda, A.; Nelson, S.; Dichter, A.I.; et al. AAV-based delivery of RNAi targeting Ataxin-2 improves survival, strength, and pathology in mouse models of rapidly and slowly progressive sporadic ALS. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, P.; Narayanan, E.; Liu, Q.; Tsybovsky, Y.; Boswell, K.; Ding, S.; Hu, Z.; Follmann, D.; Lin, Y.; Miao, H.; et al. A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 2021, 27, 2234–2245. [Google Scholar] [CrossRef]
- Hoffmann, M.A.G.; Yang, Z.; Huey-Tubman, K.E.; Cohen, A.A.; Gnanapragasam, P.N.P.; Nakatomi, L.M.; Storm, K.N.; Moon, W.J.; Lin, P.J.C.; West, A.P.; et al. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell 2023, 186, 2380–2391.e9. [Google Scholar] [CrossRef]
- Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X.; Mekhedov, S.L.; Macrae, R.K.; Koonin, E.V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.Y.; Witten, J.; Raji, I.O.; Eweje, F.; MacIsaac, C.; Meng, S.; Oladimeji, F.A.; Hu, Y.; Manan, R.S.; Langer, R.; et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 2024, 19, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wen, Y.; Shan, X.; Ma, X.; Yang, C.; Cheng, X.; Zhao, Y.; Li, J.; Mi, S.; Huo, H.; et al. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat. Commun. 2024, 15, 9471. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Raji, I.O.; Gordon, A.G.R.; Sun, L.; Raimondo, T.M.; Oladimeji, F.A.; Jiang, A.Y.; Varley, A.; Langer, R.S.; Anderson, D.G. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 2024, 23, 1002–1008. [Google Scholar] [CrossRef]
- Han, X.; Alameh, M.G.; Gong, N.; Xue, L.; Ghattas, M.; Bojja, G.; Xu, J.; Zhao, G.; Warzecha, C.C.; Padilla, M.S.; et al. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat. Chem. 2024, 16, 1687–1697. [Google Scholar] [CrossRef]
- Su, K.; Shi, L.; Sheng, T.; Yan, X.; Lin, L.; Meng, C.; Wu, S.; Chen, Y.; Zhang, Y.; Wang, C.; et al. Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation. Nat. Commun. 2024, 15, 5659. [Google Scholar] [CrossRef]
- Lian, X.; Chatterjee, S.; Sun, Y.; Dilliard, S.A.; Moore, S.; Xiao, Y.; Bian, X.; Yamada, K.; Sung, Y.-C.; Levine, R.M.; et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 2024, 19, 1409–1417. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Li, C.; Fang, W.; Li, X.; Jing, Z.; Yang, Z.; Zhang, X.; Huang, Y.; Gong, J.; et al. In situ engineering of mRNA-CAR T cells using spleen-targeted ionizable lipid nanoparticles to eliminate cancer cells. Nano Today 2024, 59, 102518. [Google Scholar] [CrossRef]
- Popowski, K.; Lutz, H.; Hu, S.; George, A.; Dinh, P.U.; Cheng, K. Exosome therapeutics for lung regenerative medicine. J. Extracell Vesicles 2020, 9, 1785161. [Google Scholar] [CrossRef]
- Popowski, K.D.; López de Juan Abad, B.; George, A.; Silkstone, D.; Belcher, E.; Chung, J.; Ghodsi, A.; Lutz, H.; Davenport, J.; Flanagan, M.; et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 2022, 1, 100002. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, L.; Zhang, J.; Chiang, C.-L.; Pan, J.; Wang, X.; Kwak, K.J.; Li, H.; Zhao, R.; Rima, X.Y.; et al. Exosomal mRNAs for Angiogenic–Osteogenic Coupled Bone Repair. Adv. Sci. 2023, 10, 2302622. [Google Scholar] [CrossRef] [PubMed]
- Wedge, M.-E.; Jennings, V.A.; Crupi, M.J.F.; Poutou, J.; Jamieson, T.; Pelin, A.; Pugliese, G.; de Souza, C.T.; Petryk, J.; Laight, B.J.; et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat. Commun. 2022, 13, 1898. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Luozhong, S.; Cai, S.; Londhe, K.; Elkasri, N.; Hawkins, R.; Yuan, Z.; Su-Greene, K.; Yin, Y.; Cruz, M.; et al. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 2024, 8, 415–426. [Google Scholar] [CrossRef]
- Millán Cotto, H.A.; Pathrikar, T.V.; Hakim, B.; Baby, H.M.; Zhang, H.; Zhao, P.; Ansaripour, R.; Amini, R.; Carrier, R.L.; Bajpayee, A.G. Cationic-motif-modified exosomes for mRNA delivery to retinal photoreceptors. J. Mater. Chem. B 2024, 12, 7384–7400. [Google Scholar] [CrossRef]
- Dong, S.; Liu, X.; Bi, Y.; Wang, Y.; Antony, A.; Lee, D.; Huntoon, K.; Jeong, S.; Ma, Y.; Li, X.; et al. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat. Commun. 2023, 14, 6610. [Google Scholar] [CrossRef]
- Soliman, O.Y.; Alameh, M.G.; De Cresenzo, G.; Buschmann, M.D.; Lavertu, M. Efficiency of Chitosan/Hyaluronan-Based mRNA Delivery Systems In Vitro: Influence of Composition and Structure. J. Pharm. Sci. 2020, 109, 1581–1593. [Google Scholar] [CrossRef]
- Pilipenko, I.; Korzhikov-Vlakh, V.; Sharoyko, V.; Zhang, N.; Schäfer-Korting, M.; Rühl, E.; Zoschke, C.; Tennikova, T. pH-Sensitive Chitosan-Heparin Nanoparticles for Effective Delivery of Genetic Drugs into Epithelial Cells. Pharmaceutics 2019, 11, 317. [Google Scholar] [CrossRef]
- Xue, L.; Yan, Y.; Kos, P.; Chen, X.; Siegwart, D.J. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Deliv. Transl. Res. 2021, 11, 255–260. [Google Scholar] [CrossRef]
- Hamada, E.; Kurosaki, T.; Hashizume, J.; Harasawa, H.; Nakagawa, H.; Nakamura, T.; Kodama, Y.; Sasaki, H. Anionic Complex with Efficient Expression and Good Safety Profile for mRNA Delivery. Pharmaceutics 2021, 13, 126. [Google Scholar] [CrossRef]
- Guzman Gonzalez, V.; Grunenberger, A.; Nicoud, O.; Czuba, E.; Vollaire, J.; Josserand, V.; Le Guével, X.; Desai, N.; Coll, J.-L.; Divita, G.; et al. Enhanced CRISPR-Cas9 RNA system delivery using cell penetrating peptides-based nanoparticles for efficient in vitro and in vivo applications. J. Control. Release 2024, 376, 1160–1175. [Google Scholar] [CrossRef]
- Qiu, Y.; Man, R.C.H.; Liao, Q.; Kung, K.L.K.; Chow, M.Y.T.; Lam, J.K.W. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control. Release 2019, 314, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Krhač Levačić, A.; Berger, S.; Müller, J.; Wegner, A.; Lächelt, U.; Dohmen, C.; Rudolph, C.; Wagner, E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J. Control. Release 2021, 339, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.A.; Day, E.S.; Ko, C.H.; Hurley, L.A.; Luciano, J.P.; Kouri, F.M.; Merkel, T.J.; Luthi, A.J.; Patel, P.C.; Cutler, J.I.; et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152. [Google Scholar] [CrossRef] [PubMed]
- Alidori, S.; Akhavein, N.; Thorek, D.L.; Behling, K.; Romin, Y.; Queen, D.; Beattie, B.J.; Manova-Todorova, K.; Bergkvist, M.; Scheinberg, D.A.; et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med. 2016, 8, 331ra39. [Google Scholar] [CrossRef]
- Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; et al. Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. ACS Nano 2013, 7, 994–1005. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.-C.; Tseng, Y.-C.; Mozumdar, S.; Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release 2010, 142, 416–421. [Google Scholar] [CrossRef]
- Finer, M.; Glorioso, J. A brief account of viral vectors and their promise for gene therapy. Gene Ther. 2017, 24, 1–2. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023, 15, 698. [Google Scholar] [CrossRef]
- Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral vector-based gene therapies in the clinic. Bioeng. Transl. Med. 2022, 7, e10258. [Google Scholar] [CrossRef] [PubMed]
- Samulski, R.J.; Muzyczka, N. AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annu. Rev. Virol. 2014, 1, 427–451. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Dubielzig, R.; Grimm, D.; Kleinschmidt, J.A. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J. 2001, 20, 3282–3291. [Google Scholar] [CrossRef] [PubMed]
- Maurer, A.C.; Weitzman, M.D. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum. Gene Ther. 2020, 31, 499–511. [Google Scholar] [CrossRef]
- Mitusova, K.; Peltek, O.O.; Karpov, T.E.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: Current status and prospects of drug delivery approaches. J. Nanobiotechnology 2022, 20, 412. [Google Scholar] [CrossRef]
- Ranum, P.T.; Tecedor, L.; Keiser, M.S.; Chen, Y.H.; Leib, D.E.; Liu, X.; Davidson, B.L. Cochlear transduction via cerebrospinal fluid delivery of AAV in non-human primates. Mol. Ther. 2023, 31, 609–612. [Google Scholar] [CrossRef]
- Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev. 2020, 156, 214–235. [Google Scholar] [CrossRef]
- Lyu, P.; Wang, L.; Lu, B. Virus-Like Particle Mediated CRISPR/Cas9 Delivery for Efficient and Safe Genome Editing. Life 2020, 10, 366. [Google Scholar] [CrossRef]
- Lyu, P.; Lu, B. New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery. Int. J. Mol. Sci. 2022, 23, 8750. [Google Scholar] [CrossRef]
- Goodier, J.L.; Kazazian, H.H. Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites. Cell 2008, 135, 23–35. [Google Scholar] [CrossRef]
- Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016, 135, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Emerman, M.; Malik, H.S. Paleovirology—Ghosts and gifts of viruses past. Curr. Opin Virol. 2011, 1, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.R.; Collins, K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 2007, 13, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Feschotte, C.; Gilbert, C. Endogenous viruses: Insights into viral evolution and impact on host biology. Nat. Rev. Genet. 2012, 13, 283–296. [Google Scholar] [CrossRef]
- Park, J.E.; Botting, R.A.; Domínguez Conde, C.; Popescu, D.M.; Lavaert, M.; Kunz, D.J.; Goh, I.; Stephenson, E.; Ragazzini, R.; Tuck, E.; et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020, 367, eaay3224. [Google Scholar] [CrossRef]
- Pham, V.V.; Gao, M.; Meagher, J.L.; Smith, J.L.; D’Souza, V.M. A structure-based mechanism for displacement of the HEXIM adapter from 7SK small nuclear RNA. Commun. Biol. 2022, 5, 819. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef]
- Cullis, P.R.; Hope, M.J. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol. Ther. 2017, 25, 1467–1475. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef]
- Norimatsu, J.; Mizuno, H.L.; Watanabe, T.; Obara, T.; Nakakido, M.; Tsumoto, K.; Cabral, H.; Kuroda, D.; Anraku, Y. Triphenylphosphonium-modified catiomers enhance in vivo mRNA delivery through stabilized polyion complexation. Mater. Horiz. 2024, 11, 4711–4721. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, A.E.; Dominguez, S.L.; Yen, C.-W.; Laufer, B.I.; Foreman, O.; Reichelt, M.; Lin, H.; Sagolla, M.; Hötzel, K.; Ngu, H.; et al. Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection. Mol. Ther. Nucleic Acids 2023, 32, 773–793. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther. 2017, 174, 63–78. [Google Scholar] [CrossRef]
- Malle, M.G.; Song, P.; Loffler, P.M.G.; Kalisi, N.; Yan, Y.; Valero, J.; Vogel, S.; Kjems, J. Programmable RNA Loading of Extracellular Vesicles with Toehold-Release Purification. J. Am. Chem. Soc. 2024, 146, 12410–12422. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Xue, H.Y.; Liu, S.; Wong, H.L. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 2014, 9, 295–312. [Google Scholar] [CrossRef]
- Ho, W.; Gao, M.; Li, F.; Li, Z.; Zhang, X.Q.; Xu, X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv. Healthc. Mater. 2021, 10, e2001812. [Google Scholar] [CrossRef]
- Smith, S.A.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjug Chem. 2019, 30, 263–272. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Mar. Drugs 2019, 17, 381. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Kim, K.-J.; Hossain, M.K.; Cho, H.-Y.; Choi, J.-W. DNA–Gold Nanoparticle Conjugates for Intracellular miRNA Detection Using Surface-Enhanced Raman Spectroscopy. BioChip J. 2022, 16, 33–40. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Wyatt, H.; Susser, L.; Geoffrion, M.; Rasheed, A.; Duchez, A.C.; Cottee, M.L.; Afolayan, E.; Farah, E.; Kahiel, Z.; et al. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo. ACS Nano 2019, 13, 6491–6505. [Google Scholar] [CrossRef]
- Shtykalova, S.; Deviatkin, D.; Freund, S.; Egorova, A.; Kiselev, A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life 2023, 13, 903. [Google Scholar] [CrossRef]
- Casper, J.; Schenk, S.H.; Parhizkar, E.; Detampel, P.; Dehshahri, A.; Huwyler, J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J. Control. Release 2023, 362, 667–691. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Jiang, H.; Wang, X. Tumor-targeted nano-delivery system of therapeutic RNA. Mater. Horiz. 2022, 9, 1111–1140. [Google Scholar] [CrossRef]
- Jones, S.W.; Christison, R.; Bundell, K.; Voyce, C.J.; Brockbank, S.M.; Newham, P.; Lindsay, M.A. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 2005, 145, 1093–1102. [Google Scholar] [CrossRef]
- Shoari, A.; Tooyserkani, R.; Tahmasebi, M.; Löwik, D. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021, 13, 1391. [Google Scholar] [CrossRef]
- Wickline, S.A.; Hou, K.K.; Pan, H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int. J. Mol. Sci. 2023, 24, 9455. [Google Scholar] [CrossRef]
- Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-Layer Assembled Gold Nanoparticles for siRNA Delivery. Nano Lett. 2009, 9, 2059–2064. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zhang, Y.; Nie, G. Recent Advances in Nanomaterials with Inherent Optical and Magnetic Properties for Bioimaging and Imaging-Guided Nucleic Acid Therapy. Bioconjugate Chem. 2020, 31, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Mitchell, M.J.; Nie, G. Nanomaterials for Therapeutic RNA Delivery. Matter 2020, 3, 1948–1975. [Google Scholar] [CrossRef]
- Lu, Q.; Wright, A.; Pan, Z.-H. AAV dose-dependent transduction efficiency in retinal ganglion cells and functional efficacy of optogenetic vision restoration. Gene Ther. 2024, 31, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.; Aubert, M.; Jerome, K.R. Breaching the blood-brain barrier: AAV triggers dose-dependent toxicity in the brain. Mol. Ther. Methods Clin. Dev. 2023, 31, 101105. [Google Scholar] [CrossRef] [PubMed]
- Costa Verdera, H.; Kuranda, K.; Mingozzi, F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol. Ther. 2020, 28, 723–746. [Google Scholar] [CrossRef]
- Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; de Jong, O.G.; Schiffelers, R.M.; Andaloussi, S.E.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? Adv. Drug Deliv. Rev. 2020, 159, 332–343. [Google Scholar] [CrossRef]
- Peng, X.; Chen, J.; Gan, Y.; Yang, L.; Luo, Y.; Bu, C.; Huang, Y.; Chen, X.; Tan, J.; Yang, Y.Y.; et al. Biofunctional lipid nanoparticles for precision treatment and prophylaxis of bacterial infections. Sci. Adv. 2024, 10, eadk9754. [Google Scholar] [CrossRef]
- Zakas, P.M.; Cunningham, S.C.; Doherty, A.; van Dijk, E.B.; Ibraheim, R.; Yu, S.; Mekonnen, B.D.; Lang, B.; English, E.J.; Sun, G.; et al. Sleeping Beauty mRNA-LNP enables stable rAAV transgene expression in mouse and NHP hepatocytes and improves vector potency. Mol. Ther. 2024, 32, 3356–3371. [Google Scholar] [CrossRef]
- Fitzgerald, K.; Stephan, S.B.; Ma, N.; Wu, Q.V.; Stephan, M.T. Liquid foam improves potency and safety of gene therapy vectors. Nat. Commun. 2024, 15, 4523. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, M.; Xiang, D.; Zhu, J.; Zhang, Q.; Zhong, H.; Peng, Y.; Wang, Z.; Ma, G.; Li, G.; et al. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024, 31, 1298–1314.e8. [Google Scholar] [CrossRef]
Name | Size | Genome | Advantages | Challenges |
---|---|---|---|---|
Adeno-Associated Virus (AAV) | 20–25 nm | Single-stranded DNA, up to 4.7 kb |
|
|
Virus-Like Particles (VLPs) | 20–200 nm | No viral genome; can be engineered to carry RNA |
|
|
Lipid Nanoparticles (LNPs) | 50–150 nm | Encapsulate mRNA or other RNA molecules |
|
|
Extracellular Vesicles (EVs) | 30–1000 nm | Naturally contain RNA and can load therapeutic RNA |
|
|
Name | Modification | Target | Reference |
---|---|---|---|
Viral delivery | Replaced AAV’s inverted terminal repeats (ITRs) with RNA packaging signals (RPSs) | The blood-brain barrier (BBB) | Bai et al. [16] |
Developed circular RNAs with short-imperfect duplex regions (ds-cRNAs) containing ITRs for AAV packaging | Neurons and Microglia | Feng et al. [17] | |
Designed microRNAs (miRNAs) targeting Atxn2, flanked by AAV2 145-bp ITR sequences, and packaged them into a peptide-modified AAV9 (PM-AAV9) vector | Central Nervous System (CNS) | Amado et al. [18] | |
Virus-like particle delivery | Used HIV-derived VLPs to develop an mRNA vaccine co-expressing HIV-1 Env and SIV Gag proteins | T cell | Zhang et al. [19] |
Engineered self-assembling VLPs by incorporating ESCRT proteins into the SARS-CoV-2 spike protein, enhancing spike protein enrichment on VLPs. | T cell | Hoffmann et al. [20] | |
Developed selective endogenous eNcapsidation for cellular delivery (SEND) by engineering mouse and human PEG10 to package, secrete, and deliver specific RNAs. | Mammalian Cells | Segel et al. [21] | |
Lipid nanoparticle delivery | Synthesized a combinatorial library of ionizable, degradable lipids using reductive amination. | Lung | Jiang et al. [22] |
Developed charge-assisted stabilized lipid nanoparticles (CAS-LNPs) by optimizing surface charges with a peptide-lipid conjugate | Pulmonary | Liu et al. [23] | |
Combined machine learning with combinatorial chemistry to identify the most effective candidates. | Muscle and immune cells | Li et al. [24] | |
Develop a one-pot, tandem multi-component reaction based on the rationally designed amine–thiolacrylate conjugation | Lung and spleen | Han et al. [25] | |
Designed a three-component LNP system comprising nAcx-Cm lipids, permanently cationic lipids, and polyethylene glycol (PEG)-lipid. | Lung | Su et al. [26] | |
Designed a three-component LNP system comprising nAcx-Cm lipids, permanently cationic lipids, and lyethylene glycol (PEG)-lipid. | Liver and lungs | Lian et al. [27] | |
Explored in situ engineering of CAR T cells using spleen-targeted LNPs, composed of DSPE-PEG2000-biotin conjugated with biotinylated anti-CD3 via streptavidin | T cells | Li et al. [28] | |
Extracellular vesicles delivery | Optimized exosomes by isolating them from lung tissues | Lung | Popowski et al. [29,30] |
Generated exosomes enriched with angiogenesis- and osteogenesis-related mRNAs (e.g., VEGF and BMP2) by engineering bone marrow mesenchymal stem cells (BMSCs) | Bone | Ma et al. [31] | |
Explored EVs programmed by oncolytic viruses (OVs) | Cancer cells | Wedge et al. [32] | |
Developed leukocyte-derived EVs containing retrovirus-like capsids | Neurons | Gu et al. [33] | |
Anchoring cationic peptide carriers (CPC) and polyethylene glycol (PEG) groups to milk-derived EVs | Retinal photoreceptors | Cotto et al. [34] | |
Engineered sEVs loaded with mRNA using microfluidic electroporation technology and by conjugating targeting ligands such as anti-CD71 and anti-PD-L1 antibodies to the sEVs | Tumors | Dong et al. [35] | |
Polymeric nanoparticles | Optimizing factors such as polymer length, degree of deacetylation, hyaluronic acid content, charge density, and nucleic acid composition | Macrophages | Soliman et al. [36] |
Incorporating heparin into chitosan nanoparticles | ARPE-19 cells | Pilipenko et al. [37] | |
Fluorination was introduced to PEI | Liver | Xue et al. [38] | |
An anionic complex consisting of PEI, γ-polyglutamic acid, and mRNA | Liver and spleen | Hamada et al. [39] | |
Peptide-derived nanoparticles | Introduced a novel class of CPPs by optimizing the sequence, which can self-assemble into stable nanoparticles and can be adjusted in concentration to determine their biodistribution | Lung tumor cells | Gonzalez et al. [40] |
The KL4 peptide, modeled after pulmonary surfactant protein B (SP-B), has been utilized as an mRNA carrier with a linear PEG attachment. | Lung | Qiu et al. [41] | |
Developed a library of peptide-like oligoaminoamides with synthetic amino acids, histidine modifications, and bioreducible disulfide blocks | Tumor Cells | Krhač et al. [42] | |
Inorganic nanoparticles | Used spherical nucleic acids (SNAs) with a dense shell of RNA oligonucleotides conjugated to a nanoparticle core | Glioblastoma cells | Jensen et al. [43] |
Functionalized nanocarbon fibers were modified with targeting ligands for specific accumulation | Kidney cells | Alidori et al. [44] | |
Mesoporous silica nanoparticles (MSNs) were designed for dual loading of chemotherapeutic drugs and siRNA, with surface functionalization to enhance endosomal escape and target delivery. | Breast cancer cells | Meng et al. [45] | |
Lipid-coated biodegradable calcium phosphate nanoparticles (LCPs) were developed for systemic delivery, with optimized particle size and surface charge for tumor targeting. | Tumor cells | Li et al. [46] |
Tropism | Cloning Capacity | Genomic Integration | Duration of Expression In Vivo | Advantages | Disadvantages | |
---|---|---|---|---|---|---|
Retrovirus | Dividing cells (hematopoietic cells). | Moderate (~7–8 kb). | Stable integration into the genome. | Long-term (due to stable integration). | Stable gene transfer in dividing cells. | Insertional mutagenesis, limited tropism. |
Lentivirus | Broad (dividing and non-dividing cells). | Moderate (~7–8 kb). | Stable integration into the genome (both dividing and non-dividing cells). | Long-term (stable expression). | Stable expression in a wide range of cells. | Risk of insertional mutagenesis, immunogenicity. |
Herpes Simplex Virus (HSV) | Primarily neurons, can be engineered for other tissues. | Large (~150 kb). | Episomal (no integration). | Long-term in neurons (latent potential). | High cloning capacity, long-term expression in neurons. | Latency and reactivation risks, immunogenicity. |
Adenovirus | Broad (respiratory, liver, epithelial). | Moderate (~36 kb). | Episomal (no integration). | Short-term (due to immune response). | High transduction efficiency, large cargo capacity. | Short-lived expression, immune response. |
Adeno-Associated Virus (AAV) | Limited but can be engineered (muscle, liver, retina). | Small (~4.0 kb). | Low-frequency integration. | Long-term (non-dividing cells). | Low immunogenicity, stable expression. | Small cloning capacity, pre-existing immunity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ou, Y.; Hou, L. Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems. Curr. Issues Mol. Biol. 2025, 47, 22. https://doi.org/10.3390/cimb47010022
Liu Y, Ou Y, Hou L. Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems. Current Issues in Molecular Biology. 2025; 47(1):22. https://doi.org/10.3390/cimb47010022
Chicago/Turabian StyleLiu, Yuxuan, Yaohui Ou, and Linlin Hou. 2025. "Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems" Current Issues in Molecular Biology 47, no. 1: 22. https://doi.org/10.3390/cimb47010022
APA StyleLiu, Y., Ou, Y., & Hou, L. (2025). Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems. Current Issues in Molecular Biology, 47(1), 22. https://doi.org/10.3390/cimb47010022