Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (496)

Search Parameters:
Keywords = virus-like particles (VLPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1379 KB  
Article
Versatile and Scalable Nanoparticle Vaccine as a Scaffold Against Newly Emerging Influenza Viruses
by Alessandro Pardini, Dominik A. Rothen, Pascal S. Krenger, Anne-Cathrine Vogt, Romano Josi, Xuelan Liu, Kaspars Tars, Manfred Kopf, Monique Vogel and Martin F. Bachmann
Viruses 2025, 17(9), 1165; https://doi.org/10.3390/v17091165 (registering DOI) - 26 Aug 2025
Abstract
Influenza remains a major health threat due to its high contagiousness and global spread, affecting not only humans but also agricultural livestock and wild animals through transmission via migratory birds. Despite over 70 years of vaccination, influenza still creates epidemics and pandemics, and [...] Read more.
Influenza remains a major health threat due to its high contagiousness and global spread, affecting not only humans but also agricultural livestock and wild animals through transmission via migratory birds. Despite over 70 years of vaccination, influenza still creates epidemics and pandemics, and the ongoing use of vaccination is an essential but currently insufficient strategy. In this study, we assessed the immunogenicity and efficacy of an AP205 virus-like particle (VLP) carrying the HA head domain of the A/PR8/H1N1 strain, administered intranasally and subcutaneously in mice. For this purpose, the entire head region of A/PR8/H1N1 was genetically integrated into a sterically improved version of AP205, which exhibits capsid monomers fused into a dimer, thereby offering inexpensive and scalable production processes. The vaccine induced strong systemic anti-HA IgG and IgA antibodies via both routes, with no significant difference in the levels of IgG. Both immunisation strategies induced protection against a lethal challenge with H1PR8 mouse-adapted influenza virus. The findings demonstrate the potential of the AP205 VLP platform for HA1-based influenza vaccines and its applicability for controlling influenza in both humans and livestock. Full article
17 pages, 6170 KB  
Article
Immunogenicity of Virus-like Particles Based on VP1 Protein of Bovine Norovirus
by Zhigang Ma, Xuelian Ma, Xinyu Tao, Yong Huang, Qian Jiang, Xiaojun Ding, Fang Min, Yichen Chu, Ru Li, Xinying Zhang, Lu Liu, Caiyun Zhang, Qi Zhong and Gang Yao
Vet. Sci. 2025, 12(9), 802; https://doi.org/10.3390/vetsci12090802 - 24 Aug 2025
Viewed by 50
Abstract
Bovine Norovirus (BNoV) is a member of the enterovirus family that can cause gastroenteritis in calves. This virus poses a significant risk to calf growth and development as well as to the long-term sustainability of the cattle industry in China and elsewhere. No [...] Read more.
Bovine Norovirus (BNoV) is a member of the enterovirus family that can cause gastroenteritis in calves. This virus poses a significant risk to calf growth and development as well as to the long-term sustainability of the cattle industry in China and elsewhere. No specific treatment or vaccine is currently available; thus, the development of a safe and effective vaccine is paramount. Here, we describe a strategy to assemble BNoV virus-like particles (VLPs) using the insect baculovirus expression system (BEV) to express the major structural protein, VP1, and demonstrate their potentiality as vaccines. The results showed that the BNoV-VLP self-assembled into complete spherical particles with a diameter of approximately 40 nm. When it was immunized in mice, the levels of specific IgG and IgA antibodies peaked at weeks 6 and 7 post-immunization, respectively, with maximum titers of 1:25,600 and 1:200. Moreover, we observed a significant increase in the CD4+/CD8+ T-cell ratio in splenic lymphocytes of immunized mice (p < 0.05), accompanied by a significant increase in TNF-α+CD4+ T-cells and TNF-α+CD8+ T-cells (p < 0.05). These results demonstrate that BNoV-VLPs are promising vaccine candidates for providing immunoprotection in the future. These studies support the significant practical implications of using a scientific basis for the development of a BNoV-VLP vaccine. Full article
Show Figures

Figure 1

25 pages, 2047 KB  
Review
Influenza Virus: Global Health Impact, Strategies, Challenges, Role of Nanotechnolgy in Influenza Vaccine Development
by Shabi Parvez, Anushree Pathrathota, Arjun L. Uppar, Ganesh Yadagiri and Shyam Lal Mudavath
Vaccines 2025, 13(9), 890; https://doi.org/10.3390/vaccines13090890 - 22 Aug 2025
Viewed by 294
Abstract
Influenza is a serious and global health issue, and it is a major cause of morbidity, fatality, and economic loss every year. Seasonal vaccines exist but are not very effective due to strain mismatches, delays in production, and antigenic drift. This comprehensive overview [...] Read more.
Influenza is a serious and global health issue, and it is a major cause of morbidity, fatality, and economic loss every year. Seasonal vaccines exist but are not very effective due to strain mismatches, delays in production, and antigenic drift. This comprehensive overview discusses the current situation of influenza vaccination, including the numerous types of vaccines—inactivated, live attenuated, and recombinant vaccines—and their effectiveness, efficacy, and associated challenges. It highlights the effects of the COVID-19 pandemic on the trends of influenza vaccination and the level to which innovation should be practiced. In the future universal influenza vaccines will be developed that target conserved viral antigens to provide long-term protection to people. In the meantime, novel vaccine delivery platforms, such as mRNA technology, virus-like particle (VLP), and nanoparticle-based systems, and less cumbersome and invasive administration routes, as well as immune responses are also under development to increase access and production capacity. Collectively, these innovations have the potential to not only reduce the global influenza epidemic but also to change the way influenza is prevented and prepare the world for a pandemic. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

15 pages, 5083 KB  
Article
A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis
by Jon Oscherwitz, Kemp Cease, David Milich, Thomas Braun, Fen Yu and David Whitacre
Toxins 2025, 17(8), 422; https://doi.org/10.3390/toxins17080422 - 20 Aug 2025
Viewed by 257
Abstract
Anthrax remains a serious bioterrorism threat for which new and thermostable vaccines are needed. We previously demonstrated that immunization of rabbits with multiple-antigenic-peptide (MAP) vaccines elicit antibody (Ab) against the loop-neutralizing-determinant (LND), a cryptic linear neutralizing epitope in the 2β2-2β3 loop of protective [...] Read more.
Anthrax remains a serious bioterrorism threat for which new and thermostable vaccines are needed. We previously demonstrated that immunization of rabbits with multiple-antigenic-peptide (MAP) vaccines elicit antibody (Ab) against the loop-neutralizing-determinant (LND), a cryptic linear neutralizing epitope in the 2β2-2β3 loop of protective antigen (PA) from Bacillus anthracis (B. anthracis), which mediates the complete protection of rabbits from inhalation spore challenge with B. anthracis Ames strain. Importantly, LND-specific Ab is not significantly elicited with PA-based vaccines. In the current study, we sought to identify a second unique neutralizing epitope which would also not overlap with the neutralizing specificities elicited by PA-based vaccines, and which could be combined with an LND vaccine as a prototype bivalent vaccine for anthrax. We evaluated linear peptide sequences in the α2-α3 helices of domain 3 of lethal factor (LF) in the form of virus-like particle (VLP) vaccines. Immunogenicity studies confirmed the presence of a 20-mer peptide sequence that is capable of eliciting protective levels of neutralizing Ab following two immunizations of rabbits using human-use adjuvants, and lyophilization of the VLPs did not diminish their immunogenicity. To our knowledge, this is the first demonstration that immunization with linear peptide sequences from LF can elicit protective levels of neutralizing Ab in vivo. Full article
Show Figures

Figure 1

12 pages, 833 KB  
Article
Efficacy of Heterologous Vaccination Using Virus-Like Particles and Vaccinia Virus Containing MIC8 and AMA1 Proteins of Toxoplasma gondii
by Hae-Ji Kang and Fu-Shi Quan
Vaccines 2025, 13(8), 862; https://doi.org/10.3390/vaccines13080862 - 15 Aug 2025
Viewed by 337
Abstract
Background: Toxoplasma gondii (T. gondii) infection causes serious diseases in immunocompromised patients and causes congenital toxoplasmosis in infants. T. gondii microneme protein 8 (MIC8) and apical membrane antigen 1 (AMA1) are essential proteins involved in parasitic invasion. Methods: In this [...] Read more.
Background: Toxoplasma gondii (T. gondii) infection causes serious diseases in immunocompromised patients and causes congenital toxoplasmosis in infants. T. gondii microneme protein 8 (MIC8) and apical membrane antigen 1 (AMA1) are essential proteins involved in parasitic invasion. Methods: In this study, we generated virus-like particles (VLPs) and recombinant vaccinia virus (rVV) containing MIC8 or AMA1 proteins. Vaccine efficacy was evaluated in mice (BALB/c) upon challenge infection with T. gondii ME49. Results: Intramuscular immunization with heterologous vaccines (rVV + VLPs; rVV for prime and VLPs for boost) elicited T. gondii-specific IgG antibody responses in mice. Four weeks after the boost, all mice were orally challenged with T. gondii ME49, and protective immunity was assessed. The responses of antibody-secreting cells for IgG2a and IgG2b and those of memory B cells and CD4+ and CD8+ T cells were higher in the rVV + VLP group than in the VLP + VLP group. The rVV + VLP group exhibited a significant reduction in cyst count in the brain. Conclusions: These findings indicate that heterologous vaccination with vaccinia viruses and VLPs improves vaccine efficacy. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

17 pages, 4316 KB  
Article
A Lyophilizable Nanoparticle Anthrax Vaccine Targeting the Loop-Neutralizing Determinant in Protective Antigen from Bacillus anthracis
by Jon Oscherwitz, Kemp Cease, David Milich, Tod Merkel, Thomas Braun, Fen Yu and David C. Whitacre
Microorganisms 2025, 13(8), 1878; https://doi.org/10.3390/microorganisms13081878 - 12 Aug 2025
Viewed by 379
Abstract
Anthrax remains a formidable bioterrorism threat for which new, optimized and thermostable vaccines are needed. We previously demonstrated that five immunizations of rabbits with a multiple-antigenic-peptide (MAP) vaccine in either Freund’s adjuvant or human-use adjuvants can elicit antibody (Ab) against the loop-neutralizing determinant [...] Read more.
Anthrax remains a formidable bioterrorism threat for which new, optimized and thermostable vaccines are needed. We previously demonstrated that five immunizations of rabbits with a multiple-antigenic-peptide (MAP) vaccine in either Freund’s adjuvant or human-use adjuvants can elicit antibody (Ab) against the loop-neutralizing determinant (LND), a cryptic neutralizing epitope in the 2β2-2β3 loop of protective antigen from Bacillus anthracis (B. anthracis), which mediates complete protection of rabbits from inhalation spore challenge with the B. anthracis Ames strain. To develop a more immunogenic vaccine, we molecularly constructed a virus-like particle (VLP) vaccine, comprising the Woodchuck hepatitis core antigen capsid (WHcAg) displaying 240 copies of the LND epitope on each nanoparticle. Initial studies showed that the LND-VLP was immunogenic in rabbits following two immunizations, and passive transfer of the rabbit sera into A/J mice conferred complete protection from aerosol challenge with B. anthracis. Further optimization of the vaccine revealed that the lyophilized LND-VLP vaccine was capable of eliciting highly protective levels of neutralizing antibody with two immunizations, and in some rabbits, a single immunization, using human-use adjuvants. A lyophilized LND-VLP nanoparticle vaccine may be an effective stand-alone vaccine or may complement PA-based vaccines as a future pre- or post-exposure vaccine for anthrax. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

12 pages, 3410 KB  
Article
Nasal and Ocular Immunization with Bacteriophage Virus-like Particle Vaccines Elicits Distinct Systemic and Mucosal Antibody Profiles
by Andzoa N. Jamus, Zoe E. R. Wilton, Samantha D. Armijo, Julian Flanagan, Isabella G. Romano, Susan B. Core and Kathryn M. Frietze
Vaccines 2025, 13(8), 829; https://doi.org/10.3390/vaccines13080829 - 3 Aug 2025
Viewed by 511
Abstract
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate [...] Read more.
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate needle waste. Here, we investigated the antibody profiles elicited by immunization with bacteriophage virus-like particle vaccine platforms at various routes of administration. Methods: We chose two model bacteriophage vaccines for investigation: bacteriophage MS2 virus-like particles (VLPs) recombinantly displaying a short, conserved peptide from Chlamydia trachomatis major outer membrane protein (MS2) and bacteriophage Qβ VLPs displaying oxycodone through chemical conjugation (Qβ). We comprehensively characterized the antibodies elicited systemically and at various mucosal sites when the vaccines were administered intramuscularly, intranasally or periocularly with or without an intramuscular prime using various prime/boost schemes. Results: Intranasal and periocular immunization elicited robust mucosal and systemic IgA responses for both MS2 and Qβ. The intramuscular prime followed by intranasal or periocular boosts elicited broad antibody responses, and increased antibodies titers at certain anatomical sites. Conclusions: These findings demonstrate the tractability of bacteriophage VLP-based vaccines in generating specific antibody profiles based on the prime–boost regimen and route of administration. Full article
Show Figures

Figure 1

16 pages, 2491 KB  
Article
High-Yield Production of PCV2 Cap Protein: Baculovirus Vector Construction and Cultivation Process Optimization
by Long Cheng, Denglong Xie, Wei Ji, Xiaohong Ye, Fangheng Yu, Xiaohui Yang, Nan Gao, Yan Zhang, Shu Zhu and Yongqi Zhou
Vaccines 2025, 13(8), 801; https://doi.org/10.3390/vaccines13080801 - 28 Jul 2025
Viewed by 457
Abstract
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. [...] Read more.
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. The Cap protein, which is the major protective antigen of PCV2, can self-assemble to form virus-like particles (VLPs) in the insect baculovirus expression system. Few studies have compared the expression of Cap proteins in different baculovirus expression systems. Methods: In this study, we compared two commonly commercialized baculovirus construction systems with the Cap protein expression in various insect cells. Results: The results demonstrate that the flashBAC system expressed the Cap protein at higher levels than the Bac-to-Bac system. Notably, when expressing four copies of the Cap protein, the flashBAC system achieved the highest protein yield in High Five cells, where it reached 432 μg/mL at 5 days post-infection (dpi) with 27 °C cultivation. Animal experiments confirmed that the purified Cap protein effectively induced specific antibody production in mice and swine. Conclusions: This study provides critical data for optimizing the production of the PCV2 Cap protein, which is of great significance for reducing the production cost of PCV2 vaccines and improving the industrial production efficiency. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 1798 KB  
Article
Protective Efficacy Induced by Virus-like Particles Expressing Dense Granule Protein 5 of Toxoplasma gondii
by Su In Heo, Hae-Ji Kang, Jie Mao, Zhao-Shou Yang, Md Atique Ahmed and Fu-Shi Quan
Vaccines 2025, 13(8), 787; https://doi.org/10.3390/vaccines13080787 - 24 Jul 2025
Viewed by 485
Abstract
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. [...] Read more.
Background: Toxoplasma gondii (T. gondii) causes severe disease in immunocompromised individuals and pregnant women, underscoring the urgent need for effective vaccines against toxoplasmosis. The dense granule protein 5 (GRA5) of T. gondii plays a key role in parasitic cyst formation. Methods: This study evaluated the protective immune responses induced by a virus-like particle (VLP) vaccine expressing the T. gondii-derived antigen GRA5 in a mouse model challenged with the ME49 strain of T. gondii. GRA5 VLPs were generated using a baculovirus expression system, and VLP formation was confirmed by Western blotting and visualized using transmission electron microscopy. Mice were intranasally immunized with GRA5 VLPs three times at 4-week intervals to induce immune responses, followed by infection with T. gondii ME49. Results: Intranasal immunization with GRA5 VLPs induced parasite-specific IgG antibody responses in the serum and both IgG and IgA antibody responses in the brain. Compared to the non-immunized group, immunized mice exhibited significantly higher levels of germinal center B cells and antibody-secreting cell responses. Moreover, the VLP vaccine suppressed the production of IFN-γ and IL-6 cytokines, leading to a significant reduction in brain inflammation and decreased cyst counts following lethal challenge with T. gondii ME49 infection. Conclusion: These findings suggest that the GRA5 VLP vaccine derived from T. gondii elicits a protective immune response, highlighting its potential as an effective vaccine candidate against toxoplasmosis. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

12 pages, 722 KB  
Review
Bacteriophages: Potential Candidates for the Dissemination of Antibiotic Resistance Genes in the Environment
by Shahid Sher, Husnain Ahmad Khan, Zaman Khan, Muhammad Sohail Siddique, Dilara Abbas Bukhari and Abdul Rehman
Targets 2025, 3(3), 25; https://doi.org/10.3390/targets3030025 - 22 Jul 2025
Viewed by 717
Abstract
The invention of antibacterial agents (antibiotics) was a significant event in the history of the human race, and this invention changed the way in which infectious diseases were cured; as a result, many lives have been saved. Recently, antibiotic resistance has developed as [...] Read more.
The invention of antibacterial agents (antibiotics) was a significant event in the history of the human race, and this invention changed the way in which infectious diseases were cured; as a result, many lives have been saved. Recently, antibiotic resistance has developed as a result of excessive use of antibiotics, and it has become a major threat to world health. ARGs are spread across biomes and taxa of bacteria via lateral or horizontal gene transfer (HGT), especially via conjugation, transformation, and transduction. This review concerns transduction, whereby bacteriophages or phages facilitate gene transfer in bacteria. Bacteriophages are just as common and many times more numerous than their bacterial prey, and these phages are much more influential in controlling the population of bacteria. It is estimated that 25% of overall genes of Escherichia coli have been copied by other species of bacteria due to the HGT process. Transduction may take place via a generalized or specialized mechanism, with phages being ubiquitous in nature. Phage and virus-like particle (VLP) metagenomics have uncovered the emergence of ARGs and mobile genetic elements (MGEs) of bacterial origins. These genes, when transferred to bacteria through transduction, confer resistance to antibiotics. ARGs are spread through phage-based transduction between the environment and bacteria related to people or animals, and it is vital that we further understand and tackle this mechanism in order to combat antimicrobial resistance. Full article
(This article belongs to the Special Issue Small-Molecule Antibiotic Drug Development)
Show Figures

Figure 1

15 pages, 2357 KB  
Article
Development of a Novel, Highly Sensitive System for Evaluating Ebola Virus Particle Formation
by Wakako Furuyama, Miako Sakaguchi, Hanako Ariyoshi and Asuka Nanbo
Viruses 2025, 17(7), 1016; https://doi.org/10.3390/v17071016 - 19 Jul 2025
Viewed by 599
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently [...] Read more.
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently target the viral particle formation process. In this study, we established a simple and highly sensitive screening system to evaluate VP40-mediated virus-like particle (VLP) formation under biosafety level −2 conditions. The system uses the HiBiT luminescence-based reporter fused to VP40, allowing for the detection of VP40 release. Our results demonstrate that the HiBiT sequence fused at the N-terminus [HiBiT-VP40 (N)] retains VP40′s ability to form VLPs, supporting its use as a functional reporter. Furthermore, we validated the system by assessing the role of Rab11-dependent trafficking in VP40-mediated budding and by evaluating the effect of nocodazole, a microtubule depolymerizer, on VLP release. This novel screening system provides a convenient and reliable platform for screening potential inhibitors targeting the late stages of EBOV infection, including viral particle formation and release. Additionally, its potential adaptability to other filoviruses suggests wide applicability in the discovery and development of additional novel therapeutic agents. Full article
Show Figures

Figure 1

21 pages, 492 KB  
Review
Research Progress on Varicella-Zoster Virus Vaccines
by Hongjing Liu, Lingyan Cui, Sibo Zhang, Hong Wang, Wenhui Xue, Hai Li, Yuyun Zhang, Lin Chen, Ying Gu, Tingting Li, Ningshao Xia and Shaowei Li
Vaccines 2025, 13(7), 730; https://doi.org/10.3390/vaccines13070730 - 4 Jul 2025
Viewed by 1327
Abstract
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has [...] Read more.
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has substantially reduced the global incidence of these diseases. However, live attenuated vaccines raise concerns regarding safety and immunogenicity, especially in immunocompromised populations, while recombinant subunit vaccines, such as Shingrix, exhibit high efficacy but are associated with side effects and adjuvant limitations. Recent advancements in vaccine technology, including mRNA vaccines, viral vector vaccines, and virus-like particle (VLP) vaccines, offer promising alternatives with improved safety profiles and durable immunity. This review synthesizes current knowledge on VZV vaccine mechanisms, clinical applications, and immunization strategies, while also examining future directions in vaccine development. The findings underscore the pivotal role of VZV vaccines in disease prevention and highlight the need for continued research to enhance their public health impact. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

12 pages, 2246 KB  
Article
Digital Twin for Upstream and Downstream Integration of Virus-like Particle Manufacturing
by Simon Baukmann, Alina Hengelbrock, Kristina Katsoutas, Jörn Stitz, Axel Schmidt and Jochen Strube
Processes 2025, 13(7), 2101; https://doi.org/10.3390/pr13072101 - 2 Jul 2025
Viewed by 465
Abstract
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when [...] Read more.
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when coupled with a Quality-by-Design (QbD) development approach. A previous work was able to demonstrate the accurate prediction of HEK293F PiggyBac cell concentration as well as VLP titer and metabolite production with a reduced metabolic model. This work presents the reduced metabolic model for a more productive cell line Sleeping Beauty and emphasizes the need for model re-parameterization when the producer cell line changes. The goal of precise prediction for a fed-batch and continuous HEK293 cultivation can, therefore, be achieved. In terms of decision-making for downstream unit operations, a soft sensor for the prediction of main impurities like proteins and DNA was introduced for the first time for the production of lentiviral vectors with several terms describing the release of impurities like DNA and proteins, growth-related protein production, and enzymatic degradation activity associated with cell dissociation in an accurate manner. The additional information can contribute to a more efficient design phase by reducing experimental effort as well as during cultivation with data-based decision-making. With the aid of real-time process data acquisition through process analytical technology (PAT), its predictive power can be enhanced and lead to more reliable processes. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

18 pages, 4409 KB  
Article
Immunogenicity of Matrix Protein 2 Ectodomain (M2e) Displayed on Nodavirus-like Particles as Avian Influenza Vaccine for Poultry
by Anis Suraya Mohamad Abir, Wen Siang Tan, Abdul Rahman Omar, Kok Lian Ho, Munir Iqbal and Abdul Razak Mariatulqabtiah
Vaccines 2025, 13(7), 701; https://doi.org/10.3390/vaccines13070701 - 27 Jun 2025
Viewed by 668
Abstract
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that [...] Read more.
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that threaten poultry production and pose zoonotic risks. The ectodomain of the avian influenza virus (AIV) matrix protein 2 (M2e), known for its high conservation across influenza strains, has emerged as a promising candidate for developing a universal influenza vaccine in a mouse model. However, the efficacy of such expression against poultry AIVs remains limited. The objective of this study was to evaluate the immunogenicity of nodavirus-like particles displaying the M2e proteins. In this study, three synthetic heterologous M2e genes originated from AIV strains H5N1, H9N2 and H5N2 were fused with the nodavirus capsid protein (NVC) of the giant freshwater prawn Macrobrachium rosenbergii (NVC-3xAvM2e) prior to immunogenicity characterisations in chickens. The expression vector pTRcHis-TARNA2 carrying the NVC-3xAvM2e gene cassette was introduced into E. coli TOP-10 cells. The recombinant proteins were purified, inoculated into one-week-old specific pathogen-free chickens subcutaneously and analysed. The recombinant protein NVC-3xAvM2e formed virus-like particles (VLPs) of approximately 25 nm in diameter when observed under a transmission electron microscope. Dynamic light scattering (DLS) analysis revealed that the VLPs have a polydispersity index (PDI) of 0.198. A direct ELISA upon animal experiments showed that M2e-specific antibodies were significantly increased in vaccinated chickens after the booster, with H5N1 M2e peptides having the highest mean absorbance value when compared with those of H9N2 and H5N2. A challenge study using low pathogenic AIV (LPAI) strain A/chicken/Malaysia/UPM994/2018 (H9N2) at 106.5 EID50 showed significant viral load in the lung and cloaca, but not in the oropharyngeal of vaccinated animals when compared with the unvaccinated control group. Collectively, this study suggests that nodavirus-like particles displaying three heterologous M2e have the potential to provide protection against LPAI H9N2 in chickens, though the vaccine’s efficacy and cross-protection across different haemagglutinin (HA) subtypes should be further evaluated. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

31 pages, 1849 KB  
Review
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections
by Hong Nhi Nguyen, Isabel O. Vanderzee and Fei Wen
Vaccines 2025, 13(7), 687; https://doi.org/10.3390/vaccines13070687 - 26 Jun 2025
Viewed by 1053
Abstract
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit [...] Read more.
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit proteins and virus-like particles (VLPs), and more recently, mRNA-based vaccines, while also enhancing methods for evaluating vaccine performance. Despite these innovations, a persistent challenge remains: the inherent complexity and heterogeneity of immune responses continue to impede efforts to achieve consistently effective and durable protection across diverse populations. Single-cell technologies have emerged as transformative tools for dissecting this immune heterogeneity, providing comprehensive and granular insights into cellular phenotypes, functional states, and dynamic host–pathogen interactions. In this review, we examine how single-cell epigenomic, transcriptomic, proteomic, and multi-omics approaches are being integrated across all stages of vaccine development—from infection-informed discovery to guide vaccine design, to high-resolution evaluation of efficacy, and refinement of cell lines for manufacturing. Through representative studies, we highlight how insights from these technologies contribute to the rational design of more effective vaccines and support the development of personalized vaccination strategies. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

Back to TopTop