Toward an Efficient Differentiation of Two Diaporthe Strains Through Mass Spectrometry for Fungal Biotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Endophytic Fungi and Culture of Strains
2.2. Fungal Strains Identification: Morphological and Molecular
2.3. Initial Cultivation and Extraction
2.4. Analysis of Organic Extracts with LC-MS
2.5. ESI-TQD-MS/MS of m/z of Interest
3. Results
3.1. Morphological Identification and Molecular Characterization of Fungal Strains
3.2. Extraction and UPLC-ESI-MS Profile of Extracts
3.3. Identification of Metabolites with ESI-MS/MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect. 2003, 5, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, A.J.; Nonzom, S. Endophytic fungi: Understanding complex cross-talks. Symbiosis 2021, 83, 237–264. [Google Scholar] [CrossRef]
- Chagas, F.O.; Pessotti, R.D.C.; Caraballo-Rodríguez, A.M.; Tallarico Pupo, M. Chemical signaling involved in plant-microbe interactions. Chem. Soc. Rev. 2018, 47, 1652–1704. [Google Scholar] [CrossRef]
- Demain, A.L.; Fang, A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol. 2000, 69, 1–39. [Google Scholar] [CrossRef]
- Hyde, K.D.; Soytong, K. The fungal endophyte dilemma. Fungal Divers 2008, 33, 163–173. [Google Scholar]
- Wilson, D. Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos 1995, 73, 274. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Cortés-Sánchez, A.d.J.; Mosqueda-Olivares, T. Una mirada a los organismos fúngicos: Fábricas versátiles de diversos metabolitos secundarios de interés biotecnológico. Química Viva 2013, 12, 64–90. [Google Scholar]
- Yahr, R.; Schoch, C.L.; Dentinger, B.T.M. Scaling up discovery of hidden diversity in fungi: Impacts of barcoding approaches. Philos. Trans. B 2016, 371, 20150336. [Google Scholar] [CrossRef]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Gomes, R.R.; GLienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 2013, 31, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, F.; Duan, W.; Crous, P.W.; Cai, L. Diaporthe is paraphyletic. IMA Fungus 2017, 8, 153–187. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Manawasinghe, I.S.; Huang, Y.; Shu, Y.; Phillips, A.J.L.; Dissanayake, A.J.; Hyde, K.D.; Xiang, M.; Luo, M. Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Front. Microbiol. 2021, 11, 609387. [Google Scholar] [CrossRef] [PubMed]
- Norphanphoun, C.; Gentekaki, E.; Hongsanan, S.; Jayawardena, R.; Senanayake, I.C.; Manawasinghe, I.S.; Abeywickrama, P.D.; Bhunjun, C.S.; Hyde, K.D. Diaporthe: Formalizing the species-group concept. Mycosphere 2022, 13, 752–819. [Google Scholar] [CrossRef]
- Monkai, J.; Hongsanan, S.; Bhat, D.J.; Dawoud, T.M.; Lumyong, S. Integrative Taxonomy of Novel Diaporthe Species Associated with Medicinal Plants in Thailand. J. Fungi 2023, 9, 603. [Google Scholar] [CrossRef]
- Calla-Quispe, E.; Fuentes-Rivera, H.L.; Ramírez, P.; Martel, C.; Ibañez, A.J. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life 2020, 10, 89. [Google Scholar] [CrossRef]
- Maciá-Vicente, J.G.; Shi, Y.-N.; Cheikh-Ali, Z.; Grün, P.; Glynou, K.; Haghi Kia, S.; Piepenbring, M.; Bode, H.B. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ. Microbiol. 2018, 3, 1253–1270. [Google Scholar] [CrossRef]
- Hufsky, F.; Scheubert, K.; Sebastian, B. New kids on the block: Novel informatics methods for natural product discovery. Nat. Prod. Rep. 2014, 31, 807–817. [Google Scholar] [CrossRef]
- Bayona, L.M.; Verpoorte, R.; Klinkhamer, P.G.L.; Choi, Y.-H. Thin-Layer Chromatography | Metabolomics. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 10, pp. 59–75. ISBN 9780081019849. [Google Scholar]
- Spraker, J.E.; Luu, G.T.; Sanchez, L.M. Imaging mass spectrometry for natural products discovery: A review of ionization methods. Nat. Prod. Rep. 2020, 37, 150–162. [Google Scholar] [CrossRef]
- Smedsgaard, J.; Frisvad, J.C. Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J. Microbiol. Methods 1996, 25, 5–17. [Google Scholar] [CrossRef]
- Frisvad, J.C. Media and growth conditions for induction of secondary metabolite production. Methods Mol. Biol. 2012, 944, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Ćilerdžić, J.L.; Sofrenić, I.V.; Tešević, V.V.; Brčeski, I.D.; Duletić-Laušević, S.N.; Vukojević, J.B.; Stajić, M.M. Neuroprotective Potential and Chemical Profile of Alternatively Cultivated Ganoderma lucidum Basidiocarps. Chem. Biodivers. 2018, 15, e1800036. [Google Scholar] [CrossRef] [PubMed]
- Westphal, K.R.; Heidelbach, S.; Zeuner, E.J.; Riisgaard-Jensen, M.; Nielsen, M.E.; Vestergaard, S.Z.; Bekker, N.S.; Skovmark, J.; Olesen, C.K.; Thomsen, K.H.; et al. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2021, 347, 109171. [Google Scholar] [CrossRef]
- Tiwari, P.; Bae, H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big Effects from Small Changes: Possible Ways to Explore Nature’s Chemical Diversity. ChemBioChem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- Hanson, J.R. The Chemistry of Growing Fungi. In The Chemistry of Fungi; Royal Society of Chemistry: London, UK, 2008; pp. 18–31. ISBN 9781847558329. [Google Scholar]
- Venugopalan, A.; Srivastava, S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv. 2015, 33, 873–887. [Google Scholar] [CrossRef]
- Chepkirui, C.; Stadler, M. The genus Diaporthe: A rich source of diverse and bioactive metabolites. Mycol. Prog. 2017, 16, 477–494. [Google Scholar] [CrossRef]
- Nagarajan, K.; Tong, W.-Y.; Leong, C.-R.; Tan, W.-N. Potential of Endophytic Diaporthe sp. as a New Source of Bioactive Compounds. J. Microbiol. Biotechnol. 2021, 31, 493–500. [Google Scholar] [CrossRef]
- Xu, T.-C.; Lu, Y.-H.; Wang, J.-F.; Song, Z.-Q.; Hou, Y.-G.; Liu, S.-S.; Liu, C.-S.; Wu, S.-H. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010–2019. Microorganisms 2021, 9, 217. [Google Scholar] [CrossRef]
- Hilário, S.; Gonçalves, M.F.M. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022, 10, 2453. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Khan, B.; Dai, Q.; Lin, J.; Kang, L.; Rajput, N.A.; Yan, W.; Liu, G. Potential of Secondary Metabolites of Diaporthe Species Associated with Terrestrial and Marine Origins. J. Fungi 2023, 9, 453. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, Q.; Li, A.; Sun, R.; Tang, G.; Huang, X.; Pu, H. Bioactive secondary metabolites produced by fungi of the genus Diaporthe (Phomopsis): Structures, biological activities, and biosynthesis. Arab. J. Chem. 2023, 16, 105062. [Google Scholar] [CrossRef]
- Santos, L.; Alves, A.; Alves, R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ 2017, 2017, e3120. [Google Scholar] [CrossRef]
- Aumentado, H.D.; Balendres, M.A. Novel species and new records of Diaporthe causing eggplant leaf and fruit blight in the Philippines. Mycol. Prog. 2024, 23, 23. [Google Scholar] [CrossRef]
- Aumentado, H.D.; Balendres, M.A. Diaporthe melongenae sp. nov, a new fungal species causing leaf blight in eggplant. J. Phytopathol. 2024, 172, e13246. [Google Scholar] [CrossRef]
- Quiles Melero, I.; Peláez, T.; Rezusta López, A.; García-Rodríguez, J. Aplicación de la espectrometría de masas en micología. Enferm. Infecc. Microbiol. Clin. 2016, 34, 26–30. [Google Scholar] [CrossRef]
- Xu, C.; Xu, K.; Yuan, X.-L.; Ren, G.-W.; Wang, X.-Q.; Li, W.; Deng, N.; Wang, X.-F.; Zhang, P. Characterization of diketopiperazine heterodimers as potential chemical markers for discrimination of two dominant black aspergilli, Aspergillus niger and Aspergillus tubingensis. Phytochemistry 2020, 176, 112399. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Andersen, B.; Thrane, U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol. Res. 2008, 112, 231–240. [Google Scholar] [CrossRef]
- Polizzotto, R.; Andersen, B.; Martini, M.; Grisan, S.; Assante, G.; Musetti, R. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J. Microbiol. Methods 2012, 88, 162–171. [Google Scholar] [CrossRef]
- Figueroa, M.; Jarmusch, A.K.; Raja, H.A.; El-Elimat, T.; Kavanaugh, J.S.; Horswill, A.R.; Cooks, R.G.; Cech, N.B.; Oberlies, N.H. Polyhydroxyanthraquinones as Quorum Sensing Inhibitors from the Guttates of Penicillium restrictum and Their Analysis by Desorption Electrospray Ionization Mass Spectrometry. J. Nat. Prod. 2014, 77, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Fox Ramos, A.E.; Evanno, L.; Poupon, E.; Champy, P.; Beniddir, M.A. Natural products targeting strategies involving molecular networking: Different manners, one goal. Nat. Prod. Rep. 2019, 36, 960–980. [Google Scholar] [CrossRef] [PubMed]
- Kelman, M.J.; Renaud, J.B.; Seifert, K.A.; Mack, J.; Yeung, K.K.-C.; Sumarah, M.W. Chemotaxonomic Profiling of Canadian Alternaria Populations Using High-Resolution Mass Spectrometry. Metabolites 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Cicaloni, V.; Salvini, L.; Vitalini, S.; Garzoli, S. Chemical Profiling and Characterization of Different Cultivars of Cannabis sativa L. Inflorescences by SPME-GC-MS and UPLC-MS. Separations 2022, 9, 90. [Google Scholar] [CrossRef]
- Molinar, E.; Rios, N.; Spadafora, C.; Elizabeth Arnold, A.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla-Rios, L. Coibanoles, a new class of meroterpenoids produced by Pycnoporus sanguineus. Tetrahedron Lett. 2012, 53, 919–922. [Google Scholar] [CrossRef]
- Humber, R.A. Fungi: Preservation of cultures. In Manual of Techniques in Insect Pathology; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 1997; pp. 269–279. ISBN 9780124325555. [Google Scholar]
- Delgado Gómez, L.M.; Torres-Mendoza, D.; Hernández-Torres, K.; Ortega, H.E.; Cubilla-Rios, L. Identification of Secondary Metabolites from the Mangrove-Endophyte Lasiodiplodia iranensis F0619 by UPLC-ESI-MS/MS. Metabolites 2023, 13, 912. [Google Scholar] [CrossRef]
- Frisvad, J.C. Fungal Chemotaxonomy. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2; Zeilinger, S., Martín, J.-F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; pp. 103–121. ISBN 978-1-4939-2531-5. [Google Scholar]
- Vidal, A.; Parada, R.; Mendoza, L.; Cotoras, M. Endophytic fungi isolated from plants growing in central andean precordillera of Chile with antifungal activity against Botrytis cinerea. J. Fungi 2020, 6, 149. [Google Scholar] [CrossRef]
- Sun, M.-H.; Gao, L.; Liu, X.-Z.; Wang, J.-L. Fungal sporulation in two-stage cultivation. Mycosystema 2009, 28, 64–72. [Google Scholar]
- Sun, W.; Huang, S.; Xia, J.; Zhang, X.; Li, Z. Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys 2021, 77, 65–95. [Google Scholar] [CrossRef]
- Tekpinar, A.D.; Kalmer, A. Utility of various molecular markers in fungal identification and phylogeny. Nov. Hedwigia 2019, 109, 187–224. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [PubMed]
- Rohlfs, M.; Albert, M.; Keller, N.P.; Kempken, F. Secondary chemicals protect mould from fungivory. Biol. Lett. 2007, 3, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Verma, A.; Rai, N.; Singh, A.K.; Singh, S.K.; Kumar, B.; Kumar, R.; Gautam, V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem. Biol. 2021, 16, 2068–2086. [Google Scholar] [CrossRef]
- Andolfi, A.; Boari, A.; Evidente, M.; Cimmino, A.; Vurro, M.; Ash, G.; Evidente, A. Gulypyrones A and B and Phomentrioloxins B and C Produced by Diaporthe gulyae, a Potential Mycoherbicide for Saffron Thistle (Carthamus lanatus). J. Nat. Prod. 2015, 78, 623–629. [Google Scholar] [CrossRef]
- Evidente, A.; Rodeva, R.; Andolfi, A.; Stoyanova, Z.; Perrone, C.; Motta, A. Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased Bulgarian fennel. Eur. J. Plant Pathol. 2011, 130, 173–182. [Google Scholar] [CrossRef]
- Hu, M.; Yang, X.-Q.; Wan, C.-P.; Wang, B.-Y.; Yin, H.-Y.; Shi, L.-J.; Wu, Y.-M.; Yang, Y.-B.; Zhou, H.; Ding, Z.-T. Potential antihyperlipidemic polyketones from endophytic Diaporthe sp. JC-J7 in Dendrobium nobile. RSC Adv. 2018, 8, 41810–41817. [Google Scholar] [CrossRef]
- Tan, Q.; Yan, X.; Lin, X.; Huang, Y.; Zheng, Z.; Song, S.; Lu, C.; Shen, Y. Chemical Constituents of the Endophytic Fungal Strain Phomopsis sp. NXZ-05 of Camptotheca acuminata. Helv. Chim. Acta 2007, 90, 1811–1817. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, Y.-W.; Shao, S.-C.; Wang, L.-D.; Li, Z.-Y.; Yang, L.-Y.; Li, S.-L.; Huang, R. Ten-Membered Lactones from Phomopsis sp., an Endophytic Fungus of Azadirachta indica. J. Nat. Prod. 2008, 71, 731–734. [Google Scholar] [CrossRef]
- Chen, C.-J.; Liu, X.-X.; Zhang, W.-J.; Zang, L.-Y.; Wang, G.; Weng Ng, S.; Tan, R.-X.; Ge, H.-M. Sesquiterpenoids isolated from an endophytic fungus Diaporthe sp. RSC Adv. 2015, 5, 17559–17565. [Google Scholar] [CrossRef]
- Shi, C.; Yuan, L.; Zhao, P.-J. Two new lactone derivatives from an endophyte Diaporthe sp. XZ-07 cultivated on Camptotheca acuminata. Zhongguo Zhong Yao Za Zhi 2016, 41, 1860–1863. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Huang, Y.; Fang, M.; Wang, J.; Zheng, Z.; Su, W. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol. Lett. 2005, 251, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Bungihan, M.E.; Tan, M.A.; Kitajima, M.; Kogure, N.; Franzblau, S.G.; dela Cruz, T.E.E.; Takayama, H.; Nonato, M.G. Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. J. Nat. Med. 2011, 65, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Wang, M.-Z.; Huang, Y.-J.; Shen, Y.-M. Secondary metabolites from Phomopsis sp. A123. Mycology 2010, 1, 254–261. [Google Scholar] [CrossRef]
- Lin, X.; Lu, C.-H.; Shen, Y.-M. One New Ten-membered Lactone from Phomopsis sp. B27, an Endophytic Fungus of Annona squamosa. Chin. J. Nat. Med. 2008, 6, 391–394. [Google Scholar] [CrossRef]
- Ito, A.; Maeda, H.; Tonouchi, A.; Hashimoto, M. Relative and absolute structure of phomolide C. Biosci. Biotechnol. Biochem. 2015, 79, 1067–1069. [Google Scholar] [CrossRef]
- Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M. Endophytic Diaporthe sp. LG23 Produces a Potent Antibacterial Tetracyclic Triterpenoid. J. Nat. Prod. 2015, 78, 2128–2132. [Google Scholar] [CrossRef]
Culture Media | Period of Incubation | F0728 | F0891 |
---|---|---|---|
MEA | 7 days | 163 (100) **; 177 (56.8); 211 (28.4); 213 (34.6); 215 (58.8); 307 (13.2); 325 (14.3) | 159 (46.6); 180 (87.6); 183 (100); 193 (80.3); 207 (32.1); 211 (69.4); 229 (19.0); 245 (17.9); 251 (14.8) 268 (14.8); 279 (13.0); 331 (10.2); 340 (11.2); 384 (11.2) |
15 days | 163 (23.3); 177 (100); 191 (52.3); 207 (13.6); 213 (10.8) | 159 (37.9); 185 (100); 211 (25.3); 213 (26.7); 279 (15.0) 307 (11.4); 321 (68.5); 343 (65.4); 351 (16.3); 365 (12.3) | |
22 days | 163 (16.5); 177 (100); 191 (60.6); 205 (15.8); 207 (16.1) | 159 (23.4); 185 (100); 207 (58.0); 213 (33.1); 243 (23.7); 251 (20.0); 321 (44.0); 343 (32.9) | |
30 days | 175 (48.1); 177 (35.7); 179 (68.6); 187 (100); 196 (39.8); 213 (25.5); 233 (39.3); 277 (24.5); 317 (39.0); 333 (19.0); 390 (10.5) | 159 (17.6); 180 (22.7); 185 (100); 207 (40.5); 213 (28.3); 243 (19.8); 321 (43.4); 343 (43.1); 365 (12.8); 379 (12.7) | |
PDA | 7 days | 160 (100); 163 (52.0); 171 (51.5); 177 (50.1); 180 (37.9); 189 (35.2); 215 (46.8); 227 (14.6); 345 (10.4) | 180 (27.1); 195 (89.8); 213 (58.7); 295 (18.0); 331 (12.5); 348 (19.0); 351 (18.0; 353 (100) |
15 days | 160 (79.3); 163 (94.5); 171 (44.36); 177 (100); 189 (72.02); 191 (40.1); 213 (47.5); 215 (58.1); 259 (19.9); 309 (28.1); 325 (18.6) | 180 (50.4); 195 (53.3); 211 (40.2); 213 (34.3); 268 (24.2); 295 (12.0) 351 (21.0); 353 (100) | |
22 days | 160 (52.4); 163 (100); 177 (62.7); 189 (30.3); 191 (19.4); 211 (14.2); 213 (21.2); 215 (20.3); 309 (16.5) | 165 (23.5); 180 (27.1) 185 (34.1); 193 (58.0); 195 (92.2); 213 (51.9); 233 (23.9); 268 (40.5); 351 (28.7); 353 (100) | |
30 days | 163 (100); 177 (57.5); 191 (89.5); 207 (76.3); 213 (96.6); 215 (64.0); 229 (45.7); 259 (58.0); 275 (29.7); 307 (20.7); 359 (23.5); 413 (17.3); 429 (10.2) | 165 (33.8); 183 (21.8); 193 (62.2); 195 (57.0); 211 (16.6); 213 (28.8); 237 (21.4); 268 (21.2); 351 (24.2); 353 (100) | |
SDA | 7 days | 160 (100); 163 (39.7); 171 (41.4); 189 (41.5); 211 (24.4); 215 (64.0) 265 (25.1); 309 (16.5); 325 (10.9); 337 (12.5); 353 (11.3) | 180 (23.5); 197 (47.8); 211 (100); 245 (58.3); 261 (13.3) |
15 days | 160 (100); 163 (21.7); 164 (29.8); 175 (36.0); 189 (48.9); 211 (23.6); 215 (26.5) | 164 (27.4); 180 (50.0; 188 (73.4); 197 (45.4); 211 (100); 245 (57.6); 261 (19.7); 353 (31.8) | |
22 days | 160 (100); 163 (51.0); 171 (37.2); 175 (36.0); 183 (34.3); 189 (52.1); 193 (41.8); 211 (30.4); 213 (34.0); 215 (80.7); 228 (29.0); 265 (20.0); 309 (25.0) | 164 (47.0); 180 (45.0); 197 (34.7); 211 (100); 245 (64.8); 261 (18.7); 353 (33.2) | |
30 days | 160 (100); 163 (51.7); 171 (32.4); 177 (35.3); 189 (52.8); 211 (27.3); 213 (31.0); 215 (70.0); 265 (26.5); 309 (22.7) | 164 (57.0); 180 (44.8); 185 (30.6); 197 (38.5); 211 (100); 245 (61.8); 353 (33.8) |
Culture Media | Period of Incubation | F0728 | F0891 |
---|---|---|---|
MEA | 7 days | 169 (55.7) **; 179 (57.6); 193 (58.3); 195 (100); 209 (66.1); 213 (20.9); 235 (15.7); 279 (16.8); 349 (20.1); 357 (18.0); 371 (11.5) | 155 (100); 173 (20.0); 199 (19.7); 217 (12.5); 249 (82.5); 329 (27.2); 385 (11.5); 505 (16.7) |
15 days | 169 (20.9); 193 (17.2); 209 (30.1); 211 (27.7); 213 (16.7); 345 (19.8); 363 (100); 365 (50.1); 378 (34.9); 394 (38.0) 396 (50.1) | 155 (100); 173 (92.7); 185 (34.9); 199 (49.8); 213 (30.2); 227 (20.9); 249 (29.2); 319 (21.2); 329 (26.7); 337 (15.3); 505 (12.9); 709 (23.1) | |
22 days | 167 (42.5); 169 (59.6); 193 (44.7); 209 (59.7); 211 (67.9); 217 (100); 249 (31.2); 345 (66.2); 363 (59.6); 365 (24.5); 379 (20.2); 396 (23.7) | 155 (70.0); 173 (100); 185 (38.9); 199 (59.6); 213 (30.0); 227 (25.8); 241 (27.0); 249 (24.4); 269 (22.1); 279 (19.9); 319 (27.5); 329 (53.3); 489 (13.2); 505 (17.1) | |
30 days | 165 (20.3); 206 (16.9); 251 (25.7); 291 (74.1); 363 (100); 379 (25.1); 415 (74.9); 469 (14.3); 499 (12.2); 612 (25.0) | 155 (95.1); 173 (100); 185 (43.4); 199 (72.0); 213 (57.0); 225 (35.0); 241 (48.8); 249 (36.0); 255 (33.9); 269 (32.8); 283 (26.4); 319 (79.0); 329 (63.4); 337 (42.9); 353 (26.6); 473 (26.0); 489 (17.6); 505 (40.8); 533 (27.6); 537 (17.4); 547 (14.4); 577 (14.0) | |
PDA | 7 days | 162 (18.4); 169 (13.0); 193 (34.0); 195 (30.3); 209 (27.0); 285 (14.3); 363 (100); 365 (18.2) | 327 (16.2); 329 (100); 330 (13.1) |
15 days | 169 (29.6); 179 (100); 193 (38.8); 195 (75.3); 197 (62.4); 209 (34.5); 217 (19.7); 249 (18.9); 347 (14.2); 357 (14.3) | 235 (25.6); 249 (100); 251 (49.2); 327 (16.6); 329 (98.9) | |
22 days | 169 (82.0); 195 (100); 209 (68.3); 213 (25.9); 248 (23.5); 331 (21.8); 347 (56.2); 385 (17.8); 407 (38.2); 417 (19.0) | 235 (32.7); 249 (100); 251 (74.2); 327 (13.6); 329 (78.5) | |
30 days | 179 (31.0); 193 (49.6); 197 (95.5); 209 (24.5); 217 (100); 235 (20.0) 249 (32.3); 337 (11.0) | 235 (69.0); 249 (100); 251 (21.1); 267 (20.9); 329 (72.2) | |
SDA | 7 days | 165 (25.4); 193 (13.6); 204 (15.3); 209 (100); 211 (14.6) | 165 (100); 193 (10.6); 251 (11.1); 346 (21.5) |
15 days | 165 (12.9); 193 (15.6); 204 (11.0); 209 (100); 211 (45.1) | 155 (11.5); 178 (10.6); 259 (18.2); 275 (10.0); 329 (83.3); 346 (35.5); 390 (10.0) | |
22 days | 165 (27.5); 193 (27.0); 204 (100) | 173 (10.0); 259 (10.0); 281 (10.0); 329 (42.9); 346 (10.0); 390 (10.0) | |
30 days | 165 (26.3); 193 (19.2); 204 (100); 209 (92.6); 211 (28.4) | 173 (10.0); 259 (10.0); 329 (46.8); 346 (10.0) |
Culture Media | Time of Culture | F0728 | F0891 | ||
---|---|---|---|---|---|
ESI (+) | ESI (-) | ESI (+) | ESI (-) | ||
7 days | 211 (28.4) | -------- | 211 (69.4) | -------- | |
MEA | 15 days | 213 (10.8) | 213 (16.7) | 213 (26.7) | 213 (30.2) |
22 days | -------- | 249 (31.2) | -------- | 249 (24.4) | |
30 days | 213 (25.5) | -------- | 213 (28.3) | -------- | |
7 days | 180 (37.9) | -------- | 180 (27.1) | -------- | |
PDA | 15 days | 213 (47.5) | 249 (18.9) | 213 (34.3) | 249 (100) |
22 days | 213 (21.2) | -------- | 213 (51.9) | -------- | |
30 days | 213 (96.6) | 235 (20.0); 249 (32.3) | 213 (28.8) | 235 (69.0); 249 (100) | |
7 days | 211 (24.4) | 193 (13.6) | 211 (100) | 193 (10.6) | |
SDA | 15 days | 211 (23.6) | -------- | 211 (100) | -------- |
22 days | 211 (30.4) | -------- | 211 (100) | -------- | |
30 days | 211 (27.3) | -------- | 211 (100) | -------- |
Compound | Precursor Ion | Product Ions (m/z) and Lost Fragments |
---|---|---|
1 [ESI (+)] | 211 [M + H]+ | 196 (4) * [-CH3]; 183 (5) [-CO]; 141 (35) [-C4H6O]; 123 (70) [-C4H6O/H2O]; 97 (20) [-C4H6O/CO2]; 91 (52) [-C4H6O/H2O/OHCH3]; 70 (73); 57 (92) |
2 [ESI (+)] | 213 [M + H]+ | 195 (30) [-H2O]; 185 (2) [-CO]; 181 (5) [-HOCH3]; 177 (5) [-2H2O]; 167 (12) [-C2H6O]; 153 (55) [-CH3OH/CO]; 149 (35) [-C2H6O/H2O]; 109 (38) [-C4H9O/OCH3]; 107 (60) [-C2H4O/CO2/H2O]; 95 (100) [-C4H8O/C2H6O]; 69 (73) [-C4H8O/C2H6O/C2H2]; 57 (92) |
3 [ESI (-)] | 193 [M − H]− | 175 (55) [-H2O]; 149 (38) [-CO2]: 147 (52) [-OCH3/CH3]; 131 (30) [-H2O/CO2]; 107 (23) [-C4H7/OCH3] |
4 [ESI (+)] | 215 [M + H]+ | 171 (4) [-CO2]; 153 (5) [-CO2/H2O]; 151 (22) [-CO/2H2O]; 139 (100) [-C2H2O/H2O2]; 97 (18) [-C3H6/C2H2O/H2O2] |
5 [ESI (-)] | 235 [M − H]− | 193 (8) [-C3H6]; 191 (100) [-CHO/CH3]; 190 (31) [-C3H9]; 149 (5) [-C3H6/CHO/CH3]; 146 (2) [-C4H12/CHO]; 123 (8) [-C6H8O2] |
6 [ESI (-)] | 249 [M − H]− | 205 (100) [-CO2]; 203 (30) [-CO/H2O]; 189 (12) [-CO2/H2O]; 189 (12) [-CO2/H2O]; 187 (6) [-CO/2H2O]; 163 (8); 135 (12) |
7 [ESI (+)] | 189 [M + H]+ | 174 (100) [-CH3]; 159 (38) [-C2H6]; 158 (5) [-CH3O]; 146 (5) [-C3H7]; 131 (12) [-C4H10] |
8 [ESI (-)] | 195 [M − H]− | 177 (6) [-H2O]; 151 (100) [-CO2]; 135 (32) [-CO2/O]; 133 (6) [-CO2/H2O]; 109 (30) [-C3H6/CO2]; 91 (8) [-C3H6/CO2/H2O]; 83 (8) [-C5H8/CO2] |
9 [ESI (+)] | 207 [M + H]+ | 192 (100) [-CH3]; 191 (4) [-O]; 174 (4) [-CH3]; 164 (6) [-CH3/CO]; 163 (5) [-CO2] |
10 [ESI (-)] | 217 [M − H]− | 173 (68) [-C2H4O/H+]; 158 (100) [-C2H3O2/H+] |
11 [ESI (+)] | 245 [M + H]+ | 159 (18) [-C5H10O]; 153 (16) [-C2H4/CO/2H2O]; 151 (62) [-C2H6/CO/2H2O]; 139 (100) [-C3H8/CO2/H2O] |
12 [ESI (+)] | 343 [M + H]+ | 231 (18) [-C8H16]; 213 (14) [-C8H16/H2O]; 183 (14) [-C9H18O/H2O]; 157 (25) [-C9H18O/CO2]; 155 (25) [-C9H18O/H2O/CO]; 149 (48) [-C9H18O/H2O/H2O2]; 123 (42) [-C9H18O/H2O2/CO2]; 121 (60) [-C9H18O/H2O/H2O2/CO]; 119 (84) [-C9H18O/3H2O/CO]; 107 (72) [-C9H18O/H2O2/C2H2O/H2O]; 105 (76) [-C9H18O/H2O2/CO2/H2O]; 95 (78) [-C9H18O/H2O/H2O2/C3H2O]; 93 (100) [-C9H18O/H2O/H2O2/C3H4O] |
13 [ESI (-)] | 345 [M − H]− | 327 (6) [-H2O]; 301 (13) [-CO2]; 285 (16) [-CO/CH3OH]; 276 (36) [-C5H9]; 260 (16) [-C5H10/CH3]; 259 (60) [-C5H11/CH3]; 257 (27) [-C3H8/CO2]; 215 (100) [-C5H11/CH3/CO2]; 214 (62) [-C5H12/CH3/CO2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Torres, K.; Torres-Mendoza, D.; Navarro-Velasco, G.; Cubilla-Rios, L. Toward an Efficient Differentiation of Two Diaporthe Strains Through Mass Spectrometry for Fungal Biotyping. Curr. Issues Mol. Biol. 2025, 47, 53. https://doi.org/10.3390/cimb47010053
Hernández-Torres K, Torres-Mendoza D, Navarro-Velasco G, Cubilla-Rios L. Toward an Efficient Differentiation of Two Diaporthe Strains Through Mass Spectrometry for Fungal Biotyping. Current Issues in Molecular Biology. 2025; 47(1):53. https://doi.org/10.3390/cimb47010053
Chicago/Turabian StyleHernández-Torres, Kathleen, Daniel Torres-Mendoza, Gesabel Navarro-Velasco, and Luis Cubilla-Rios. 2025. "Toward an Efficient Differentiation of Two Diaporthe Strains Through Mass Spectrometry for Fungal Biotyping" Current Issues in Molecular Biology 47, no. 1: 53. https://doi.org/10.3390/cimb47010053
APA StyleHernández-Torres, K., Torres-Mendoza, D., Navarro-Velasco, G., & Cubilla-Rios, L. (2025). Toward an Efficient Differentiation of Two Diaporthe Strains Through Mass Spectrometry for Fungal Biotyping. Current Issues in Molecular Biology, 47(1), 53. https://doi.org/10.3390/cimb47010053