miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Approval
2.3. DNA Extraction and rs895819 Polymorphism Genotyping
3. Results
3.1. Baseline Characteristics
3.2. Detection of rs895819 Polymorphism
3.3. Correlation of rs895819 Polymorphism and Recurrent Pregnancy Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chin, A.H.B.; Nguma, J.B.; Ahmad, M.F. The American Society for Reproductive Medicine’s new and more inclusive definition of infertility may conflict with traditional and conservative religious-cultural values. Fertil. Steril. 2024, 121, 892. [Google Scholar] [CrossRef] [PubMed]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Fertility, G.B.D.; Forecasting, C. Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: A comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2057–2099. [Google Scholar] [CrossRef]
- Gelbaya, T.A.; Potdar, N.; Jeve, Y.B.; Nardo, L.G. Definition and epidemiology of unexplained infertility. Obstet. Gynecol. Surv. 2014, 69, 109–115. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Jayaprakasan, K.; Tan, A.; Thornton, J.G.; Coomarasamy, A.; Raine-Fenning, N.J. Reproductive outcomes in women with congenital uterine anomalies: A systematic review. Ultrasound Obstet. Gynecol. 2011, 38, 371–382. [Google Scholar] [CrossRef]
- Drakaki, E.; Stavros, S.; Dedousi, D.; Potiris, A.; Mavrogianni, D.; Zikopoulos, A.; Moustakli, E.; Skentou, C.; Thomakos, N.; Rodolakis, A.; et al. The Effect of Bisphenol and Its Cytotoxicity on Female Infertility and Pregnancy Outcomes: A Narrative Review. J. Clin. Med. 2024, 13, 7568. [Google Scholar] [CrossRef]
- Andrabi, S.W.; Ara, A.; Saharan, A.; Jaffar, M.; Gugnani, N.; Esteves, S.C. Sperm DNA Fragmentation: Causes, evaluation and management in male infertility. JBRA Assist. Reprod. 2024, 28, 306–319. [Google Scholar] [CrossRef]
- Stavros, S.; Potiris, A.; Molopodi, E.; Mavrogianni, D.; Zikopoulos, A.; Louis, K.; Karampitsakos, T.; Nazou, E.; Sioutis, D.; Christodoulaki, C.; et al. Sperm DNA Fragmentation: Unraveling Its Imperative Impact on Male Infertility Based on Recent Evidence. Int. J. Mol. Sci. 2024, 25, 10167. [Google Scholar] [CrossRef]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Bouba, I.; Tsirka, G.; Stavros, S.; Vrachnis, D.; Vrachnis, N.; Potiris, A.; Georgiou, I.; et al. Sperm Mitochondrial Content and Mitochondrial DNA to Nuclear DNA Ratio Are Associated with Body Mass Index and Progressive Motility. Biomedicines 2023, 11, 3014. [Google Scholar] [CrossRef]
- Evenson, D.P.; Larson, K.L.; Jost, L.K. Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 2002, 23, 25–43. [Google Scholar] [CrossRef]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Panner Selvam, M.K.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Mens. Health 2020, 38, 412–471. [Google Scholar] [CrossRef] [PubMed]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Katopodis, P.; Domali, E.; Potiris, A.; Stavros, S.; Zachariou, A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int. J. Mol. Sci. 2024, 25, 11802. [Google Scholar] [CrossRef]
- Fainberg, J.; Kashanian, J.A. Recent advances in understanding and managing male infertility. F1000Research 2019, 8, 670. [Google Scholar] [CrossRef]
- The ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; McHeik, S.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2023, 2023, hoad002. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar] [CrossRef]
- Arias-Sosa, L.A.; Acosta, I.D.; Lucena-Quevedo, E.; Moreno-Ortiz, H.; Esteban-Perez, C.; Forero-Castro, M. Genetic and epigenetic variations associated with idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2018, 35, 355–366. [Google Scholar] [CrossRef]
- Bradley, L.A.; Palomaki, G.E.; Bienstock, J.; Varga, E.; Scott, J.A. Can Factor V Leiden and prothrombin G20210A testing in women with recurrent pregnancy loss result in improved pregnancy outcomes?: Results from a targeted evidence-based review. Genet. Med. 2012, 14, 39–50. [Google Scholar] [CrossRef]
- Palomba, S.; de Wilde, M.A.; Falbo, A.; Koster, M.P.; La Sala, G.B.; Fauser, B.C. Pregnancy complications in women with polycystic ovary syndrome. Hum. Reprod. Update 2015, 21, 575–592. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Ticconi, C.; Tersigni, C.; Garofalo, S.; Martino, C.; Lanzone, A.; Scambia, G.; Di Simone, N. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod. Immunol. 2020, 83, e13200. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; PG, D.E.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Puente, E.; Alonso, L.; Lagana, A.S.; Ghezzi, F.; Casarin, J.; Carugno, J. Chronic Endometritis: Old Problem, Novel Insights and Future Challenges. Int. J. Fertil. Steril. 2020, 13, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Rajcan-Separovic, E. Next generation sequencing in recurrent pregnancy loss-approaches and outcomes. Eur. J. Med. Genet. 2020, 63, 103644. [Google Scholar] [CrossRef] [PubMed]
- Jaslow, C.R.; Kutteh, W.H. Effect of prior birth and miscarriage frequency on the prevalence of acquired and congenital uterine anomalies in women with recurrent miscarriage: A cross-sectional study. Fertil. Steril. 2013, 99, 1916–1922. [Google Scholar] [CrossRef]
- Stavros, S.; Panagopoulos, P.; Machairiotis, N.; Potiris, A.; Mavrogianni, D.; Sfakianakis, A.; Drakaki, E.; Christodoulaki, C.; Panagiotopoulos, D.; Sioutis, D.; et al. Association between cytokine polymorphisms and recurrent pregnancy loss: A review of current evidence. Int. J. Gynaecol. Obstet. 2024, 167, 45–57. [Google Scholar] [CrossRef]
- Quintero-Ronderos, P.; Laissue, P. Genetic Variants Contributing to Early Recurrent Pregnancy Loss Etiology Identified by Sequencing Approaches. Reprod. Sci. 2020, 27, 1541–1552. [Google Scholar] [CrossRef]
- Nie, M.; Yu, S.; Peng, S.; Fang, Y.; Wang, H.; Yang, X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol. Reprod. 2015, 93, 98. [Google Scholar] [CrossRef]
- Yoon, J.H.; Abdelmohsen, K.; Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 2014, 34, 9–14. [Google Scholar] [CrossRef]
- Nazou, E.; Potiris, A.; Mavrogianni, D.; Drakaki, E.; Vogiatzis, A.A.; Sarli, V.; Vrantza, T.; Zikopoulos, A.; Louis, K.; Skentou, C.; et al. Oocyte Maturation and miRNAs: Studying a Complicate Interaction to Reveal Possible Biomarkers for Female Infertility. Diseases 2024, 12, 121. [Google Scholar] [CrossRef]
- Christenson, L.K. MicroRNA control of ovarian function. Anim. Reprod. 2010, 7, 129–133. [Google Scholar]
- Fu, G.; Brkic, J.; Hayder, H.; Peng, C. MicroRNAs in Human Placental Development and Pregnancy Complications. Int. J. Mol. Sci. 2013, 14, 5519–5544. [Google Scholar] [CrossRef]
- Alipour, M.; Abtin, M.; Hosseinzadeh, A.; Maleki, M. Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2019, 36, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Patronia, M.M.; Potiris, A.; Mavrogianni, D.; Drakaki, E.; Karampitsakos, T.; Machairoudias, P.; Topis, S.; Zikopoulos, A.; Vrachnis, D.; Moustakli, E.; et al. The Expression of microRNAs and Their Involvement in Recurrent Pregnancy Loss. J. Clin. Med. 2024, 13, 3361. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Yang, G.; You, L.; Zhang, T.; Zhao, Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front. Oncol. 2019, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, T.J.; He, C.Y.; Sun, L.P.; Liu, J.W.; Yuan, Y. MiR-27a rs895819 is involved in increased atrophic gastritis risk, improved gastric cancer prognosis and negative interaction with Helicobacter pylori. Sci. Rep. 2017, 7, 41307. [Google Scholar] [CrossRef]
- Yang, R.; Schlehe, B.; Hemminki, K.; Sutter, C.; Bugert, P.; Wappenschmidt, B.; Volkmann, J.; Varon, R.; Weber, B.H.; Niederacher, D.; et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res. Treat. 2010, 121, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Barragan, R.; Coltell, O.; Asensio, E.M.; Frances, F.; Sorli, J.V.; Estruch, R.; Salas-Huetos, A.; Ordovas, J.M.; Corella, D. MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population. Int. J. Mol. Sci. 2016, 17, 1338. [Google Scholar] [CrossRef]
- Bahari, G.; Taheri, M.; Mokhtari, M.; Moudi, M.; Majidpour, M.; Ghadimi, H.S. Association between Mir-499, Mir-27a, and Mir-146a polymorphisms and their susceptibility to recurrent spontaneous abortion; in silico analysis. Turk. J. Obstet. Gynecol. 2024, 21, 158–165. [Google Scholar] [CrossRef]
- Trujillo-Fernandez, Y.G.V.; Yzabal-Barbedillo, C.; Saucedo-Sarinana, A.M.; Tovar-Jacome, C.J.; Godinez-Rodriguez, M.Y.; Barros-Nunez, P.; Gallegos-Arreola, M.P.; Juarez-Vazquez, C.I.; Pineda-Razo, T.D.; Marin-Contreras, M.E.; et al. Functional Variants in MicroRNAs (rs895819, rs11614913 and rs2910164) Are Associated with Susceptibility and Clinicopathological Features in Mexican Patients with Colorectal Cancer. Arch. Iran. Med. 2023, 26, 439–446. [Google Scholar] [CrossRef]
- Liu, Y.; Gui, Y.F.; Liao, W.Y.; Zhang, Y.Q.; Zhang, X.B.; Huang, Y.P.; Wu, F.M.; Huang, Z.; Lu, Y.F. Association between miR-27a rs895819 polymorphism and breast cancer susceptibility: Evidence based on 6118 cases and 7042 controls. Medicine 2021, 100, e23834. [Google Scholar] [CrossRef]
- Zhang, S.; Han, Q.; Zhu, K.; Wang, Q. The association of miR-27a rs895819 polymorphism with colorectal cancer risk in Chinese population. J. Clin. Lab. Anal. 2020, 34, e23497. [Google Scholar] [CrossRef]
- Mir, R.; Elfaki, I.; Elangeeb, M.E.; Moawadh, M.S.; Tayeb, F.J.; Barnawi, J.; Albalawi, I.A.; Alharbi, A.A.; Alhelali, M.H.; Alsaedi, B.S.O. Comprehensive Molecular Evaluation of HNF-1 Alpha, miR-27a, and miR-146 Gene Variants and Their Link with Predisposition and Progression in Type 2 Diabetes Patients. J. Pers. Med. 2023, 13, 1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xing, Y.; Wang, Y.; Du, Z.; Zhang, C.; Gao, J. Association of microRNA gene polymorphisms with recurrent spontaneous abortion: An updated meta-analysis. Exp. Ther. Med. 2023, 25, 179. [Google Scholar] [CrossRef]
- Bartel, D.P.; Chen, C.Z. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 2004, 5, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Potiris, A.; Stavros, S.; Zouganeli, I.; Machairiotis, N.; Drakaki, E.; Zikopoulos, A.; Anagnostaki, I.; Zachariou, A.; Gerede, A.; Domali, E.; et al. Investigating the Imperative Role of microRNAs Expression in Human Embryo Implantation: A Narrative Review Based on Recent Evidence. Biomedicines 2024, 12, 2618. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, H.; Huo, Z.; Ma, Z.; Dang, J.; Dang, W.; Pan, L.; Chen, J.; Zhong, H. MicroRNA-16 inhibits feto-maternal angiogenesis and causes recurrent spontaneous abortion by targeting vascular endothelial growth factor. Sci. Rep. 2016, 6, 35536. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.M.; Qi, L.; He, T.Z.; Shi-Guo, L.; Hao, C.J.; Cui, Y.; Zhang, N.; Xia, H.F.; Ma, X. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol. 2011, 8, 861–872. [Google Scholar] [CrossRef]
- Srivastava, P.; Bamba, C.; Chopra, S.; Mandal, K. Role of miRNA polymorphism in recurrent pregnancy loss: A systematic review and meta-analysis. Biomark. Med. 2022, 16, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.; Shalabi, T.; Gaber, K.R.; Amr, K. Association of miRNA-27a and leptin polymorphisms with recurrent pregnancy loss in Egyptian women. Meta Gene 2020, 24, 100617. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.G.; Wang, J.L.; Zhou, L.Y.; Liu, H.J.; Wang, Y.F. Effect of miRNA-27a and Leptin Polymorphisms on Risk of Recurrent Spontaneous Abortion. Med. Sci. Monit. 2016, 22, 3514–3522. [Google Scholar] [CrossRef]
- Rah, H.; Chung, K.W.; Ko, K.H.; Kim, E.S.; Kim, J.O.; Sakong, J.H.; Kim, J.H.; Lee, W.S.; Kim, N.K. miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. PLoS ONE 2017, 12, e0177160. [Google Scholar] [CrossRef]
- Kim, H.I.; Choi, E.A.; Paik, E.C.; Park, S.; Hwang, Y.I.; Lee, J.H.; Seo, S.K.; Cho, S.; Choi, Y.S.; Lee, B.S.; et al. Identification of Single Nucleotide Polymorphisms as Biomarkers for Recurrent Pregnancy Loss in Korean Women. J. Korean Med. Sci. 2022, 37, e336. [Google Scholar] [CrossRef] [PubMed]
- Jairajpuri, D.S.; Almawi, W.Y. MicroRNA expression pattern in pre-eclampsia (Review). Mol. Med. Rep. 2016, 13, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Chen, A.; Yang, H.; Hong, L. MicroRNA-27a inhibits trophoblast cell migration and invasion by targeting SMAD2: Potential role in preeclampsia. Exp. Ther. Med. 2020, 20, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Hamzeiy, H.; Allmer, J.; Yousef, M. Computational methods for microRNA target prediction. Methods Mol. Biol. 2014, 1107, 207–221. [Google Scholar] [CrossRef]
- Lucas, E.S.; Dyer, N.P.; Fishwick, K.; Ott, S.; Brosens, J.J. Success after failure: The role of endometrial stem cells in recurrent miscarriage. Reproduction 2016, 152, R159–R166. [Google Scholar] [CrossRef]
Variable | RPL Group (n = 93) | Control Group (n = 107) | p-Value |
---|---|---|---|
Age (Years) | |||
Mean (SD) | 33.98 (5.881) | 34.02 (5.849) | 0.942 |
Median (Q1, Q3) | 33 (30, 38) | 33 (30, 38) | |
BMI (kg/m2) | |||
Mean (SD) | 23.11 (3.251) | 23.29 (3.309) | 0.681 |
Median (Q1, Q3) | 22.60 (20.34, 24.99) | 22.58 (20.42, 25.01) |
Genotype | RPL n (%) | Control n (%) | OR | 95% CI for OR | p-Value |
---|---|---|---|---|---|
AA | 24 (25.8%) | 54 (50.5%) | 0.341 | [0.187–0.622] | 0.00036 * |
AG | 46 (49.5%) | 48 (44.9%) | 1.203 | [0.689–2.100] | 0.5139 |
GG | 23 (24.7%) | 5 (4.7%) | 6.703 | [2.432–18.47] | 0.00005 * |
Total | 93 (100%) | 107 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagou, G.; Potiris, A.; Dedousi, D.; Mavrogianni, D.; Vassilaki, I.; Zikopoulos, A.; Moustakli, E.; Sfakianakis, A.; Kathopoulis, N.; Gerede, A.; et al. miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma. Curr. Issues Mol. Biol. 2025, 47, 271. https://doi.org/10.3390/cimb47040271
Panagou G, Potiris A, Dedousi D, Mavrogianni D, Vassilaki I, Zikopoulos A, Moustakli E, Sfakianakis A, Kathopoulis N, Gerede A, et al. miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma. Current Issues in Molecular Biology. 2025; 47(4):271. https://doi.org/10.3390/cimb47040271
Chicago/Turabian StylePanagou, Georgia, Anastasios Potiris, Dimitra Dedousi, Despoina Mavrogianni, Ioanna Vassilaki, Athanasios Zikopoulos, Efthalia Moustakli, Antonios Sfakianakis, Nikolaos Kathopoulis, Angeliki Gerede, and et al. 2025. "miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma" Current Issues in Molecular Biology 47, no. 4: 271. https://doi.org/10.3390/cimb47040271
APA StylePanagou, G., Potiris, A., Dedousi, D., Mavrogianni, D., Vassilaki, I., Zikopoulos, A., Moustakli, E., Sfakianakis, A., Kathopoulis, N., Gerede, A., Panagopoulos, P., Domali, E., Drakakis, P., & Stavros, S. (2025). miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma. Current Issues in Molecular Biology, 47(4), 271. https://doi.org/10.3390/cimb47040271